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Abstract

The algebra is developed for matrices involved in 2(2j+ 1)-component arbitrary spin equations. These
matrices can act as generators for the unitary group, and are shown to deserve the name ‘generalized
Pauli spin matrices’. Their commutation and anticommutation rules are derived from those for
the ordinary Pauli spin matrices by a method termed mixed induced multiplication.

Introduction

Field equations for arbitrary spin fields have been discussed earlier (Jeffery 1978a),
and a Lagrangian for arbitrary spin was considered in the preceding paper, hereinafter
referred to as Paper I (Jeffery 1978b, present issue pp. 353-65). These formulations
contained operators constructed from the induced matrices of those for the spin %
theory. In particular, the matrix P.6 occurring in the spin 4 theory was replaced
by the 2jth induced matrix of P.c in the spin j theory (o is the Pauli spin matrix
vector and P is the differential vector operator —iV).

As described in the Appendix of Paper 1, induced matrices result when the trans-

formation of a spinor (x, y) by a 2 x 2 matrix according to

a clfx ax+cy x'
s JC)-[al-C) ®
b dl\y bx+dy y

induces a transformation in a multispinor (x, y)™™ given by

a ¢ [n] x [n] x' [n]
[b d] (y) - (y) ’ » @

()M = (", n¥x""ty, {n(n—1)/1.2}Ex""2)%, L, ¥,

where

Equation (2) serves to define the nth induced matrix, symbolized by a superscript []
on the 2 x 2 matrix. The explicit forms of (P.6)!?! and (P. 6)!*! are given by equations
(A3) of Paper I, and in general (P.o)"* is a (2j+ 1) x (2j+ 1) matrix.

An alternative way of constructing (P.c)?/1 is to define a set of basic matrices
, with 2j indices such that (P.6)?*"! = ¢; ,P;P;...P,, where i, j,...,n can be

Oij...



368 : E. A. Jeffery

chosen from 1, 2 or 3 (referring to x, y and z respectively) and repeated indices are
summed. Thus the basic matrices for o;; P; P; to be equivalent to (P.o)*! are

" 0 0 1 0 0 —i]
0'11 = 0 1 0 Py 012 = 0 0 O s (3a)
! 0 0 | [ i 0 0
0 \/% 0 ] [~ 0 —17]
013 = \/%‘ 0 —\/Jz“ s Oa3 = 1 01, (3b)
| 0 -1 0 | | -1 0 ]
[0 —Jii 0 7] 1 0 ]
0'23 = \/%i 0 \/'%i ’ 0‘33 —1 0 (30)
| 0 —\/%i 0 | | 0 0 1 ]
These together with the usual spin 1 matrices
0 \/% 0 0 —/3i O
oo=|[v} 0 Vi|, o= |VA 0 —Jiif, (4a)
|0 3 O Lo Vi o0
1 0 O
0'30 = 0 0 0 > (4b)
0 0 -1

constitute a particular set of generators for the unitary group in three dimensions,
written U(3). Notice that the identity matrix is 044+ 6,5+ 033.

The unitary group, particularly U(3), has been intensively studied owing to its
significance in the classification of elementary particles. However, the generators
of U(3) defined above are not the usual ones (cf. Gell-Mann and Ne’eman 1964).
Furthermore it is tedious to derive commutation rules via the more familiar generators
but these rules for the o;; , are needed to develop an arbitrary spin theory.

The present paper shows how to derive the algebra for the required matrices via
a procedure called mixed induced multiplication. This procedure allows the o;;, ,
and their commutation rules to be obtained directly from the Pauli spin matrices and
their commutation rules.

Mixed Induced Multiplication
Consider the second induced matrix of a general 2 x 2 matrix
a’ J2ac c?
a c]
[b d] =|2ab (ad+bc) J2cd|. %)
b* J2bd d?
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For two different 2 x 2 matrices, the mixed induced multiplication, symbolized by [ x ],
is defined by

a; ¢ a, ¢C;
o ool ]
b, d; b, d,

aa \/‘1‘ (ay¢; +asey) €1C,
= |/3(a1b, +a,b,) 4(ayd, +byc, +ayd; +by¢:) i dy +ed)]. (6)
by b, \/‘% (byd, +b,dy) d d,

More generally the mixed induced matrix of » different 2 x 2 matrices 44, 4,,...,4,,
where A, has the elements a,, b,, ¢, and d,, is constructed by permutating the indices-
1,2,...,n between the elements of the ordinary nth induced matrix. A more precise
definition is obtained by considering the » transformations of the spinor (x,y),

R I O e e e

Then the mixed induced transformation of the multispinor (x, )" is given by

x] [x, X, X,
AI[X]AZ[X]'"[X]An[] =[ }[X][ }[X]m[xl[ ] (82)
y 1 Y2 n
where
[ X1 Xp 000 Xy ]

n_% Palt%...fnya Xp oee Xz

X1 X2 Xn
[ ][XJ[ _][X]--.[X][ ]= {n(n—1)/1.2} PS5 yayp Xy X | (8D)
N1 V2 In .

L Y1V2 - In i

P%:-* is the permutation af ... 7 of the indices 12...n and repeated indices are summed.
For example, P% YuXp is equal to y; x, +y,x;. The matrix 4;[x]4,[x]...[x]4, is
the mixed induced matrix of A, 4,,..., 4,.

The advantage of defining such a form of multiplication is that it leads to a remark-
ably simple matrix algebra. Thus, where 4, B, C,... and P, Q, R, ... are 2 x 2 matrices, .
I is the 2 x 2 identity matrix and / and m are constants, the following relations can
be easily proved:

A[x]1B = B[x]14, (9a)

(A+B)[x]C = A[x]C +B[x]C, (9b)
(A+B)"™ = 4™ +ng""1[x 1B
+{n(n—1)/1.2}4""H[x]B® + .. +B™, (%)

(A=Y A—mI) = AP —(I+m)A[x ) +ImI', (9d)
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PA[x]QB +QA[x]PB = 2(P[x]0)(A[x]B), (%)
PA[x]QRIx IRC + QA[ x |PB[x IRC + RA[x]QB[x 1PC + PA[ x |RB[x]QC
+QA[x]RB] x1PC + RA[x 1PB[x10C = 6(P[x]Q[x IRY(A[x]B[x]C).  (9f)
The ‘binomial’ rule (9c) gives simplicity to the ‘De Moivre’ formula
(cos 10 —ic . nsin10)27! = exp(—ibn.J), (10a)

which was described in the earlier paper (Jeffery 1978a). For example, for spin j = 1
the left-hand side of (10a) is equal to

(cos?30)I™?! —2i(cos 10 sin 30)(c . n)[ x ]I — (sin?46)(c . n)t?!. (10b)

Equations (9¢) and (9f) are particularly important for obtaining the commutation
rules for o;; and 0.

Generalized Pauli Spin Matrices

The Pauli spin matrices o4, g, and o3 along with the identity matrix o, are

10 01 0 —i 1 0
a"_[o 1]’ 61—[1 o]’ Gz_[i o]’ ,"3=[0_1]' 1n

The o;; of equations (3) and (4) are then given by

0;; = o[ x]o; (12)
and more generally

Gij.m = 0 x]o[x]...[x]o,. (13)
The nth induced matrix of the general 2 x 2 matrix (a, +a.6)™ is given by
(ao +a.0)™ = a;a;...a,06,;. ,, (14)

where repeated indices are summed and can take on the values 0, 1, 2 or 3.

Commutation Rules

Consider first the commutator [}, 6;;] where i, j, k, and [ are all chosen from
1, 2 and 3. From equation (12),

[aij’ O'kl] = [o{x]o;, Uk[X]O'z] (15)
and therefore, with the help of the rule (9¢),

[0:j» 6] = 3(0:0: %100, +0;0[x 6,0, —0,a[x]0,0; —o,6{x]o,0;). (16)
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By the well-known property of the Pauli spin matrices

. 0,0p = iaaﬂs Os +6ap s (17)
equation (16) then becomes
[04, 01] = i64s6;1050 +18j1505 050 +i85xs 011 T50 +181150 1050 (13
or
[O-ij’ O-kl] = IPZ” Pl)c’;s szys 5ﬂ6 0505 (193)

where the permutation operator P/ requires o, f to be summed over as many per-
mutations of i,j as possible and the right-hand side is summed over the dummy index
s for s = 1,2,3. Similarly, the anticommutator is found to be

[O'ij’ o'kl]+ = P:]ﬂ Pl)c'?(aay 6[36 - says Eﬂét ast) ’ (19b)
where 5,7 = 1,2,3. When one of the indices is zero, these results become
[0 Oro] = 18505 +i8 04, [0:> ool = 000 +0,050. (20)

In general the commutators contain only odd multiples of the Levi—Civita tensor
whereas the anticommutators contain only even multiples or none. In principle the
general formulae can be obtained by substituting from the relation

o

”O'v = 6ﬂ0 O'v +5v0 O'” _5ﬂ0 5‘,0 +i6;333 O'S, (21)

(where p and v can be 0, 1, 2 or 3) into the formula

) [Guv. L) a'u’v’...n'] +
= () P PaE (0,0, X 1op 0p [ X1 [ X0y 0, 2

+o0,.0[xlop 0l%x]...[x]o,0,).

However, the principles have been established and there is nothing to be gained by
giving the involved general formulae. For interest the complete results for the U(4)
generators are listed in Appendix 1, together with the ¢;; matrices.

There are a total of (n+3)!/n! 3! matrices when o;;,, has n indices each of which
can have values 0—4 (see Appendix 2). Some of these matrices are linear combinations
of the others, but (n+1)? independent matrices can always be obtained. Thus for
o;; there are 10 matrices whereas U (3) needs only 9 generators. A possible independent
set can be obtained by excluding the identity matrix 6o, because this is equal to
611 +0,,+035. Similarly, an independent set of matrices for generating U(n) can
be obtained by excluding all matrices with more than one zero in their indices. To
prove this consider the four matrices ‘

10 0 1 00 00
2 9 b E) (23)

00 00 10 1 10
which are the linear combinations (¢, +03), 1(o, +i0,), 3(6o—03) and 4(o; —ig,)
respectively. Mixed induced multiplication with » matrices, each of which is selected
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from the four matrices (23), will produce an (n+ 1)®> matrix of which only one element
is nonzero; for example, '

0 n¥0..0
[1 0][""1][X][0 1] _ 00 O0.. O_l. 24
00 00 B : :

00 0.. OJ

By a suitable selection of the # matrices, any particular element of the (n+ 1)* matrix
can be made the nonzero element. Hence an arbitrary (n+1)? matrix is obtained
by a linear combination of these various mixed induced matrices. From the definition
of mixed induced matrix multiplication it follows that similar linear combinations
of mixed induced matrices from o,, o;, 6, and g3 will also produce an arbitrary
(n+1)* matrix. Now the total number of basic matrices o;;. , having n indices which
can take on values 0, 1, 2 or 3 is (n+3)!/n!3!, whereas only (n+1)* are needed as
generators for U(n+1). Hence (n+1)!/(n—2)!3! matrices are superfluous. The
superfluous matrices can be expressed as linear combinations of the others. From
the identity 6oy = 04, +0,,+03; and the definition (8) there is little difficulty in
proving
000ij..k = O11ij..k T 022ij..k T 033ij..k-

Hence all matrices with more than one zero in their indices can be expressed as linear
combinations of the other matrices; for example,

000000 = 0110001+ 0220001 33000

= (031110 F 011220+ F11330) + (022110 022220+ 022330)

+ (0331101 0332201 F33330) - 25

There are exactly (n+ 1)> matrices having one or no zero in their indices (Appendix 2)
and, since a linear combination of these has been proved capable of generating any
(n+1)? dimensional matrix, they must all be independent and can be used as genera-
tors of U(n+1).

Miscellaneous Relations

Many other relations between the generalized matrices can be obtained from the
properties of the Pauli spin matrices. For example, since

0'10'20'3 =i (26)

then
o1eflo}! = it (27a)
‘or
011..1022..2033..3 = 1". (27v)

Similarly, for i,j = 1,2,3 and i # j,

. O-io-j = —O'jO',- (28)
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so that
oMot = (=) o' g™ (292)
or
0ii..i0jj...j +(=)"t0jj..;0i..i = 0. (29b)

However, these types of relations will not be considered further.

The operators n(—id) and 7(—i0) given by Weinberg (1964) have already been
noted to be equivalent to [E — P.¢]"* and [E + P. ¢]t?/! (Jeffery 1978a). Furthermore,
Weinberg’s generalized Dirac matrices y*#2*"#2/ are easily found to be given by

0 (’“)2j+z aumz---uz:] (30)

o 0

B1p2.. 25

H1p20eef2)
y B [

where Z is the number of zeros in the indices y; i, ... pio;. Thus the commutation and
anticommutation relations for the y*#2**#2/ matrices are completely determined by

those for the ,,,, . ,,, matrices.
Lastly, differentiation rules for the matrices are easily established; for example,
o [a ™ a ¢ 110
alp o ~"b gl Vo o Bla)
and generally -
o [a c]m nt [a ] 1 0]"
= . 31b
o |p 4| — (n—n! [b d] D<dly o (310)

When the nth induced matrix is written in the form (see equation 14)

(ao +a.o_)[n] = a;a04...0,055, .5
it is obvious that

1 o [n]
Oijn = Pz aaaaa’? .“aat(ao +a.0') | .

ij...n

When a, b, c and d are functions of x and differentiation is carried out with respect to x,

d [a®) ()™ a(x) c(x)]-1 d [ax) o)
4 i (<1< . @
dx [b(x) d(x)] [b(x) d(x)] dx [b(x) d(x)]

aresult which can be easily generalized to higher derivatives and more than one variable.
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Appendix 1

The complete set of commutation rules for the U(4) generators is presented here.
In the following commutators and anticommutators i, j, k, I, m and »n can take the
values 1, 2 or 3, while zero indices are shown explicitly.

[Gijk’ o'lmn] = %1 Paitjgky P?;A:(gaés 5/}1: 570 Os00 — %sozés €grt Eysv astv) ’ (A 1 a)
[aijk’ Otml+ = Pfﬁcy P ;,;:;(%646 5ﬁr 670 — &u5s Eprt 5ya Ose0) 5 (Alb)
(641> Timo]l = 3 P?Jt'iky P} €36 94:05,0> (A2a)
[O'ijka Cimol+ = %P?flg P%(fsaa 5;31 0500 — &uss Eprt Osty) » (A2b)
[o-ij05 o'lmO] =4 P:lﬁ P;’r:n(savs Ospe + Eays 5#1 O'sOO) s (A3a)
[aijO’ O-IMO] + = % Pff P?r:x(aay 5/31 + Zaay aprO - 8atys sﬂtt astO) ’ (A3b)
[o ijko O 00l = 3 P?j%cy €415 Ospy s [o ijio O 00l+ = %P?j/;cy 0,10 70> (A4
[Uijo, Oro0] = %i P?f Eaks Tspo » [UijOs Orool+ = %P?f(éak Ggoo +aijk), (A5)
[0:005 Tjoo] = 31 €;5505005 [0:005 Gjo0l+ = 3(9;; +2aij0)' (A6)
The o, matrices in equations (A1)-(A6) are as follows.
" 0 0 0 1 7] 0 0 0 —i ]
0 0 1 0 0 0 -4
[ = s 4 = ’
H o 1 0 0 " 0 i
| 1 0 0 (VI i 0 0 |
[ 0 \/ 1 0 ] 0 0 0 -1
30 -3 o 0 3
4 = s 4 = s
113 \/ 10 _3 0 122 0 3 0
| 0 —\/ 3 0 0 ] -1 0 0 (VI
-0 0o - \/ i 0 ] 0 \/ 1 0 T
0 0 0 \/ 1i \/ 1 0 -2 0
(2 = . g = )
123 \/ 1 0 0 0 . 133 0 _3 0 \/ 1
| 0 - \/ 31 0 0 0 0 \/ 1 0
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0332 =

0333 =

0110 =

0130 =

0230 =

0100 =

0300 =

S O O =

o S wn

S O W

0 i
—i 0
0
0 0
0 0
3 0
0 —.4i
Jiio0
Vi 0]
0 Vi
% 0
0 0
0 0
0 0
0 —Ji
SN
0 0
0 0
0 i
~JH 0
0 0
% 0
0 i
NE I
0 0
-1 0
0 -1

0223 =

0333 =

0120 =

0320 =

0330 =

G200 =

Gpoo =

-3

oSO O o =

(= =

i

o O O =

winy

o

(==

o = O O

- o o O
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Appendix 2

The matrices o;; for i,j = 1,2,3 are
(0115012,013) (022,023) 033,
that is, a total of 3+2+1 = 6 matrices; similarly the matrices o, for i,j = 1,2, 3 are

(6111501125 01135 0122, 01235 O133) (0222,02233 0233) 0333,

that is, a total of (34+2+1)+(2+1)+1 = 10 matrices. Let us therefore define the
series

DN n=1+243+... +n, (A72)

@Y n=1+1+2)+ ... +(1+2+ ... +n) (A7b)
and, in general,

O n=0C"DY1 4Dy 2 4 4Dy g, (ATc)
with

Oy n=1+1+..+1=n. (A7d)

There is no difficulty in proving that
O n={(n+r)r+D!@-D!}. (A8)

The o;;.. ,, matrices for spin j have 2j indices. The number of these with no zero
indices is /DY 3, and the number with one and only one zero index is ?/~2Y 3,
giving a total of

: @i—LY" 3 4 2i72Y 3 = (2j+1)?,

with the help of equation (A8). This is exactly the number required for a non-

degenerate representation of U(2j+1). The total number of matrices in o;;, ,, is
@i=D¥" 4, of which @/~ 4 are superfluous.
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