
Commutation Rules for 
Generalized Pauli Spin Matrices 

E. A. Jeffery 

Division of Applied Organic Chemistry, CSIRO, 
P.O. Box 4331, Melbourne, Vic. 3001. 

Abstract 

AUSI. J. Phys., 1978,31, 367-76 

The algebra is developed for matrices involved in 2(2i+ I)-component arbitrary spin equations. These 
matrices can act as generators for the unitary group, and are shown to deserve the name 'generalized 
Pauli spin matrices'. Their commutation and anticommutation rules are derived from those for 
the ordinary Pauli spin matrices by a method termed mixed induced multiplication. 

Introduction 
Field equations for arbitrary spin fields have been discussed earlier (Jeffery 1978a), 

and a Lagrangian for arbitrary spin was considered in the preceding paper, hereinafter 
referred to as Paper I (Jeffery 1978b, present issue pp. 353-65). These formulations 
contained operators constructed from the induced matrices of those for the spin 1-
theory. In particular, the matrix P. cr occurring in the spin 1- theory was replaced 
by the 2jth induced matrix of P. cr in the spin j theory (cr is the Pauli spin matrix 
vector and P is the differential vector operator - i\7). 

As described in the Appendix of Paper I, induced matrices result when the trans
formation of a spin or (x,y) by a 2 x 2 matrix according to 

[a c] (X) = [ax + CY] = (X') 
b d y bx+dy y' 

(1) 

induces a transformation in a multispinor (x,y)[n] given by 

[: ;r]er] = e:rn
], (2) 

where 
(x,y)[n] = (xn, nt~-ly, {n(n-l)/I. 2}!-~-2y2, ... , yn). 

Equation (2) serves to define the nth induced matrix, symbolized by a superscript [n] 
on the 2 x 2 matrix. The explicit forms of (P. cr)[2] and (P. cry3] are given by equations 
(A3) of Paper I, and in general (P. cr)[2j] is a (2j+ 1) x (2j+ 1) matrix. 

An alternative way of constructing (P. cr)[2j] is to define a set of basic matrices 
(iij •.. n with 2jindices such that (P.cr)[2j] = (iij ... nPiPj",Pm where i,j, ... ,n can be 
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chosen from 1, 2 or 3 (referring to x, y and z respectively) and repeated indices are 
summed. Thus the basic matrices for aijPjPj to be equivalent to (P.0')[2] are 

Uu ~ r ~ 
0 

~ J Un ~ r ~ 0 

~1 1 0 (3a) 

0 0 

u" ~ r~! 
.J! 

-:+ Un ~ r ~ 0 

-11 0 1 o , (3b) 

-.J! -1 0 0 

r 0 -.J'; 

+J un ~ r ~ 0 

~l a23 = .J!i 0 -1 (3c) 

o -.J1z:i 0 

These together with the usual spin 1 matrices r .J! 01 
U>o ~ r+ 

.J1 . 

-~tl 
- 21 

a10 = .J1z: 0 .J! , 0 (4a) 

o .J1z: 0 .J1 . 21 

U" ~ r~ o 01 o 0, (4b) 

o -1 

constitute a particular set of generators for the unitary group in three dimensions, 
written U(3). Notice that the identity matrix is all + a22 + a33 . 

The unitary group, particularly U(3), has been intensively studied owing to its 
significance in the classification of elementary particles. However, the generators 
of U(3) defined above are not the usual ones (cf. Gell-Mann and Ne'eman 1964). 
Furthermore it is tedious to derive commutation rules via the more familiar generators 
but these rules for the aij ... n are needed to develop an arbitrary spin theory. 

The present paper shows how to derive the algebra for the required matrices via 
a procedure called mixed induced multiplication. This procedure allows the aij ... n 

and their commutation rules to be obtained directly from the Pauli spin matrices and 
their commutation rules. 

Mixed Induced Multiplication 
Consider the second induced matrix of a general 2 x 2 matrix 

[: :r2
] = r.J:2ab 

b2 

.J2ae 
(ad + be) 
.J2bd 

e
2 l .J2ed . 

d2 

(5) 
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For two different 2 x 2 matrices, the mixed induced multiplication, symbolized by [x], 
is defined by 

[a1 Cl][X][a2 C2] 
. b1 d1 b2 d2 

[ 
a1a2 

= .j!(alb2 +a2 bl) 

b1 b2 

.jt(al C2 +a2 Cl) 

t(al d2 +b1 C2 +a2 d1 +b2 Cl) 

.jt(b1 d2 +b2 d1) 

Cl C2 J 
.j!(Cl d2+ C2dl) • 

d1 d2 

(6) 

More generally the mixed induced matrix of n different 2 x 2 matrices A1, A2, ... , All, 
where A, has the elements a" b" Cr and d" is constructed by permutating the indices· 
1,2, ... , n between the elements of the ordinary nth induced matrix. A more precise 
definition is obtained by considering the n transformations of the spinor (x,y), 

A1[:] = [::] , A2[:] = [::] , ... , An[:] = [::]. (7) 

Then the mixed induced transformation of the multispinor (x,y)ln] is given by 

A1[X]A2[X] ... [X]An[:rn
] = [::][X][::][X] ... [X][::] , (8a) 

where 

X1 X2··· xn 

[::] [x] [::] [x] ... [x] [::] = 

n-t Pi~'::~nYIZ xp ... x. 

(8b) {n(n-l)/I. 2} -:-tPW3::~nYIZYPXy ... x. 

Y1Y2···Yn 

Pi~·:::" is the permutation a,p ... 1: of the indices 12 ... n and repeated indices are summed. 
For example, Pi~YlZxp is equal to Y1X2 +Y2Xl' The matrix Al[x]A2[x] ... [x]An is 
the mixed induced matrix of At> A2 , ... , All' 

The advantage of defining such a form of multiplication is that it leads to a remark
ably simple matrix algebra. Thus, where A, B, C, ... and P, Q, R, ... are 2 x 2 matrices, 
I is the 2 x 2 identity matrix and I and m are constants, the following relations can 
be easily proved: 

A[x]B = B[x]A, (9a) 

(A+B)[x]C = A[x]C +B[x]C, (9b) 

(A+B)[n] = A[n] +nA[n-l][x]B 

+ {n(n-I)/1.2}A[n-2][x]B[2] + ... +B[n], (9c) 

(A-lI)(A-mI) = A[2] -(/+m)A[x]I +lmI[2] , (9d) 
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PA[x]QB +QA[x]PB = 2(P[x]Q)(A[x]B), (ge) 

PA[x]QRrx]RC +QA[x]PB[x]RC +RA[x]QB[x]PC +PA[x]RB[x]QC 

+ QA[ x ]RBl x ]PC + RA[ x]P B [x ]QC = 6(P[ x ]Q[ x ]R)(A[ x]B [x ]C). (9f) 

The 'binomial' rule (9c) gives simplicity to the 'De Moivre' formula 

(cos!O - iO' . n sin !O)[2j] = exp( - iOn. J) , (lOa) 

which was described in the earlier paper (Jeffery 1978a). For example, for spin; = 1 
the left-hand side of (lOa) is equal to 

(cos2!O)I[2l - 2i(cos!O sin !O)(O'. n)[ x]1 - (sin2!O)(0'. npl. (lOb) 

Equations (ge) and (9f) are particularly important for obtaining the commutation 
rules for O'ij and O'ijk' 

Generalized Pauli Spin Matrices 

The Pauli spin matrices 0'1' 0'2 and 0'3 along with the identity matrix 0'0 are 

0'0 = [~ ~], 0'1 = [~ ~], [0 -i] 
0'2 = i 0' 0'3 = [1 0]. (11) 

o -1 

The 0' ij of equations (3) and (4) are then given by 

O'ij = O'i[ X ]O'j (l2) 
and more generally 

O'ij ... n = O'i[X]O'JX] ... [x]O'n· (13) 

The nth induced matrix of the general 2 x 2 matrix (ao +a. O')[nl is given by 

(ao +a.O')[nl = aiaj ... anO'ij ... n, (14) 

where repeated indices are summed and can take on the values 0, 1,2 or 3. 

Commutation Rules 

Consider first the commutator [O'ij' O'kl] where i, j, k, and I are all chosen from 
1,2 and 3. From equation (12), 

[O'ij' O'kzl = [O'i[ X ]O'j' O'k[ X ]O'zl (15) 

and therefore, with the help of the rule (ge), 

[O'ij' O'k/] = !(O'iO'k[X]O'jO'/ +O'jO'k[X]O'iO'/-O'kO'i[X]O'/O'j -O'/O'JX]O'kO'j). (16) 
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By the well-known property of the Pauli spin matrices 

(fa(fp = i8aps (fs +bap , (17) 
equation (16) then becomes 

[(fij' (fkl] = i8iksbjl(fsO +i8jlsbik(fsO +i8jks b i/(fso + i8Us b jk(fso (18) 
or 

[ ] _ ·paPpyb 5: 
(fij,(fkl -1 ij kI 8ays Upo(fsO, (19a) 

where the permutation operator Pi! requires IX, f3 to be summed over as many per
mutations of i,j as possible and the right-hand side is summed over the dummy index 
s for s = 1,2,3. Similarly, the anticommutator is found to be 

[(fii' (fkl]+ = Pi! P'kt(Day b po - 8ays 8pM (fst), (I9b) 

where s, t = 1,2,3. When one of the indices is zero, these results become 

[(fii' (fkO] i8iks(fjs +i8jks (fis , [(fij, (fkO]+ = bik(fjO + b jk (fiO • (20) 

In general the commutators contain only odd multiples of the Levi-Civita tensor 
whereas the anticommutators contain only even multiples or none. In principle the 
general formulae can be obtained by substituting from the relation 

(f/l(fv = b/lo(fv +bvo(f/l-b/lObvO +ib!;s3(fs, (21) 

(where Jl and v can be 0, 1, 2 or 3) into the formula 

[(f (f" ,]+ /lv .•. q' /l v ••• q _ 

= (n 1)-1 P~~:::~ P~:~: :::n (fa (f1Z'[ X ](fp (fp'[ X] ••. [X ](fy (fy' (22) 

± (fa' (f a[ X ](f P' (f p[ X ] .•• [ X ](f y' (f y) . 

However, the principles have been established and there is nothing to be gained by 
giving the involved general formulae. For interest the complete results for the U(4) 
generators are listed in Appendix 1, together with the (f iik matrices. 

There are a total of (n + 3) lin! 3 I matrices when (f ij ••. n has n indices each of which 
can have values 0-4 (see Appendix 2). Some of these matrices are linear combinations 
of the others, but (n+ 1)2 independent matrices can always be obtained. Thus for 
(f ij there are 10 matrices whereas U (3) needs only 9 generators. A possible independent 
set can be obtained by excluding the identity matrix (fOO' because this is equal to 
(fll+(f22 +(f33. Similarly, an independent set of matrices for generating U(n) can 
be obtained by excluding all matrices with more than one zero in their indices. To 
prove this consider the four matrices 

[~ ~], [~ ~], [~ ~], [~ ~], (23) 

which are the linear combinations -!-( (f 0 + (f 3), 1-( (f 1 + i(f 2), -!-( (f 0 - (f 3) and !( (f 1 - i(f 2) 
respectively. Mixed induced multiplication with n matrices, each of which is selected 
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from the four matrices (23), will produce an (n+ 1)2 matrix of which only one element 
is nonzero; for example, 

[
1 0][n-1] X][O 1] 
° ° [ ° ° 

ro n-t ° '" °1 
° ° ° '" ° 

~ l~ ~ ~j 
(24) 

By a suitable selection of the n matrices, any particular element of the (n + 1)2 matrix 
can be made the nonzero element. Hence an arbitrary (n+ 1)2 matrix is obtained 
by a linear combination of these various mixed induced matrices. From the definition 
of mixed induced matrix multiplication it follows that similar linear combinations 
of mixed induced matrices from 0"0' 0"1' 0"2 and 0"3 will also produce an arbitrary 
(n+ 1)2 matrix. Now the total number of basic matrices O"ij ••. n having n indices which 
can take on values 0, 1, 2 or 3 is (n + 3) !In! 3!, whereas only (n + 1)2 are needed as 
generators for U(n+l). Hence (n+l)!/(n-2)!3! matrices are superfluous. The 
superfluous matrices can be expressed as linear combinations of the others. From 
the identity 0"00 = 0"11 +0"22+0"33 and the definition (8) there is little difficulty in 
proving 

O"OOij ••• k = O"l1ij ... k +0"22ij ... k +0"33ij ... k· 

Hence all matrices with more than one zero in their indices can be expressed as linear 
combinations of the other matrices; for example, 

0"00000 = 0"11000 + 0"22000 + 0"33000 

= (0"11110 + 0"11220 + 0"11330) + (0"22110 + 0"22220 + 0"22330) 

+ (0"33110 + 0"33220 + 0"33330)' (25) 

There are exactly (n+ 1)2 matrices having one or no zero in their indices (Appendix 2) 
and, since a linear combination of these has been proved capable of generating any 
(n+ 1)2 dimensional matrix, they mustall be independent and can be used as genera
tors of U(n+ 1). 

Miscellaneous Relations 
Many other relations between the generalized matrices can be obtained from the 

properties of the Pauli spin matrices. For example, since 

0"10"20"3 = i (26) 
then 

O"~n] O"~n] O"~n] = in (27a) 
or 

0"11 ... 10"22 ... 20"33 ... 3 = in. (27b) 

Similarly, for i,j = 1,2,3 and i =1= j, 

O"iO"j = -O"jO"i (28) 
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so that 
(T~n] (T[.n] (-)" (T['''] (T~n] 

I J J , (29a) 

or 
(T .•. (T.. . +(_)n-1 (T.. .(T ... = O. 

11 ••• 1 JJ .•• J JJ ••• J 11 ... 1 
(29b) 

However, these types of relations will not be considered further. 
The operators n( -io) and n( -iO) given by Weinberg (1964) have already been 

noted to be equivalent to [E -P. 0'][2j] and [E +P. 0'][2j] (Jeffery 1978a). Furthermore, 
Weinberg's generalized Dirac matrices y/ll/l2 ... /l2 j are easily found to be given by 

y/ll/l2 ... /l2 j [(T 0 
/l1/l2 ... /l2j 

2 '+Z ] 
(-) J :/llll2 ... ll2j, (30) 

where Z is the number of zeros in the indices fl.1 fl.2 ... fl.2j' Thus the commutation and 
anticommutation relations for the y/ll/l2 ... /l2 j matrices are completely determined by 

those for the (T/ll/l2 ... /l2j matrices. 
Lastly, differentiation rules for the matrices are easily established; for example, 

~ .[a c][n] = n [a c][n-l] X .[1 0] 
oa b d b d [] 0 0 

(31a) 

and generally 

~[a c][n] = ~ [a c][n-r] X [1 0] [r]. 
oar b d (n-r)! b d [] 0 0 

(31b) 

When the nth induced matrix is written in the form (see equation 14) 

(ao +a. O')[n] == aiaj'" an (Tij ... n, 

it is obvious that 

1 ~n ( (T.. _ U [n] 

IJ ... n - ~~ ... t oa oa 0 ao +a.O') . 
IJ ... n IX p... at 

When a, b, c and d are functions of x and differentiation is carried out with respect to x, 

d [a(x) c(x)][n] _ [a(x) c(x)][n-l] d [a(x) c(x)] 
- - n [x]- , 
dx b(x) d(x) b(x) d(x) dx b(x) d(x) 

(32) 

a result which can be easily generalized to higher derivatives and more than one variable. 
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Appendix 1 

The complete set of commutation rules for the U(4) generators is presented here. 
In the following commutators and anticommutators i, j, k, I, m and n can take the 
values I, 2 or 3, while zero indices are shown explicitly. 

[0' ijk' 0'1....J = !i Pif,! Pi':.~( 8",~s <>p< <>ya O'soo - t8",~s 8p<t 8y~v O'stv) , (Ala) 

[O'ljk,O'lmll]+ = !Pi!lPt!~H<>",~<>p<<>ya -8@s8p<t<>ya O'sto), (Alb) 

[0' ijk' 0' ImO] = j-i Pif,! Pi':. 8",~s <> P< 0' syO , (A2a) 

[O'ijk'O'lmo]+ = ! Pi!l pt!(<>",~ <>p< O'yOO - 8",~s 8p<t O'sty) , (A2b) 

[O'ijO'O'lmO] = !iPj!Pl!(8",ys O'sp< + 8ooys<>p<O'sOO) , (A3a) 

[O'UO,O'lmo]+ = !Pj!Pl!(<>ooy<>p< +2<>ooyO'p<0 -8ooys 8p<tO'stO), (A3b) 

[ ] - t' pooPY . O'ljk'O'IOO - 1 ijk 8oolsO'sPY' [O'ljk> 0'100]+ = tPj!l <>"'1 O'pyo , (A4) 

[0' ijO, 0' kOO] = ii Pi! 800ks 0' spo , [O'ijO' O'kOO] + = iPij(<>ookO'POO +O'IJk) , (AS) 

[0'100' O'jOO] = ii 8ijs O'sOO' [0'100' O'jOO] + = i(<>ij +20'ijo), (A6) 

The O'ljk matrices in equations (Al)-(A6) are as follows. 

0 0 0 1 0 0 0 -i 

0 0 1 0 0 0 -j-i 0 
0'111 = I 

0 1 0 0 
0'112 = 

0 ti 0 0 

1 0 0 0 0 0 0 

0 0 ..)t 0 0 0 0 -1 

0 i 0 -..)1 0 0 1 0 3 
0'113 = I 

..)1 0 -i 0 
0'122 = 

0 ! 0 0 

0 -..)1 0 0 -1 0 0 0 

0 0 -..)ti 0 0 ..)t 0 0 

0 0 0 ..)1 . 
3 1 ..)t 0 -i 0 

0' - I 0'133 = 123 - ")1' 0 0 0 0 -i 0 ..)t 3 1 

0 -..)ti 0 0 0 0 ..)1 0 

374 E. A. Jeffery 

Appendix 1 

The complete set of commutation rules for the U(4) generators is presented here. 
In the following commutators and anticommutators i, j, k, I, m and n can take the 
values I, 2 or 3, while zero indices are shown explicitly. 

[0' ijk' 0'1....J = !i Pif,! Pi':.~( 8",~s <>p< <>ya O'soo - t8",~s 8p<t 8y~v O'stv) , (Ala) 

[O'ljk,O'lmll]+ = !Pi!lPt!~H<>",~<>p<<>ya -8@s8p<t<>ya O'sto), (Alb) 

[0' ijk' 0' ImO] = j-i Pif,! Pi':. 8",~s <> P< 0' syO , (A2a) 

[O'ijk'O'lmo]+ = ! Pi!l pt!(<>",~ <>p< O'yOO - 8",~s 8p<t O'sty) , (A2b) 

[O'ijO'O'lmO] = !iPj!Pl!(8",ys O'sp< + 8ooys<>p<O'sOO) , (A3a) 

[O'UO,O'lmo]+ = !Pj!Pl!(<>ooy<>p< +2<>ooyO'p<0 -8ooys 8p<tO'stO), (A3b) 

[ ] - t' pooPY . O'ljk'O'IOO - 1 ijk 8oolsO'sPY' [O'ljk> 0'100]+ = tPj!l <>"'1 O'pyo , (A4) 

[0' ijO, 0' kOO] = ii Pi! 800ks 0' spo , [O'ijO' O'kOO] + = iPij(<>ookO'POO +O'IJk) , (AS) 

[0'100' O'jOO] = ii 8ijs O'sOO' [0'100' O'jOO] + = i(<>ij +20'ijo), (A6) 

The O'ljk matrices in equations (Al)-(A6) are as follows. 

0 0 0 1 0 0 0 -i 

0 0 1 0 0 0 -j-i 0 
0'111 = 

0 1 0 0 
0'112 = 

0 ti 0 0 

1 0 0 0 0 0 0 

0 0 ..)t 0 0 0 0 -1 

0 i 0 -..)1 0 0 1 0 3 
0'113 = 

..)1 0 -i 0 
0'122 = 

0 ! 0 0 

0 -..)1 0 0 -1 0 0 0 

0 0 -..)ti 0 0 ..)t 0 0 

0 0 0 ..)1 . 
3 1 ..)t 0 -i 0 

0'123 = ..)1 . 0 0 
0'133 = 

0 -i 0 ..)t 3 1 0 

0 -..)ti 0 0 0 0 ..)1 0 



Generalized Pauli Spin Matrices 

(1222 

o 
o 
o 
-i 

r ,,:i 
a", ~ l ~ 

(1110 = 

o 
o 
Jt 
o 

o 0 

o -i 0 

o 0 

o o o 

-Jti 0 0 

o 1i 0 

-ii 0 -Jti 
o Jti 0 

o 
t 
o 

J1 

Jt 
o 
t 
o 

o 
J1 
o 
o 

o J1 0 o 
o 

(1130 = 
Jt 0 0 

o 
o 

o 
o 

o -Jt 
-Jt 0 

r ~ 
(1223 = l-Jt 

o J1 

o 
t 
o 

-Jt 
o 
-i 
o 

o 
Jt 
o 
o 

375 

r ~ 
a", ~ l ~ 

o 
-1 

o 
o 

o 
o 
1 

o 

~ 1 
~J 

(1120 = 

(1220 

o 
o 

J1" 
3 1 

o 

o 
o 

o -Jti 0 

o 0 -Jti 
000 

Jti 0 0 

o -Jt 0 

1 0 -Jt 

-J1 0 t 
o 

O. 

o o -Jt 

r ,,:i 
am ~ l ~ 

-Jti 0 0 1 r 1 
000 0 

o 0 Jti J' (1330 = l 0 

o 
-t 
o 
o 

o 
o ~ 1 

~J -! 
o -J1i 0 0 o 

o Jt 0 o 
o 

(1100 = 
J1 
o 
o 

r ~ 
a,,, ~ l ~ 

o 
1 
o 

o 
1 
o 
o 

1 
o Jt 
J! 0 

o 0 

o 0 

-t 0 

o -1 

o -Jti 0 o 
o 

(1200 = 
Jti 
o 
o 

r ~ 
a." ~ l ~ 

o -ti 
2" 
3 1 o -Jti 
o Jti 

o 0 

1 0 

o 1 

o 0 

o 

~ 1 
~ J 

Generalized Pauli Spin Matrices 

(1222 = 

(1110 = 

(1130 = 

o 
o 
o 
-i 

o 
o 
Jt 
o 

o 0 

o -i 0 

o 0 

o o o 

-Jti 0 0 

o 1i 0 

-ii 0 -Jti 
o Jti 0 

o 
t 
o 

J1 

Jt 
o 

o 

o 
J1 
o 
o 

o J1 0 o 
o Jt 0 0 

o 
o 

o 
o 

o -Jt 
-Jt 0 

o 
o 

Jl" 
3 1 

o 

o 
o 

-Jt 
o 
-i 
o 

o 
o 
1 

o 

o 
Jt 
o 
o 

o -Jti 0 

o 0 -Jti 
000 

Jti 0 0 

o -Jt 0 

1 0 -Jt 
-Jt 0 t 

o 
O. 

o o -Jt 

-Jti 0 0 1 r 1 
o 0 0 (1 _ 0 

o 0 Joti J' 330 -l 00 

o 
-t 
o 
o 

o 
o 

o -J1i 

o Jt 0 o 
o J1 

o 
o 

o 
1 
o 

o 
1 
o 
o 

1 
o Jt 
J! 0 

o 0 

o 0 

-t 0 

o -1 

-! 
o 

o -Jti 0 

o 
o 
o Jti 

o 
o 

o -Jti 
o Jti 

o 0 

1 0 

o 1 

o 0 

o 

375 



376 E. A. Jeffery 

Appendix 2 
The matrices (1 ij for i,j = 1,2,3 are 

((111' (112' (113) ((122, (123) (133' 

that is, a total of 3 + 2 + 1 = 6 matrices; similarly the matrices (1 ijk for i,j = 1,2,3 are 

((1111' (1112' (1113; (1122' (1123; (1133) ((1222, (1223; (1233) (1333' 

that is, a total of (3+2+1)+(2+1)+1 = 10 matrices. Let us therefore define the 
series 

(l)2:n = 1+2+3+ ... +n, (A7a) 

(2)2: n = 1 +(1 +2)+ ... +(1 +2+ ... +n) (A7b) 
and, in general, 

(r)2: n = (r-l)2: 1 + (r-l)2: 2 + ... + (r-l)2: n, (A7c) 
with 

(0)2: n = 1 + 1 + ... + 1 = n. (A7d) 

There is no difficulty in proving that 

(r)2: n = {(n+r)!/(r+ I)! (n-I)!}. (A8) 

The (1ij ... m matrices for spin j have 2j indices. The number of these with no zero 
indices is (2 j-l)2: 3, and the number with one and only one zero index is (2 j -2)2: 3, 
giving a total of 

(2 j -l)2: 3 + (2 j -2)"I 3 = (2j+ 1)2, 

with the help of equation (A8). This is exactly the number required for a non
degenerate representation of U(2j+ 1). The total number of matrices in (1ij ... m is 
(2 j -l)2: 4, of which (2j-3)2:4 are superfluous. 
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