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Abstract 

It is shown that the gravitational radiation from a spinning rod cannot be calculated c1assicaJly 
unless the mass of the rod exceeds several tonnes. If laboratory sources of gravitational waves 
ever become feasible, they will have to be described quantum mechanically, and should make possible 
the detection of individual gravitons. 

The spinning rod was the first source for which emission of gravitational waves 
was calculated by Einstein (1916, 1918) and Eddington (1924), and the formula 
for emitted power has often been used for illustrative purposes. All discussions 
of the problem of which I am aware use non-quantum techniques. It might seem 
that classical concepts would suffice for any rod which might be contemplated 
as a laboratory source, but the weakness of gravitational interactions and the 
consequent low probability of graviton emission make this assumption questionable. 
Radiation from a source which must move through many cycles before there is a 
significant probability for one quantum to be emitted cannot be described classically. 
We shall see here that a rod must be fairly large before classical methods are valid. 

If a mechanical system rotates with frequency v, it may emit an energy E during 
a cycle in the form of gravitational waves with frequencies of the order of v, as long 
as we are considering a regime in which the classical approximation is good. The 
frequency of quadrupole radiation will be 2v here. The change in the classical action 
of the mechanical system during the entire cycle in which the waves must be con­
sidered to be emitted is E lv, and a classical description is valid only if this change is 
much greater than h. Thus the criterion for validity of a classical description is 
E /v ~ h. The number N of quanta emitted in one period, N ~ E /hv, must be much 
greater than unity. 

The classical formula for the power emitted by a rod with moment of inertia 
J, rotating with angular frequency Q, is (Eddington 1924) 

dE /dt = (32G/5c5)J2Q6. (1) 

The rate of emission of energy will be related to the rate dn/dt at which gravitons 
with angular frequency 2Q are emitted by dE /dt = 2hQ dn/dt, and the number 

* This paper is a revised version of one which was awarded an honourable mention in the 1977 
Gravity Research Foundation Essay Contest. 
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of gravitons emitted in one period will be N = (2n/Q) dn/dt. Therefore 

N = V n(G/hc5)J2Q4 = !; n(G/hc)M2(V/ct, 

where M is the mass of the rod and V the speed of an end. 

(2) 

The rate at which we can spin such a rod will depend on the elastic properties 
of the material. It could be spun at such a high rate that it would be ready to explode, 
but this is neither safe nor practical. The maximum elastic strain for a metal is 
usually less than 0·5 % (Hayden et aT. 1965), and it seems reasonable to limit the 
strain to 1 %. Since the stress required to supply the centripetal acceleration, and 
thus the strain, is proportional to V 2, V cannot be greater than one-tenth of the speed 
at which unit strain would occur, approximately the speed of sound s in the material. 
Thus 

N~ !;nxlO-4(G/hc)M2(s/c)4. (3) 

The value of s will be less than 6 x 103 m s -1 = 2 x 10 - 5 c. This gives 
N ~ 7·5 X 10- 8 M2, with M in kilograms. For this to be much greater than unity, 
we must have 

M ~ 4x 103 kg. (4) 

Thus the mass of the rod must be many tonnes before a classical description of 
the radiation process will be valid. For masses not satisfying the condition (4), 
classical calculations are incorrect in principle, though they may give good estimates. 

It is easy to develop a semiclassical theory of gravitational radiation which will 
suffice for any reasonable laboratory source. The necessary formulae are given by 
Weinberg (1972). We use the wavefunctions for a rigid rotator 

t/I n = (2n) - t exp(inO), 

for integral n, in the quadrupole moment matrix elements 

f21< 
Dll(a--+b)=J 0 t/ltcos20t/la dO , 

f21< 
D2zCa--+b) = J 0 t/lt sin2 0 t/la dO, 

f 21< 
D 12(a--+b)=J 0 t/lt cos o sin Ot/la dO. 

These are inserted into Weinberg's equation (10.8.6) for the transition rate 

r(a--+b) = (2Gw5/5hc5){D0(a--+b) Dij(a--+b) -! I D;;(a--+b) 12}. 

Here w = 2Q is the angular frequency of the radiation. (I have inserted the approp­
riate power of c and have corrected a subscript j to j in the last term.) The result is 

r(a--+b) = 16GJ2Q5/5hc5. 

If this is multiplied by the period of the rod, we recover equation (2). This is not 
surprising, for the semiclassical formulae can be obtained from correspondence 
principle arguments. 
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These estimates suggest that the construction of laboratory sources of gravitational 
waves and the instrumentation to detect their radiation-admittedly not a very 
immediate prospect-should reveal the quantized character of the gravitational 
field; it would be a small step from there to observation of the effects of individual 
gravitons. The prospect of observing the gravitational analogue of the photoelectric 
effect is sufficient to justify further thought being devoted to the difficult problem 
of building sources of gravitational radiation. 
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