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Abstract 

A Lagrangian that generalizes the Dirac spin t Lagrangian is given. This contains up to 2jth order 
derivatives for spin j, but can be readily quantized for free fields. Noether's theorem is generalized 
and the results are shown to conform with other known quantization procedures for arbitrary spin 
particles. Use of the higher derivative Lagrangian overcomes some of the difficulties encountered 
by others in rigorously deriving a covariant Feynman propagator. 

1. Introduction 

In a recent paper (Jeffery 1978) component minimization of the Bargmann-Wigner 
wavefunction was shown to yield the higher derivative equations 

( - E + 1l)2i "'l~~l = (- P • a)[2j] "'~~i], (la) 

(E + 1l)2i "'~:i] = (P. a)[2j] "'l~~] , (lb) 

where P and E are -i'V and i a/at, Il is the rest mass, a is the Pauli spin matrix vector 
andj is the spin quantum number. The symbol [2j] indicates the (2j+ 1)2 dimensional 
qth induced matrix or the corresponding 2jth rank totally symmetric spinor. A 
definition of induced matrices, together with the explicit values of (P. a)[2], (P. a)[3] 

and "'l~P, are set out in the Appendix (for a more detailed treatment of induced and 
other invariant matrices see Littlewood 1958). 

Equations (1) are equivalent to those given by Joos (1962) and Weinberg (1964). 
They are also directly derivable from the Dirac spin 1- equations and invariant matrix 
theory upon noting that '" a.p ... ~ transforms in the same way as a symmetrized product 
of single spinors CPa., Xp, ... , 8~. 

To remove nonphysical solutions, equations (1) were transformed to 

( _ ES + R),/,[2j] = (_ P • a)[2j] ,/,[2j] 
'1'1,2 '1'3.4, (2a) 

(ES + R),/,[2j] = (P. a)[2j] ,/,[2j] 
'1'3.4 '1'1.2 , (2b) 

where 

_ 00 (2j)! 1l2i ( P 2)' 

R - ,~ (2j-2l)!(21)! 1+ 112 ' 
00 (2j)! 1l2j-1 (P 2)' 

S =,~ (2j-21-1)!(21+1)! 1+ 112 • 
(3) 
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The Hamiltonian form of equations (2) is shown in Section 2 below to be equivalent, 
within a similarity transformation, to that of Weaver et al. (1964) and that of Mathews 
(1966). 

There are several thorough discussions of second quantization of 2(2j+ 1) com­
ponent fields in the literature (e.g. Weinberg 1964, 1969; Mathews and Ramakrishnan 
1967; Nelson and Good 1968; Weaver 1968; Mathews 1971). However, these 
have not developed a Lagrangian formalism in a rigorous manner. Weinberg, for 
example, takes an intermediate path between a Lagrangian formalism and a pure 
S-matrix approach. Where Lagrangians have been developed in detail for arbitrary 
spin equations, the fields have often contained more than 2(2j+ 1) components and 
the differential operators have been linear; examples are Hurley'S (1971, 1974) 
equations which contain 6j+ 1 components and Frank's (1973) treatment which is 
based on the Gel'fand-Naimark formalism for linear representation of the Lorentz 
group. By contrast Belinicher (1975) has developed a Lagrangian formalism and 
Feynman rules from six axioms; although not linear the equations contain only up 
to second powers in the momentum operators. Singh and Hagen (1974) have extended 
the original Fierz-Pauli program for constructing high spin Lagrangians, by introduc­
ing auxiliary conditions which disappear in the free-field case. Upon taking the 
Galilean limit (i.e. low velocities) their equations give those of Hagen and Hurley 
(1970). Doria (1977) has developed a free-field Lagrangian by using the properties 
of Sauter spinors. His equations contain linear operators and in general have wave­
functions with more than 2(2j + 1) components. 

There are not many treatments of higher derivative Lagrangians in the literature 
but a notable exception is the work of Coelho de Souza and Rodrigues (1969). These 
authors have considered canonical formalism, including Hamilton's equation, trans­
formation theory and Poisson brackets for classical field theory with higher time 
and/or spatial derivatives. Their work will serve as a spring-board for the Lagrangian 
formalism described here. 

The object of this paper is to show that equations (2) can be second-quantized 
within a rigorous Lagrangian formalism by a procedure paralleling the spin t theory. 
Emphasis is placed on those aspects of field theory which are a consequence of the 
hi"gher derivative Lagrangian, and areas adequately covered by other theories are 
avoided. Interacting fields are not considered. 

A Hamiltonian form of the single-particle equations (2) is described first in 
Section 2 because this suggests a suitable generalization of the Dirac Lagrangian 
(Section 3). The Euler-Lagrange equations of motion, commutation relationships, 
Noether's theorem, ,the field-theoretic Hamiltonian and the Feynman propagator are 
then discussed in the subsequent sections. 

2. Single-particle Hamiltonian 
Definition of an inverse operator S-l by 

SS-l",(X) = "'(x) (4) 

allows rearrangement of equations (2) to the Hamiltonian form 

E '1'1,2 = S-l '1'1,2 [ 
./.[2j] ] [ R (P. fJ)[2j]] [ ./.[2j] ] 

( - )2i+1 "'~~l] - ( - P • fJl2 j] - R ( - )2i+1 "'~~l] . 
(5) 
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Since the free fields may be expanded in terms of plane waves there is no difficulty 
with a precise meaning for S-:-1. 

Table 1 shows values of Rand S up to spin 3. When - i"V is substituted for P 
then Rand S are formally identical with Chebyshev polynomials in IlI"V of the first 
and second kind, multiplied by V 2i and "V2i- 1 respectively. With sinh cP = Ilil PI 
the results of Table 1 are summarized by ES = I PI2i cosh2jcfJ and R = I PI 2i sinh~;cP 
for half-integer j, and by ES = I P 12 i sinh2jcfJ and R = I P 12i cosh2jcfJ for integer j. 

Spinj 

1/2 
1 

3/2 
2 

S/2 
3 

Table 1. Values of R and S up to spin 3 
The operators R and S are defined by equations (3) 

R 

/l 
2/l2+p2 
4/l3 +3p 2/l 
8/l4+8p2/l2+p4 
16/l5 +20/l3P2+5/lP4 
32/l6+ 48/l4p 2+ 18/l2P4+ p6 

S 

1 
2/l 
4/l2+p2 
8/l3 +4p2/l 
16p.4+12/l2P2+P4 
32/l5 + 32/l3 P 2 + 6p.P4 

The Hamiltonian H of equation (5) is diagonalizable via the transformation 

THT- 1 = [E 0] 
o -E ' 

(6) 

where 

T= C-1 [ 
(ES + R) (P. 0')[2j] ] 

_(P.O'l2j] (_)2i+1(ES+R) , 

T- 1 = C- 1 [ 
(ES+R) (-P. 0')[2J] ] 

-(_p.O'l2j] (_)2i +1(ES+R) , 

with 
c = {2ES(ES+R)}t, 

by using the relation R2 - E 2 S 2 = (- p2)2i. The columns of T-1 are solutions of 
equation (5), provided the first 2j+ 1 columns operate on positive-energy plane waves 
and the second 2j + 1 columns on negative-energy plane waves. 

The Weaver et al. (1964) Hamiltonian Hw and the similar form of Mathews (1966) 
are seen to be equivalent to that of equation (5) by diagonalizing to M- 1 Sw 1 Hw Sw M 
and then transforming to H: 

with 
T-1M-1Sw1 HwSwMT = H, (7 

M-1 = 2- t [ 1 1] 
-1 1 ' 

M = 2- t [: -:]. 

The operators Sw and Sw 1 are listed for various j by Weaver et al. (1964) in their 
Table 1. This is a different procedure from that of Krajcik and Nieto (1977), who 
have also diagonalized Hw. Since all the equations describe the same physics, their 
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equivalence is necessary. Indeed, one hopes that all arbitrary spin equations for free 
fields, based on the Poincare group, are equivalent whether they evolve from 2(2j+ 1) 
component theories, linear operator theories or otherwise. The formal minimal 
coupling substitution makes the equations non-equivalent. Does this suggest that 
some of the problems in describing interacting fields are centred around too great 
a reliance on the minimal coupling substitution itself? 

3. General Lagrangian 

The form of the single-particle Hamiltonian suggests that a reasonable generaliza­
tion of the Dirac spin! Lagrangian density may be 

ft' = - S-l 
_[ (R-ES) (P.a)[2il ] 

t/I (_P. a)[2il (R + ES) t/I. (8) 

Here t/I is the 2jth rank column spinor given in equation (5), while Ifi is the conjugate 
transpose of t/I multiplied by the diagonal matrix having 2j + 1 entries of 1 and 2j + 1 
entries of -1 down its diagonal for half-integer spins, and 2(2j+ 1) entries of 1 down 
its diagonal for integer spin. This is a generalization of the definition Vi = t/l t Y4 given 
by Lurie (1968) for spin t, with t/lt being mUltiplied by the 2jth induced equivalent 
of Y4 for spinj. 

The inclusion of S-l in the Lagrangian is partly optional. However, the results 
then parallel those for spin! more closely than otherwise. Also ft' is a scalar with 
the dimensions of energy density and leads to a positive definite field-theoretic 
Hamiltonian. Furthermore, if S-l is excluded, the occupation numbers contain S, 
which must somehow be absorbed into their definition and makes them momentum 
dependent. 

4. Euler-Lagrange Equations of Motion 

In the Lagrangian density given by equation (8) every field component of t/I and 
its derivatives occur with S-l, so the primitive fields are taken to be S-lt/1 and its 
derivatives and, of course, Vi. Then, assuming a summation over rL, we have 

_ aft' -1 o!l' -1 o!l' 2i-l 
{J!l' - -, .. (J(S t/la) + "" En LL " (J0iS t/la) + ... + OO;i(S It/1a) {Jail (S t/lJ 

aft' 
+ olfi a {J1fi a , (9) 

where the abbreviation 

-1 ( o!l' ) n( aft' ) 
Naill OM'" °lln a au. aU? ... OUM(S It/1,,) = all oo~(s It/1,,) 

(10) 

has been made. By summing over repeated indices Ill' 1l2' ... , 1l2i' a field variable with 
mixed indices would occur more than once. To counteract this, the left-hand side 
of equation (10) is multiplied by an inverse permutation operator N-1, where N is 
the number of ways of arranging the indices. 
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Repeated integration by parts of equation (9) over 4-space, together with the 
assumption of periodicity of ifJ and all its derivatives at the boundaries, leads to the 
generalized Euler-Lagrange equations of motion 

afe (afe) 2(' afe) 2' 2'( afe ) 
a(S-lifJ,..) -all aais lifJ,..) +all aa~(s lifJ,,) - ... +( -) J a/ aa~j(s lifJ,,) = 0, 

(lla) 

afejalji" = 0. (llb) 

These equations used with the Lagrangian density (8) will reproduce the field equations 
(2) or their conjugate transposes. 

Coelho de Souza and Rodrigues (1969) have defined momenta conjugate to the 
field variables ar;' cp" (m = 0, 1, .. " 2j) by equations which are equivalent to 

2j-m 
n,,/m = L (-)'a~(afej88~a,;,cp,,). (12) 

r=O 

The value of n,,/o is zero as a consequence of the Euler-Lagrange equations of motion. 
For the Lagrangian density (8) there is only one conjugate momentum field, namely 

n,,/l which is given by 
n,,/l = is (lji A)" , (13) 

with 

A=[IO], ° -I 
I being the (2j+ 1)2 identity matrix. Hence the equal-time commutation relations are 

[S-lifJix,t), SljiP(X',t)AppJ± = c5"pc5(3)(X-X') , (14) 

where the plus or minus subscript refers to anticommutation (for j half-integer) or 
commutation (for j integer) respectively. All other field components are assumed 
to commute. 

The field-theoretic Hamiltonian could be obtained from the Lagrangian and the 
conjugate momentum (12) by following Coelho de Souza and Rodrigues (1969) and 
defining 

H = fd 3X L (n"/ma,;,cp,, -fe). 
",m 

(15) 

However, there is no need to define H in this manner. By generalizing Noether's 
theorem, the right-hand side of equation (15) is proved to be conserved in time and 
is the fourth component of a vector identifiable with the 4-momentum. The proof 
follows. 

5. Noether's Theorem for Higher Derivative Lagrangians 
For a general Lagrangian density fe = fee cp", all cp", ... , 8~j cp", x) we have 

8fe afe 8fe 2 . 
bfe = a;;:bcp" + aa A. baIlCP,,+ ... + aa2j A. b8/cp", 

0/(1, It 'f'a J.L 'PrJ. 
(16) 

Lagrangian for Arbitrary Spin 357 

Repeated integration by parts of equation (9) over 4-space, together with the 
assumption of periodicity of l/I and all its derivatives at the boundaries, leads to the 
generalized Euler-Lagrange equations of motion 

aft' (Oft') 2 ( Oft') 2i 2i( aft' )_ 
a(s-ll/1a) -Oil aois ll/la) +Oll .ao~(s ll/la) - .. , +( -) all aa;i(s ll/la) - 0, 

(lla) 

oft'jalfia = o. (11 b) 

These equations used with the Lagrangian density (8) will reproduce the field equations 
(2) or their conjugate transposes. 

Coelho de Souza and Rodrigues (1969) have defined momenta conjugate to the 
field variables a,;, CPa (m = 0, 1, ... , 2j) by equations which are equivalent to 

2i-rn 
1ta/m = L (-)'o~(oft'jao~o';'CPa)' (12) 

r=O 

The value of 1ta/O is zero as a consequence of the Euler-Lagrange equations of motion. 
For the Lagrangian density (8) there is only one conjugate momentum field, namely 

1ta/l which is given by 
(13) 

with 

A=[1 0], 
o -1 

1 being the (2j + 1)2 identity matrix. Hence the equal-time commutation relations are 

(14) 

where the plus or minus subscript refers to anticommutation (for j half-integer) or 
commutation (for j integer) respectively. All other field components are assumed 
to commute. 

The field-theoretic Hamiltonian could be obtained from the Lagrangian and the 
conjugate momentum (12) by following Coelho de Souza and Rodrigues (1969) and 
defining 

H = fd 3X L (1ta/m a';'CPa -ft'). a,rn 
(15) 

However, there is no need to define H in this manner. By generalizing Noether's 
theorem, the right-hand side of equation (15) is proved to be conserved in time and 
is the fourth component of a vector identifiable with the 4-momentum. The proof 
follows. 

5. Noether's Theorem for Higher Derivative Lagrangians 

For a general Lagrangian density ft' = ft'( CPa' all CPa' ... , a;i CPa' x) we have 

(16) 



358 E. A. Jeffery 

where the sum over IX is assumed and the notation (10) has been adopted. Elimination 
of o!l' /ocP(J. using the Euler-Lagrange equation 

o!l' _ (O!l') 2( o!l' ) 2j 2j( o!l' ) ocP(J. - 0/l oO/lcP" -o/l 00; cPa + ... +( -) 0/l oo;j cPa (17) 

gives 
2j 

{)!l' = LIn, (18a) 
n=l 

with 

In = {O~~a{)O~cP,,+(_)n-lo:(o~~J{)cPa}. (18b) 

The differential operator 0/l can be broken down into spatial parts OJ (i = 1,2,3) 
and a temporal part at, that is, 

I - ~ { o!l' () on-r or A. ()n-l on-r or( o!l' ) {)A. } 
n - rf'o a a? r O~ cP" j t 'Ya + - j t a oj r O~ cP" 'Ya' (19) 

Upon repeated integration by parts over 3-space and use of the boundary conditions, 
the completely spatial factors (r = 0) cancel and equation (19) integrates to 

fIn d3x = f d3x rtl {( - t-r oi-r(oo/~~ cPJ () o~ cPa 

+( - t- 1 oj-r O~(O o/~~ cP) {)cP(J.}' (20) 

The easily derivable formula 

r-l 
A(o~ B) +( - )'-1(0~ A)B = L (-Y Ot{(O: A)(O~-I-l B)} 

1=0 
(21) 

allows equation (20) to be rewritten as 

fIn d3x = f d3x .tl (- )n-'(:t: (-Y Ot{ oj-r 0:(0 o/~~ cPJ () 0~-1-1 cP,,}) . (22) 

Summation over n from I to 2j and substitution into equation (18a) followed by 
regrouping of the terms then gives 

f ()!l' d3x = f d3x o,(n"/m () 0,;,-1 cP,,), (23) 

where sums over IX and m are implied. 
The action W21 between 4-points Xl and X2 is given by 

1"2 

W21 = !l' d4x, 
"1 

(24) 

so that 

{)W21 = {)(f:2 !l' d4x) = f ({)!l') d4x + f!l' {)(d4x). (25) 
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1=0 
(21) 

allows equation (20) to be rewritten as 

fIn d3x = f d3x .tl (- )n-'(:t: (-Y at{ aj-r 0:(0 a/~~ cPJ ~ a~-I-l cPa}) . (22) 

Summation over n from I to 2j and substitution into equation (18a) followed by 
regrouping of the terms then gives 

(23) 

where sums over IX and m are implied. 
The action W21 between 4-points Xl and X2 is given by 

(24) 

so that 

(25) 
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Now we have that o(d4x) = oid4x) oxfl = (d3x)fl oxfl, where (d3x)fl is the surface vector 
(dxz dX3 dt, dX1 dX3 dt, dX1 dxz dt, dX1 dxz dX3)' Also the spatial integral for ofE is 
given by equation (23). Thus equation (25) becomes 

oWZ1 = J d4x o/1ialm 00';'-1 <Pa) + J fE Oxfl (d3x)fl' (26) 

The second integral on the right-hand side of this equation is a hypersurface integral 
and will vanish unless f1 = 4 when periodic boundary conditions are imposed over 
3-space. Hence 

oWZ1 = [1, - LJd3X(1ialmOO';'-1<pa+fEdt). (27) 

For space-time displacements we have 00';'-1 <p" = -OXfl Ofl o';'-l <Pa.' so that 

oW21 = OXfl[L - LJd3X(-1ial",Oflor;-1<pa.-iOfl4fE). (28) 

Since 0 W21 = 0 and the displacements oxfl are arbitrary, the 4-vector in equation (28) 
must be conserved over time. This vector is identified as the 4-momentum and its 
spatial and temporal parts are 

- J d3X1ia.lm \/or;- l <pa' J d3x (1ialm or; <Pa. - fE). (29) 

These are identified as the field-theoretic momentum and the energy respectively. 
The conserved current and charge of a field with a higher derivative Lagrangian 

are also easily derived. Supposing <Pa. has an internal symmetry such that the Lagrangian 
is invariant under the infinitesimal global gauge transformation (0 =1= O(x)) 

so that 

then 

<Pa. ~ <Pa+iO<pa.' <P: ~ <P: - i8<p: , 

0: <Pa. --+ 0: <Pa. + i8 0: <Pa, 0: <P: ~ 0: <P: - i8 0: <P:, 

ofE ofE. ofE . ofE . z 
7f{[ = o<pal<Pa.+ O(\<p/Ofl<Pa. +oo;<Pa 10fl<Pa· .. 

ofE. * ofE. 0 -1.* ofE. OZ-l.* 
- 0-1.* 1<Pa. - 8f) -1.* 1 fl 'f'a. - 0 OZ -1.* 1 fl 'f'a - .... 

'f'a fl'f'a fl 'f'a 

(30) 

(31) 

(32) 

Equation (32) together with the relation (see equation 21) 

ofE n n-1 n( OfE) n~l 1 {/( ofE ) n-I-1-1.} ) OO~<Paafl<Pa.+(-) °fl OO:<Pa <Pa = I~O (-) °fl °fl OO:<Pa 0fl 'f'a. (33 

and the Euler-Lagrange equations of motion (17) result in the expression 

ofE (Zj n-1 {( ofE ) 
7f{[ = °fl f: f: (-y O~ 00 on 1 <P 0~-1-1 <Pa 

n-1 1-0 fl v a. 

- O~(O Ou ~~ 1 <P:) 0~-1-1 <P:}) • (34) 
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<5W21 = f d4x8ln"lm<58,(,-lcp,,) + f 2<5xJl (d3x)Jl' (26) 

The second integral on the right-hand side of this equation is a hypersurface integral 
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3-space. Hence 

(27) 

For space-time displacements we have <58~-1 cp" = -<5xJl8Jl8~-1 cp", so that 

<5W21 = <5XJl [L - iJd3X(-n"lm8Jl8'('-lcp,,-i<5Jl42). (28) 

Since <5W21 = 0 and the displacements <5xJl are arbitrary, the 4-vector in equation (28) 
must be conserved over time. This vector is identified as the 4-momentum and its 
spatial and temporal parts are 

(29) 

These are identified as the field-theoretic momentum and the energy respectively. 
The conserved current and charge of a field with a higher derivative Lagrangian 

are also easily derived. Supposing cp" has an internal symmetry such that the Lagrangian 
is invariant under the infinitesimal global gauge transformation (8 =1= 8(x» 

so that 

then 

Equation (32) together with the relation (see equation 21) 

(30) 

(31) 

(32) 

~ 8n A. (_)n-l 8n(~) A. _ n~l (_)18 {81 ( 82 ) 8n - I - 1 A. } (33) 
88:cp" Jl'f'" + Jl 88=cp" 'f'" - I~O Jl Jl 88=cp" Jl 'f'" 

and the Euler-Lagrange equations of motion (17) result in the expression 

(34) 
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Then 8ft'18e = 0 means that the currentjl" given by 

2i n-1 {( 8ft' ) ( 8ft') } 
jl' = -inf:llf:o (-y 8; 88u8~ 1¢~ 8~-1-1¢~_8; 88u8~ l¢: 8~-1-1¢: , (35) 

is conserved. The charge Q can be obtained by repeated integration by parts of j4 
over 3-space. With great care in the use of the permutation factor N (see equation 10) 
it comes to 

Q = -ifj4 d3X = -if d3x(n~/m87'-1¢~-n:/m87'-1¢:). (36) 

6. Field-theoretic Hamiltonian 

Now that Noether's theorem for a Lagrangian with higher derivatives is 
established, the Hamiltonian for the field can be obtained. 

From equations (8), (13) and (15) the Hamiltonian density::lt' is found to be 

::It' = lfi . S-lljJ +(Slfi JoE S-lljJ -lfiJoE SS-lljJ). [ 
R (P. CIpn] 

(-P .CI)[2J] R 
(37) 

Upon repeated integration by parts over 3-space, the last term disappears, because of 
the boundary conditions, so that the Hamiltonian becomes 

H = d3x ljJ S-lljJ f -[ R (P'CI)[2n ] 

(-p.CIpn R 
(38) 

or, using the field equation (5), 

H = f d3x lfiJoEljJ. (39) 

For half-integer spins, lfiJo equals ljJt and, for integer spins, it equals ljJtJo. 
To describe the Hamiltonian in term of creation and annihilation operators, ljJ 

and lfi are first expanded as a Fourier sum of plane waves. A suitable set of 2j+ 1 
orthogonal positive-energy plane wave solutions, for a particular momentum k, is 
the columns of the matrix 

with 

(Rk~~kSkr[;]eXp{i(k'X-Ekt)} = ukcrexp{i(k.x-Ekt)}, (40a) 

J = [1 0][2n 
01' 

:7 = (_)2i +1 [kz L ][2n 

Rk +EkSk k+ -kz ' 
(40b) 

where Rk and Sk are Rand S as given by equations (3) and Table 1, but with the 
operator p 2 replaced by k2 , and Ek is the energy associated with the momentum k. 
The subscript (j refers to the magnetic spin quantum number which ranges from + j 
for the first column to - j for the last column of the matrix in equation (40a). The 
2j + 1 orthogonal negative-energy solutions are the columns of 

(Rk ~~kSkr[;]exp{ -i(k.x -Ekt)} = VkcrexP{ -i(k.x -Ekt)}. (41) 
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These wavefunctions are normalized in the sense 

Uk<rUk<r 1, Vk<r vka = (- )2j • (42) 

The Fourier expansions of ljI and Ifi as plane waves are then 

ljI(x) = V -tL (E R~ )t(Uk<r akaexp(ik. x) + Vk<r bZ<rexp( -ik. X)) , (43a) 
k,a k k 

Ifi(x) = V- t L (ER; )t(ukaaZ<rexp( -ik.x) +Vk<r bk<rexp(ik. X)) , (43b) 
k,a k k 

where ak<r' bk<r' aZa and bZa are operators. When these expansions are substituted into 
equation (39) the Hamiltonian becomes 

"{t 2' t} H = t:... Ek aka aka +( -) J bkabka , (44) 
k,<r 

where we have used the results 

Uk<rAUk<r = EkSk/Rk, Vka AVka = (- )2 j +l Ek Sk/Rk' (45) 

From equations (14) and (43) the commutation relations obeyed by the creation and 
annihilation operators are 

[aka, ak'a']± = <>kk' <>a<r" [bka , hZ'a'] = <>kk' <>a<r" (46) 

with [ak<r' bk'<r']±' [ak<r' ak'<r']± and [bk<r' bk'<r'] all zero. Hence 

H = L Ek(aka aka + bZ" bka), (47) 
k,<r 

where the zero-point energy has been omitted. Similarly the momentum is given by 

L k(ala ak<r + blabka) . (48) 
k,a 

The charge Q of the field can be derived from equation (36), and for our Lagrangian is 

Q = fd 3X IfiAljI = L (aka aka r::bZ<rbk<r)' 
k,a 

(49) 

Space reflection, time reflection and charge conjugation have been considered by 
others (e.g. Weinberg 1964) and their effects on H, Q and the momentum can be 
deduced from equations (47)-(49) by standard methods. Therefore, these operations 
are not discussed. 

7. Feynman Propagator 

In order to obtain the Feynman propagator, the general commutation rules between 
two 4-points Xl and X2 are derived first. Accordingly, ljI and Ifi are separated into 
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their positive frequency (annihilation) and negative frequency (creation) parts, denoted 
by ( + ) and ( - ) superscripts respectively: 

ljJ( + lex) = y-t I (:~ )t Uku aku exp(ik. x), 
k,u k k 

(50a) 

( R )
t -( -) _ -t k - t . ljJ (x) - y I E S Ukuakuexp( -lk.x), 

k,u k k 
(50b) 

,/,(-)( ) _ y-t" ( Rk)t bt ('k) 'I' x - L. E S Vku ku exp -1 • X , 
k,u k k 

(50c) 

lji(+)(x) = y-t L (ER~ )tVku bkuexp(ik. x). 
k,u k k 

(50d) 

The commutators [S-lljJ~+)(Xl)' Slji~-)(X2)]±' [S-lljJ~-)(Xl)' SljiV)(x2)]± and 
[S-lljJixl ), Sljip(x2)]± are now derived using the expressions (50) and equations (46). 
First consider 

[S-lljJ~+)(Xl)' Slji~-)(X2)]± = y-l I (UkUUkU) (ER~) exp{ik.(x l -x2)}. (51) 
k,u ",p k k 

Now the spin sums are 

I UkuUk = [ (Rk +EkSk) 
u u -( -k. cr)[2jJ 

_(k.cr)l2j] ] 

(Rk - Ek Sk) (2Rk)-1, (52a) 

_ ( - )2J(Rk - Ek Sk) -. cr (2Rk)-1 . . (k )[2jJ ] 

~ Vku Vku = [ -( -k. cr)[2j] (- )2j(Rk + Ek Sk) 
(52b) 

Substitution of the result (52a) into equation (51) leads to 

[S-lljJ~+)(Xl)' Slji~-)(X2)]± = ff",p(Sy)-l L (2Ek)-lexp {ik ,(Xl -X2)} , (53a) 
k 

where the matrix 

ff = [(R+ES) -(P.crpn] 
",p -(_p.crpn (R-ES) ",0 

(53b) 

has been converted to its operator form and taken outside the summation over k. 
Similarly, the other two commutators are 

[S-lljJ~-)(Xl)' SljiV)(x2)]± = -ff",p(SV)-l L (2Ek)-lexp { -ik • (XI -X2)) , (54) 
k 

[S-lljJaCX1), Sljip(x2)]± 

= ff",p(SV)-l L (2Ek)-1(exp{ik.(Xl -x2)}-exp{ -ik.(xl -x2)}). (55) 
k 

The Feynman propagator F",p(xl -x2) is defined by 

F"'P(Xl - x2) = <0 I TS- l ljJ ",(Xl) S lji P(X2) I 0) , (56) 
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First consider 
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(S2a) 

(S2b) 
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[S-l t/J~+)(Xl)' Si/i~-)(X2)]± = .oJ"p(SV)-l L (2Ek)-lexp{ik,(XI-X2)}, (S3a) 
k 

where the matrix 

.oJ = [(R+ES) -(P .cr)[2n ] 

"p _(_p.cr)[2j] (R-ES) ,,(1 
(S3b) 

has been converted to its operator form and taken outside the summation over k. 
Similarly, the other two commutators are 

[S-1t/J,,(X1), Si/ip(x2)]± 

= .oJ"p(SV)-l I (2Ek)-1( exp{ik. (Xl -x2)} -exp{ -ik. (Xl -x2)}). (SS) 
k 

The Feynman propagator F"p(x1 - x 2 ) is defined by 

(S6) 
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where T is the time-ordering operator such that 

TS- 1 ifJiXl)Sl!iP(X2) = S-l ifJiXl)Sl!iP(X2) , tl > t2 , (57a) 

= (- )2iS l!ip(x2) S-l ifJaCx1) , t2 > t1. (57b) 
Now 

<01 TS- 1ifJaCX1)Sl!ip(x2)IO) = <01[S-lifJ~+)(Xl),Sl!i~-)(X2)]±10), tl > t2 , (58a) 

so that 
= -:-<01[S-lifJ~-)(Xl),Sl!i~+)(X2)]±10), t2 > t1, (58b) 

Fap(x) = 8(xo) §"aP (SV)-l L (2Ek)-lexp(ik.x) 
k 

+8( -XO)§"aP (SV)-l L (2Ek)-lexp( -ik. x). (59) 
k 

The step functions 8(xo) and 8( -xo) are equal to unity for Xo > ° and Xo < ° 
respectively, and are zero otherwise. They can be taken through the matrix operator 
which contains only first-order derivatives in time. The reason is that when the matrix 
operates on 8(xo) and 8( - xo) it produces delta functions, since Ot 8(t) = c5(t) and 
Ot8(-t) = -c5(t). The factors that result involve L sin(k.x) which vanishes (cf. 
p. 138 of the text by Lurie 1968). We have not experienced here the problems 
encountered by Weinberg (1964) when deriving a covariant Feynman propagator 
because our theory has been based on equations like (2) and (8) which contain only 
first-order derivatives in time, rather than based on equations (1) which contain 
higher-order derivatives in time for spins greater than t. 

As a consequence of the previous discussion the Feynman propagator can now 
be written as 

F(x) = §"(SV)-l L (2Ek)-1{8(xo)exp(ik ox) +8( -xo)exp( -ik ox)}, (60) 
k 

where the subscripts rx/J have been omitted. The summation over k is well known 
and is determined from the calculus of residues by converting the temporal part into 
an integral over the complex ko plane. The result is 

where 

F(x) = (2n)-4 fd4k §"k exp(ikox) 
Sk k2+p.2 ' 

_ [(Rk +kOSk) -(k.aPj]] 
§"k -

- ( - k 0 a)[2j] (Rk - ko Sk) 

(61a) 

(61b) 

and the summation over k space has been converted to an integral. This is the form 
of the Feynman propagator that would be most useful for computation purposes but 
it can be converted to the form 

F(x) = (2n)-4 f d4 k {Skexp(ik.x)/§"n, (62a) 

where 

§"*= 0 [
(Rk - ko Sk) (k 0 al2 j] ] 

k ( _ k • a)[2j] (Rk + ko Sk) 
(62b) 
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where 

(62b) 
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The propagator in momentum space is then 

F(k) = Sk/(g-t-iB). (63) 

8. Conclusions 

The extension of the Dirac spin 1- equation by induced matrix formulation leads 
simply and directly to arbitrary spin field equations and a general free-field Lagrangian 
in which the results for spin 1- are paralleled very closely. Lagrangians with higher 
derivatives can be quite easily handled along lines similar to those for ones with linear 
derivatives only. Whether the types of equations presented here will still be physically 
realistic and not give rise to acausality upon the introduction of electromagnetic 
coupling remains to be seen. 

Note added in proof 

An important paper by Musicki (1978) on canonical formalism in field theory 
with derivatives of higher order has recently appeared. 
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Appendix 

Consider a transformation of a spinor (x, y) by a 2 x 2 matrix, 

[a C] (X) = [ax+cy ] = (XI). 
b d y bx+dy y' 

(AI) 
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realistic and not give rise to acausality upon the introduction of electromagnetic 
coupling remains to be seen. 

Note added in proof 

An important paper by Musicki (1978) on canonical formalism in field theory 
with derivatives of higher order has recently appeared. 
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Appendix 

Consider a transformation of a spinor (x, y) by a 2 x 2 matrix, 

[a C] (X) = [ax+cy ] = (XI). 
b d y bx+dy y' 

(AI) 
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This induces a transformation in the multispinor (x,y)[n] given by 

[: ;f]Cf] = C:rn
] , (A2) 

where 
(x,yYn] = (xn, nt~-ly, {n(n-l)/l. 2}t~-2y2, ... , yn). 

Equation (A2) serves to define the nth induced matrix of the 2 x 2 matrix and is 
symbolized by a superscript [n]. For example, with the help of equation (A2), the 
matrices (P. a)[2] and (P. a)[3] are respectively 

r p' 
-J2PzP -

Po l 
-J2;zP + (-P; +P+P_) --J2PzP - , 

P; --J2PzP + p2 
z 

(A3a) 

p 3 
z -J3P; P- -J3PzP: P~ 

-J3P; P + (-P; +2PzP + P_) (-2P; P _ +P + P:) --J3PzP: 

-J3PzP; (-2P; P+ +P;P_) (P; -2PzP+P_) -J3P; P-
(A3b) 

p! --J3P; Pz -J3P + P; -P; 

The 2jth rank totally symmetric spin or l/Il:4] in the text has similar transformation 
properties to the multispinor (X,yY2j] and is defined by 

l/Ill ... ll 

(2j)tl/lll ... 12 

l/Il:4] = I {2j(2j-l)/1 .2}tl/l11. .. 22 (A4) 

l/I 22 ••• 22 
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This induces a transformation in the multispinor (x,yYn] given by 

(A2) 

where 

Equation (A2) serves to define the nth induced matrix of the 2 x 2 matrix and is 
symbolized by a superscript [n). For example, with the help of equation (A2), the 
matrices (P. GY2] and (P. G)[3] are respectively 

r p' 
.J2PzP -

Po 1 
.J2;zP + (-P; +P+P_) -.J2PzP - , 

p! -.J2PzP + p2 
z 

(A3a) 

p 3 
z .J3P; P- .J3Pz P: P: 

.J3P; P + (-P; +2Pz P + P_) (-2P; P_ +P+P:) -.J3PzP: 

.J3Pz P! (-2P; P + +p! P_) (P; -2Pz P + P_) .J3P; P_ 
(A3b) 

p! -.J3P! Pz .J3P + P; -P; 

The 2jth rank totally symmetric spinor ifJl:4] in the text has similar transformation 
properties to the multispinor (x,ypn and is defined by 

ifJll ... ll 

(2j)tifJll ... 12 

ifJl:4] = {2j(2j-l)Jl. 2}tifJll ... 22 (A4) 

t{! 22 ••• 22 
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