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Abstract 

The transition probabilities W in the traditional Monte Carlo simulation process used in statistical 
mechanics are shown to satisfy a linear functional equation. General classes of solution to this 
equation are presented. A simple one-particle mean-field Ising model of a ferromagnet is used in 
an analytical comparison of the various possible forms of W. 

Introduction 

The computer simulation of the behaviour of a statistical mechanical system is 
essentially one of simulated sampling over the set of configurations of a finite cluster 
or sample of particles taken in the infinite system. For Ising systems with spin -t 
particles set at the node points of a lattice, this simulation is often taken to be a 
realization of the basic stochastic process describing the evolution of the system as it 
passes from one equilibrium state to another. As implemented in computer terms, this 
process is discrete in time and is defined over the discrete state space of all configur­
ations of the finite sample of spin particles. The physical origin of the stochastic 
process may be considered to lie in the interaction of the spin system with a reservoir 
system, each system being able to induce state transitions in the other. Each system 
is thus open and, if we assume the reservoir to be large and constantly in thermo­
dynamic equilibrium at some temperature T, we may proceed from the Liouville-von 
Neumann equation and set up for the spin particle system a master equation satisfied 
by the appropriate density operator p.(t). This master equation necessarily involves 
memory effects, expressed as integration over the past history, so that the associated 
stochastic process is generally nonMarkovian. However, if the spin system is 
sufficiently close to equilibrium at the reservoir temperature, the memory effects may 
be approximated in such a way that the process becomes Markovian. Allowing the 
spinstate transitions to be single-spin reversals, and interpreting the diagonal elements 
of p.(t)as the probabilities pes; t) of the various states (i.e. configurations of the spin 
particles), the master equation may be written as the linear system (Argyres and 
Kelly 1964): 

dp(s; t)/dt = - L W/s) pes; t) + L W/si) p(si; t). (1) 
i j 

Here s = {Sk} is the vector of spin states of the particles of the sample; the vector s 
thus represents a configuration of the sample particles. The notation si means that 
the jth spin in s has been reversed, the other spins being unchanged. The transition 
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probability Wj(s) is the probability rate that the jth spin in s will reverse, changing 
s into sj, while W/sj) refers to the inverse transition. 

In the computer simulation of the Markov process associated with equation (1), 
the transition events occur at equal intervals of 'computer time', with the value of the 
probability of transition determining whether or not the transition is to be 'accepted'. 
At each transition event, the sample particle correlations are computed, so that the 
simulation in effect solves equation (1) in a moment sense. In general, for practical 
reasons, only a few of the low-order moments are computed, the maximum possible 
order being that for which the correlation length is equal to the sample diameter. 

As generally defined, the transition probabilities W/s) depend only on the instan­
taneous configuration of the spin particles and are not explicit functions of the time, 
i.e. the Markov process is time homogeneous and, considered in terms of the master 
equation (1), is a process with discrete states in continuous time. It follows from this 
that the underlying random variables which generate the process-in the present case 
those random variables that, through particle-reservoir coupling, generate the trans­
ition events-must be exponentially distributed (see e.g. Chapter 6 of Cox and 
Miller 1977). It is, of course, this underlying distribution function that sets the time 
scale for the transition process as expressed through the Wj(s). If we are concerned 
only with the estimation of equilibrium properties, it probably does not matter how 
the equilibrium sequence of configurations is reached, so long as the Markov process 
in the equilibrium state is time homogeneous. However, if we are concerned with the 
approach to equilibrium and wish to estimate relaxation times for the moments, the 
underlying random variables may not be exponentially distributed and so a quite 
general stochastic process may be needed to describe the approach to equilibrium. 

The detailed form of the Wj(s) depends on the nature of the coupling between the 
spin system and the reservoir, and may be determined in specific cases, such as spin­
phonon coupling (Bolton et al. 1977). However, in the absence of any particular 
model for the coupling, the most that can be said about the form of the W/s) is that 
at equilibrium, when the Markov process has converged in time and where only 
fluctuations about the equilibrium state occur, the W/s) should satisfy the condition 
of detailed balance for the particular type of transition involved (i.e. single-spin 
reversals). In mathematical terms this condition becomes a linear functional equation 
for W/s) which simply depends on the energy 11£ of the transition alone, and so does 
not depend explicitly on the configuration immediately prior to the transition (cf. the 
definition of a Markov process (Feller 1957». Detailed balance now becomes a linear 
functional equation involving the transition probabilities for an event and its inverse, 
and with argument I1EjkB T, where kB is Boltzmann's constant. In the present paper 
we consider solutions to this equation and indicate how general classes of transition 
probabilities may be constructed. Since the transition process is the same for equili­
brium and non-equilibrium states, we may assume the same form of transition proba­
bility for the two cases. By considering a one-particle mean-field Ising model of a 
ferromagnet, we are able to compare the rates of convergence of the Markov process 
for different transition probabilities. 

Functional Equation 
For transitions based on single-spin reversals, the condition of detailed balance at 

equilibrium implies 
W/s)Peq(s) = W/sj)Peisj), (2) 
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where Peis) is the equilibrium probability distribution function of the state s. If we 
define the Hamiltonian for the spin system in the absence of any applied magnetic 
field, 

H(s) = - L JijSiSj, 

<ij) 

and assume for Peis) the Boltzmann distribution 

Peq(s) oc exp ( - PH (s»), with P = l/kBT, 

then detailed balance yields 

W/s) exp ( - PH (sj) ) exp ( - PEj Sj ) 

W/sj) = exp(-pH(s») = exp(pEjsj ) , 
where 

E. = L JjkSk , 
J k 

the summation being over nearest neighbours. 
To set up the functional equation we first define 

flH = H(sj) -H(s) = 2Ej sj , 

(3) 

(4) 

(5) 

(6) 

(7) 

and assume the transition probability to depend on the energy of transition flH alone, 
so that on introducing the variable 

~ = exp(pflH) > 0 (8) 
we may write 

W/s) = <pm, (9) 

and, by symmetry, for the inverse transition 

Wj(Si) = <P(1/~). (10) 

We observe that the dependence of the transition probability on the single variable 
implies that W(s) depends not on the whole configuration s but only on the local 
state generated by the transition, i.e. the transition process is spatially Markovian. 
Using the forms (9) and (10), the condition of detailed balance becomes 

~ <p(~) = <p(1/~) for ~ > o. (11) 

This linear functional equation is quite general within statistical mechanics and holds 
whenever the present Markov process applies. For example, it holds for molecular 
systems where the variables are continuous rather than discrete (Metropolis et al. 
1953). 

Solutions to Functional Equation 

To solve equation (11) we first proceed by inspection, and note that there are 
several classes of solutions. One class of solutions comprises those that are rational 
functions in ~, of which the simplest may be written 

<pm = A(I + I/O. (12) 
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Here A is a parameter which depends on the inital state and which must be proportional 
to the average number of transitions per unit time. This solution may be generalized 
to higher-degree functions to obtain, for example, 

¢(~) = A(l + ~)/(l + IX~ + ~2) • (13) 

The solution (13) does not reduce to (12) for IX = 0. 
A second class of solutions consists of those that are rational in ~t, of which the 

simplest is 
¢(~) = A/~t, 

and which generalizes to 
¢(~) = A/(1 + lX~t +~), 

of which a particular form (IX = 0) is 

¢(~) = A/(1 +~). 

Note that equation (16) may be written 

¢(~) = ACt/(~t+ct). 

A third class of solutions arises from the substitution 

so that IjJ satisfies 
¢(~) = ctljJ(~) 

IjJ(~) = IjJ(1 / ~) . 

(14) 

(15) 

(16) 

(17) 

(18) 

In the first instance this equation is satisfied by any functionf(~, C 1) which is symme­
tric in its arguments. The solution 

¢W = C t f(~,Cl) (19) 

clearly contains some of the earlier solutions. 
On inspecting equation (18) we see that it is a particular case of Schroeder's 

equation (Hille 1972) 
f(g(~)) = Af(n for ~ > 0, (20) 

with g(~) = 1 / ~ and A = 1. It would appear that the solutions of equation (18) belong 
to a function algebra defined over the field of rational functions symmetric in ~ and 
that this field may be extended to include \log ~ \ . 

Another general class of solutions to equation (18) may be constructed by a division 
of the interval (0, 1) into dyadic subintervals. Thus, if we define 

then we have 
IjJ(~) = h(~) 

IjJW = h(l/~) 

for 

for 

O<~<I, 

~ > 1. 

More generally, if Nbe a positive integer, and we define 

IjJW = ho(~) 

= hkW 

for ° < ~ < 2- N 

r k < ~ < rk+l 

(2Ia) 

(2Ib) 

, 
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with k = I, 2, ... , N, then we obtain 

tjJ(e) = ho(1g) 

= hk(1g) 

for ~ > 2N 

2k - 1 < ~ < 2k, 

with k = I, 2, ... , N. The function tjJ is then defined for all ~ > O. 

Identification of Solutions to Functional Equation 

459 

Some of the solutions (listed in the previous section) to the detailed-balance func­
tional equation (11) may readily be identified with the various transition probabilities 
used in computer simulations, although most of the results given here are new. Thus, 
for the Ising system we have from equation (14) the simple exponential form 

W/l') = A exp( - f3Ej s) , (22) 

which in the molecular context is called the 'symmetric' transition probability (Wood 
1968). From equation (22) we derive 

W/s) = A cosh(f3E) {l- tanh(f3Ejs)} , (23) 
or simply 

W/s) = 1A{1 -sjtanh(f3Ej)} (24) 

on redefining the constant A. This is the Suzuki-Kubo form. 
From equation (16) we have 

W/s) = A{l + exp(2f3Ej s)} -1, (25) 

from which we may also derive the Suzuki-Kubo form (24). From the equations 
(21)the simplest solution is obtained by taking h(~) == I, and this recovers equation (22). 
If we take h(~) = A~t we have 

¢(~) = A for o < ~ < 1 

= A/~ ~ > I, (26) 
which yields 

W/s) = A for Ejsj < 0 (27a) 

= A exp( -2f3Ej sj) Ejsj > 0, (27b) 

which in the molecular context is the 'asymmetric' form originally used by Metropolis 
et al. (1953). 

Rates of Convergence to Equilibrium 

To compare the effects of different forms of transition probability on the rate of 
convergence to equilibrium of the simulation process, it is convenient to consider the 
analytical behaviour of a particular physical model which uses these different proba­
bility functions. Accordingly, we consider the behaviour of a simple one-particle 
mean-field Ising model of a ferromagnetic system of particles. Let the spin particles 
be located at the node points of a lattice and consider the behaviour of the particle 
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at node point P. We regard this particle as a one-particle sample from the infinite 
system. If z is the coordination number of the lattice then the sample particle will 
interact with its z nearest neighbours. However, the states of these nearest neighbours 
are unknown and must be estimated using the statistics of the sample. If the state 
variable for the sample particle is s with values of ± 1 then the simplest estimator for 
the states of the external particles is the site mean (s). The values of this estimator 
lie in the range [-1,1] and so its direct use is perhaps somewhat unphysical. However, 
it does have the advantage of making this one-particle sample exhibit a critical beha­
viour, i.e. there exists a temperature Te such that (s) = 0 for T ~ Te and (s) "1= 0 
for T < Te. Thus, the model qualitatively at least contains the right kind of physics. 
By assigning (s) to the external particles, we have in effect taken the thermodynamic 
limit by imposing a closure on the sequence of site correlation functions. The closure 
here occurs at the first term (s), and it follows that all higher correlations exist and 
are simply powers of (s). The existence of all correlations implies the existence of a 
critical temperature, although it might be zero (cf. the one-dimensional chain). 

In the absence of a magnetic field, the Hamiltonian may be written 

H = -zJs(s), 

so that we have for the partition function 

Z= L exp(Kzs(s») , 
s= ± 1 

where K = JjkB T. From equation (29) we define (s) (self-consistently) by 

(s) = tanh (Kz(s) ). 

From equation (30) we have 

(s) = 0 

"1=0 

for 0< zK::::; 

zK> 1. 

(28) 

(29) 

(30) 

That is, a critical temperature for the site mean (s) (i.e. long-range order) exists and 
is given by Te = z, in units of JjkB. For the specific heat we find 

e" = «(H-(H»)2) = J2Z2(S)2 (1-(s)2), 

which has a maximum at (s) = 1, for which Kz = 1·2463 .... 
To discuss the time-dependent behaviour of the one-particle sample, and hence of 

the infinite system, we proceed from the master equation (1). Thus, for s = ± 1 we 
have 

dP(s,t)jdt = - W(s-+ -s)P(s,t) + W(-s-+s)P(-s,t), (31) 

where pes, t) is the probability that the sample is in state sand W(s -+ -s) is the 
transition probability rate out of that state. Expressing pes, t) in terms of (s), 

pes, t) = HI + s(s») , 

and specializing to the case s = 1 we have 
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d<s)/dt = F(l) + F(2) <s), (32) 
where 

F(l) = - w(s --+ -s) + w( -s --+ s) and F(2) = - w(S --+ -S) - w( -s --+ s). 

(33) 
From equations (8) and (28) we define 

~ = exp (13 i1H) = exp (y <s» , with y = 2zK, (34) 
and 

w+ == w(s --+ -s) = ¢(~) and w- == w( -s --+ s) = ¢(el ). (35) 

In equilibrium d<s)/dt = 0, so that we have 

<s)eq = _F(l)/F(2) = (w- - W+)/(W- + W+) 

1 -¢(~eq)/¢(~;;/) 
1 +¢(~eq)I¢(~;(/) 

and hence 

<s)eq = (~eq -I)/(~eq + 1) (36) 

on using (equation 11). Clearly, <s)eq is independent of ¢, that is, of W, as it must be. 
Using the definition (34) of ~ we recover the definition (30). 

Using detailed balance equation (11) we may write the master equation (32) in the 
form 

d<s)/dt = -{(1-~)+(1+~)<s)}¢(~). 

Setting <s) = <s)eq + L1 and substituting in equation (37) we obtain 

dL1/dt = -cd, 
where 

(1+~eq)2 -2Y~eq¢(~eq). 
rx = - 1 +~eq 

(37) 

By definition ¢Geq) > 0 and by inspection it follows that rx > 0 for all T. Hence, the 
relaxation process must converge to the equilibrium state for all temperatures, and 
it follows further that the rate of convergence is a maximum when ¢( ~eq) is a maximum. 
From this it appears, in particular, that the symmetric form (22) gives a rate of con­
vergence greater than that of the asymmetric form (27) which in turn gives a greater 
rate than the form (25) used by Flinn and McManus (1961). This last result is in 
disagreement with the analysis of Cunningham and Meijer (1976). Of course, the 
present one-particle model is very special and, as Valleau and Whittington (1977) 
pointed out, the matter is quite involved. However, much of their analysis would 
appear invalid, since the transition probabilities in their examples do not appear to 
satisfy detailed balance, and it is difficult to see how the equilibrium state could ever 
be reached with a Markov process based on these probabilities. It must be emphasized 
that in the simulation of a statistical mechanical system the Markov property only 
holds with any accuracy when the stochastic process is close to convergence at equi­
librium. After all, detailed balance is an expression of equilibrium. 
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