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Abstract 

Szigeti's (1961) method for obtaining the vibration frequencies of a finite chain (representing a 
long-chain molecule) from those of an associated infinite chain is analysed by a matrix partitioning 
technique. It is shown that this method has the advantage of reducing the dimensionality of the 
secular determinant. The approach is illustrated by an example. 

Introduction 

Recent experimental investigations of long-chain molecules, such as hydrocarbons, 
have regenerated interest in the vibrations of a linear chain of interacting units. 
Straightforward computations of the theoretical normal modes and frequencies of 
vibration of such a chain can be made by the usual matrix methods of small oscillation 
theory. However, when the range of interaction between the constituent groups is 
less than the length of the chain (as is the case for long-chain hydrocarbons), the 
computations can be simplified by adopting an alternative approach proposed by 
Szigeti (1961).* This method involves calculating the normal modes and frequencies 
of a chain with the same intergroup interaction but assuming its length to be infinite, 
and then imposing the boundary conditions of the required finite chain to select out 
only those frequencies that are relevant. The object of the present paper is to examine 
Szigeti's method analytically, using a procedure based on matrix partitioning, in order 
to make his method more transparent than it appears to be in the present literature. 

Theoretical Analysis 

We begin by considering a fini~e chain of N units, each having one degree of freedom 
and capable of interacting with L neighbours on either side. The equation of vibratory 
motion for it can be written in the form 

(M - lro2)'I' = 0, (1) 

where M is an N x N matrix. An infinite chain containing the same interacting 
units has a formally similar equation of motion: 

(MI - II roD'I'1 = 01, (2a) 

* Szigeti, B. (1961). Proc. R. Soc. London A 264, 198-211. 
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* Szigeti, B. (1961). Proc. R. Soc. London A 264, 198-211. 
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where the subscript I is used to signify an infinite-dimensional matrix or vector. 
The matrix Mb which corresponds to the infinite chain, is a band matrix containing 

nonvanishing elements that extend through N + 2L rows and columns symmetrically 
about its leading diagonal. We now choose an Nx N segment of the band to be the 
finite matrix corresponding to the N unit chain when it is decoupled from the infinite 
chain. This is done by partitioning equation (2) as follows: 

i 
L 

! 
i 

N 

! 
i 
L 

! 

1 ,I 1 1 
- -I~ - -1- - - -1- - -I--

I 1 1 1 
- -1- - -1- - - -1- - -I--

1 1 1 1 
o 1 M im 1 M'-I'w2 1 Mmf 1 0 

1 1 1 1 
- -1- - -1- - - -1- - -I--

I 1 1 1 
- -1- - -1- - - -1- - -I--

1 1 1 1 
+- L ~+- N ~+- L ~ 

~, l 
'Pm 1=0. (2b) 

'Pf 

The indicated partitioning selects out an N x (N + 2L) rectangular block containing 
three submatrices: the N xL submatrix M im representing the coupling between the 
N units of the finite chain and the preceding L units of the infinite chain which 
interact with them; the N x N submatrix M' - I' 0)2 representing the internal inter­
actions of the finite chain; the N xL submatrix Mmf representing the coupling 
between the N units of the finite chain and the succeeding L units of the infinite 
chain which interact with them. If the couplings represented by M im and Mmf (and 
their transposes) are removed and M' is appropriately modified (consistent with the 
property of dynamical matrices that the sum of each row or column vanishes) then 
we obtain from M' the matrix M of equation (1). 

The properties of the eigenvectors and eigenvalues of the matrix MI are well 
known. The nth component of a typical eigenvector has the form 

l/!k(n) ex exp(ikn) , (3) 

where k is a wavenumber. The corresponding frequency is given by 

L 

w2(k) = L 2Fn(1-cosnk), (4) 
n=l 

where Fn is the force constant (divided by the mass of a chain unit) for interactions 
between nth nearest neighbours, i.e. it is the quantity contained in the (p,p+n) 
elements of MI. 
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We note that, for a given value of ro, there are in general 2L values of k. This 
follows from the fact that equation (4) is a polynomial equation of degree 2L in z, 
where 

Z = exp(ik). (5) 

The roots of equation (4) for Z are related to each other through ro and, in principle, 
each can be expressed in terms of any other by eliminating ro between them. Thus, 
the most general form for the eigenvector of the infinite chain is 

2L 

t/J(n) = L ajz'j. (6) 
j=1 

We now extract an equation for the relevant finite chain from equations (2a) 
and (2b) by rewriting them in the form 

(M-Ic.o2)ljIm + {(M' -M)ljIm +Mim ljIi +M,.,rljlr} = 0, (7) 

where ljIi' ljIm and ljIr are appropriately partitioned vector components of the 
general eigenvector ljI chosen in the form (6). We now vary ljI by adjusting the 
parameters aj and Zj (while preserving the relations between the different Zj through 
their dependence on ro) so that for some combination of these parameters we cause 
the second term in equation (7) to vanish, i.e. 

(M'-M)ljIm +Mimljli +Mmrljlr == PljI = 0. (8) 

The set of parameters aj and Zj that brings about this condition makes ljIm an 
eigenvector of M. The corresponding frequencies are then obtained from the Zj 
through equation (4) as 

L 

ro2 = L F,,(2-zj-zj"). (9) 
,,=1 

Now the Nx(N+2L) rectangular matrix P (defined in equation 8) has the 
partitioned form: 

P == [Mim. -M' -M M,.,e]. (10) 

From the definitions ofMim andMmr, it is evident that the only nonvanishing elements 
ofP constitute an L x 2L submatrix P1 located at the top left-hand corner and another 
L x2L submatrix P 2 located at the bottom right-hand corner, their centres being N 
columns apart. Thus we can rewrite equation (8) as 

(PljIY == [ (P1 ljIS : ... 0... : (P2lj12)t ] = 0, (11) 

+- L ~+-N-2L~+- L ~ 

where the vectors have been transposed for convenience oflayout. We have also used 

(ljI1)t == [(ljIi)t (ljIm,1)t], (ljI2)t == [(ljIm,2)t (ljIe)t], (12) 

where ljIm,l represents the first L elements of ljIm' and ljIm,2 represents the last L 
elements. 
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If we rewrite equation (11) in terms of the vector Zj defined by 

(Z ) t - [ Z n ZL] 
j = Zj,Zj' ""Zj' ""Zj (13) 

we obtain 

ZL [ Pi Zj ] 0 I a· = . 
j=i J z7(P Z Z) 

(14) 

Thus, effectively equation (14) is a set of 2L linear equations for aj' the solvability 
condition being the vanishing of the 2L x 2L determinant 

PiZi PiZZ Pi Z2L I 
-0 

z~ (P Z Zi) z~ (P Z Z2) Z~L(P Z Z2L) -. 
(15) 

If, in this determinant, the Zj are replaced by their known functions of OJ, equation 
(15) is converted into the secular equation for the finite chain. However, it may 
be computationally advantageous to vary the k j in Zj = exp(ik) to find the roots 
of equation (15) since the roots Zj occur in pairs and the physical symmetry of the 
problem separates them into even and odd types. It is obvious that this method 
reduces the N x N secular determinant of the finite chain to a 2L x 2L secular 
determinant, and is thus advantageous for 

N> 2L. (16) 

The method outlined here is clearly suitable for studying torsional and other 
vibrations oflong-chain hydrocarbons, for which Szigeti (1961) developed his method. 
In these chains, L seldom exceeds 4, and so a comparative study of the vibration 
spectra of chains of differing lengths becomes rather easy. The present method 
allows the construction of dynamical matrices involving parameterization of inertia 
parameters associated with torsional and other modes of such chains to be performed 
in exactly the same way as in Szigeti's work. An elementary illustration of the use of 
the present method is given in the Appendix. 

We note that the oscillations of long-chain hydrocarbons are rather more com­
plicated than those of a chain of point masses, and therefore the advantages of 
Szigeti's (1961) approach are in some cases probably much greater than would 
appear from the condition (16) alone. In this connection it is worth recalling Szigeti's 
paper. According to the paragraph which follows his equation (10), it is above all 
the fact that the CH2 units cannot be treated as point masses which makes it extremely 
awkward to obtain analytical solutions by the traditional methods. 
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Appendix 

To illustrate the present method, let us consider a five-unit chain in which each 
unit interacts with two neighbours, so that 

w2(k) = 2F1(I -cosk) +2F2 (I -cos2k). (AI) 

For mathematical simplicity we choose Fl = 1 and F2 = -to Thus, we have 

w2(k) = (1 -COSk)2 = t(I_Z)4 Z-2, 
so that 

Zl,2 = (1 + w) ± (w2 + 2w)t , Zl = Ijz2' 

Z3,4 = (I-w) ±(w2-2w)t, Z3 = Ijz4" 

3 -1 1 0 0 4" 4" 

-1 7 -1 1 0 4" 4" 

M=I 1 -1 3 -1 1 
4" 2" 4" 

0 1 -1 7 -1 4" 4" 

0 0 1 -1 3 
4" 4" 

(A2a, b) 

(A2c,d) 

(A3a) 

(M;m)t = [ too 0 0 ] 
-1 too 0 ' 

(MmfY = [ 
000 

000 

1 

~ -~ ], (A3b,c) 

Thus we obtain 

P1Zj 

Zf(P2 Zj) 

3 
4" o 
o -t 
o 
o 
o 

o 
o 
o 

1 
4" 

o 
o 
o 

o 
o 
o 

o -t 

o 
o 
o 
o 

o o 3 
4" 

ZJ(3-zjl)(I-zjl) 1 
zj(I -ZJ) 

-zJ(I-ZJ) J" 
zj(3-z¥I-zj ) 

(A3d) 

(A4) 

The determinant in equation (15) can be expressed in terms of w using the equations 
(A2) and, after some algebra, it can be shown that the even modes have frequencies 
which satisfy the equations 

w2 0, 4w4 -I7w2 +10 = 0, 
or 

w2 0, w2 = 1i ±tJI29" (A5a, b) 
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The odd-mode frequencies arise out of 

8(04 -18(02 + 1 = 0, 
or 

(02 = % ±-h/73 . (ASc) 

These frequencies can be checked by directly solving the secular equation for M. 

Manuscript received 24 October 1977 
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