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Abstract 

From Kraichnan's direct interaction approximation the normal mode equations are set up for a 
scalar quantity diffusing kinematically under a turbulent velocity field which is statistically 
homogeneous and stationary. It is demonstrated: (i) that the mean scalar field responds only to 
the symmetric part of the velocity turbulence tensor; (ii) that the Kraichnan equation describing 
the normal mode behaviour is a singular nonlinear integral equation; (iii) that for velocity turbulence 
which is switched on and off infinitely rapidly the normal modes of the mean scalar field decay in 
time at a rate which is always greater than that obtaining in the absence of the turbulent velocity 
field. The motivation underlying these calculations is the problem of particle transport in turbulent 
astrophysical situations such as the interstellar medium. In such cases the effective Reynolds number 
is normally large compared with unity, so that expansion approximations for small Reynolds 
number are apparently not completely free of error. 

1. Introduction 

There is increasing evidence that it is rather common in astrophysical situations 
to have significant turbulence in which r.m.s. fluctuations are of the order of, or 
larger than, mean values. For instance, observations of both the solar wind and the 
interstellar medium indicate that the r.m.s. fluctuations in the magnetic field <(jB2)t 
are of the order of the mean field magnitude <B). To date there has been very little 
work done on self-consistent turbulence problems in astrophysics; attention is 
normally restricted to kinematic problems. In a kinematic, but turbulent, system it 
is customary to deal with a system which is influenced by a turbulent quantity but 
whose evolution does not in turn influence this turbulent quantity. For example, 
in kinematic cosmic ray modulation studies the cosmic rays are influenced by the 
turbulent Alfven waves in the solar wind but do not in turn influence the waves. 

One of the conventional techniques for handling kinematic turbulence problems 
is to use expansion schemes which assume that the turbulence is small in some 
sense (e.g. in cosmic ray diffusion theory it is assumed that <(jB2) ~ <B)2 
even though solar wind measurements indicate that <(jB2) ::::: <B)2). Over the years 
the question of the validity of such expansion schemes has led to some interesting 
debates in the astrophysical literature. 

It is becoming apparent that in order to obtain trustworthy answers for astrophysical 
problems where the r.m.s. turbulence is at least as large as mean quantities some other 
form of approximation must be found (see Frisch (1968) for an elegant and excellent 
appraisal of the general situation). 
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The purpose of this paper is to illustrate a method of handling problems involving 
strong turbulence known as Kraichnan's direct interaction approximation (DIA) 
which does not suffer from any deficiencies due to expansion approximations. 
Kraichnan (1961) has shown that the DIA describes, in a statistically exact manner, 
an ensemble of possible physical systems. The only question which remains unanswered 
in toto to date is whether the ensemble of systems described by the DIA is, in fact, 
always the ensemble provided by nature. To the author's knowledge this question 
has not yet been completely settled. 

The advantage, then, of Kraichnan's DIA is obvious. One is guaranteed, ahead 
of any detailed calculations, that the answers one gets to a turbulence problem are 
not only correct in a mathematical sense but are also physically permissible, since 
the DIA ensemble is physically possible. And Frisch (1968) has also remarked that 
'the exact model solutions are approximate solutions of the true turbulence problem' 
for all values of the parameters involved. The main disadvantage of Kraichnan's 
DIA is that it normally leads to nonlinear singular integral equations which have to be 
solved before the normal modes of the ensemble average system are obtained. 
Nevertheless, in view of the fact that most astrophysical systems involving turbulence 
possess a level of turbulence which cannot be regarded as 'small' in any sense, it seems 
worth while to illustrate the manner in which Kraichnan's DIA applies to a simple 
problem. The more complex problems which occur in real astrophysically turbulent 
situations can then be investigated along similar lines using similar techniques. 

In addition, since Kraichnan (1961) has already spelled out the general method 
of obtaining the nonlinear DIA equations from the full equations, the present 
development need only be brief, and the interested reader is referred to Kraichnan's 
paper for an appreciation of the details of the process. 

The simple example chosen here in order to illustrate Kraichnan's DIA is the 
kinematic diffusion of a scalar quantity in a turbulent velocity field. The problem 
should be viewed as an educative device which not only illustrates a mathematical 
method of handling the DIA equations but which also gives physical insight into 
the role of turbulent velocity fields in causing diffusive behaviour in astrophysical 
situations. 

2. Basic Equations 

Consider the evolution of a scalar field I/I(x, t) in an infinite medium of constant 
diffusivity 1], which medium also possesses an incompressible turbulent velocity 
field vex, t) with \1 . v = O. Let 1/1 evolve according to the relation 

81/1/8t + Vi 81/1/8xi = 1] \12 1/1 . (1) 

Under Kraichnan's DIA the equation describing the ensemble average Green's 
function G(x, t I x', t') is 

8?t -1] \12G = (j(x-x') (j(t- t') + -88 (r t dt" G(x, t I x", t") ~~,(x'" t" I x', t') 
o Xj Jt' OX i 

x(v/x,t)v;Cx", t") d 3x") , (2) 

with the requirement 
G(x,tlx',t') = 0 for t < t', (3) 
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so that only forward going (in time) Green's functions are obtained. In addition, 
(v j v j) is the two-point, two-time correlation tensor of the turbulent velocity field. 
It is now relatively easy to obtain from equation (2) the equation satisfied by the 
mean scalar field ("'(x, t» == lJ'(x, t). 

We note that the lower limit on the t" integral in equation (2) can be replaced 
by - 00, since the requirement (3) ensures that no difference arises in the integral. 
On multiplying equation (2) by an arbitrary function S (x', t ') and integrating the 
result over all values of x' and t I, with the definition 

'1'(x,t) = f d3x ldt ' G(x,t Ixl,tl)S(xl,t'), (4) 

we obtain 

alJ' -r,.\12'1' = Sex t) + ~(ft dt" G(x t I x" t") alJ'(x", t") 
at 'ax j - 00 " ax7 

X(Vl x",t")Vi x,t»d3x"). (5) 

Thus sex, t) is the source which controls the evolution of lJ' through the Green's 
function G so that equation (5) is an initial value problem for lJ' given Sex, t). The 
problem can, of course, be converted into a normal-mode one in the standard 
manner. Firstly we ignore sex, t) in equation (5). This leaves a homogeneous 
linear equation for lJ' given that we can obtain G from equation (2). The homo­
geneous equation will have a solution if, and only if, a dispersion relation is satisfied. 
Having obtained the dispersion relation we can then pose the initial value problem 
(5) as a linear superposition of the normal modes of the homogeneous problem. 
This technique is widely used, for example in solving the linearized Vlasov equation 
in plasma physics (see e.g. Montgomery and Tidman 1964), where the Landau-damped 
modes are obtained without reference to their initial values. The coefficients of the 
modes are, of course, controlled by the initial values but the dispersion relation is 
controlled by the homogeneous equation. For our purpose it suffices to consider the 
Green's function (2) together with the normal mode equation for lJ' (i.e. equation (5) 
with S set to zero). 

Before we can progress further with equations (2) and (5) some knowledge of the 
functional behaviour of (Vj(x, t) v ix', t '» is required. For the remainder of this 
paper we shall suppose that the velocity turbulence is both homogeneous and 
stationary when 

(vlx' , t')vix, t» = Rij(x-x', t-t '). (6) 

It then follows by inspection of equation (2) that the mean Green's function must 
also be homogeneous and stationary: 

G(x,t Ix',t') = G(x-x',t-t '). (7) 
Now write 

[Rij(x,t), G(x,t), lJ'(x,t)] 

= f d3kdwexp{i(k.x-wt)}[Rij(k,w),G(k,w), lJ'(k,w)]. (8) 
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Then from equations (2) and (5) we obtain 

G(k, w)(I'/k2 -iw) 

= (2n)-4 -(2nt G(k,w) kikj f d3k' dw' G(k', w')Rij(k-k', w-w') , (9) 

tp(k, w)(I'/k2 -iw) 

= -(2nttp(k,w)kik j f d3k'dw' G(k',w')Rij(k-k',~-w'). (10) 

The normal modes of the homogeneous equation (10) are then given by 

I'/k2-iw = -(2n)4kikj f d3k'dw' G(k',w')Rij(k-k',w-w'). (11) 

When the normal modes of the homogeneous equation for tp(k, w) are satisfied at 
some w (which is, in general, complex) for real k it follows by inspection of equation 
(9) that at dispersion (i.e. when equation (11) is satisfied) we have ljG(k, w) = o. 

It is opportune to capitalize on the behaviour of G at dispersion by changing 
variables in equation (9). Write 

(2n)4g(k,w) = ljG(k,w) 
to obtain 

g(k,w) = I'/k2-iw +kikj f d3k'dw' Rij(k-k', w-w')jg(k', w') , (12) 

with the dispersion relation (11) being given indirectly through the complex values 
of w for k fixed at which 

g(k,w) = o. (13) 

Before proceeding with the evaluation of the dispersion relation arising from 
equation (12) there are two points worth noting. Firstly Rij is multiplied by kikj 
in equation (12). Thus only the symmetric part of Rij (namely RW = !(Rij+Rji)) 
enters the integral equation (12). Secondly equation (12) for 9 (k, w) is a nonlinear 
singul/lr integral equation (the nonlinearity is obvious by inspection; the fact that 
it is singular arises because we require 9 (k, w) to vanish for some real k and complex 
w in order that the homogeneous equation for tp have normal modes). 

Before we investigate equation (12) in depth it is advantageous to change variables 
once more. Write 

9 (k, w) = 1'/,,2 cfJ(k, w). (14) 

Further let Riix, t) have a scale length L and an 'intensity' v2 • Then write k ~ kL 
and w ~ Wl'/L 2 so that in dimensionless form we have 

CP(k,w) = 1-iwk-2 +R2k- 2k i k j f d3k'dw' {k,2cp(k',w,)}-1 

x RW(k-k', w-w'), (15) 

where the Reynolds number R is defined by R = Lvf'1. The dispersion relation for 
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the normal modes of P is then given by w values satisfying the constraint condition 

p(k,w) = O. (16) 

Now when the velocity turbulence is incompressible, homogeneous and isotropic, 
but not necessarily mirror-symmetric, we have (Batchelor 1950) 

Ri/k,w) = E(k,w)(lJ ij -kik j k- 2) +ieijlklk-1 H(k) , (17) 

where, by Cramer's (1940) theorem, 

E(k,w) ~ 0, -E(k,w)::::; H(k)::::; E(k,w), (18) 

for all real k and w. 
Note once again that only the symmetric part of Rij enters equation (15); the 

helical component of Rij' namely ieijlklk-1 H(k), has no effect at all on the normal 
modes of P(k, w) nor on the mean Green's function. In other words, in so far as 
the mean field P is concerned, the behaviour of P in a turbulent, isotropic and 
mirror-symmetric (H = 0) velocity field is indistinguishable from its behaviour in 
a turbulent, isotropic but non-mirror symmetric (H =F 0) velocity field. 

When equation (17) is substituted into (15) we obtain 

p(k,w) = 1-iwk-2 +R2 f d 3k'dw' E(lk-k'l,w-w') 

k k 'I-2( (k.k,)2)( (' ,»)-1 x I - 1- (kk')2 P k ,w , (19) 

with the dispersion relation given through those values of w for which p(k, w) = O. 
Some progress can be made with equation (19) before any further information 

about E(k, w) is required. Firstly it is clear by inspection that 

p(k, w) = p(k, w), (20) 

so that equation (19) takes on the form 

p(k,w) = 1-iwk- 2 +R2 fooo dK K2J(k,K,W-W')(P(K,W,»-1 dw', (21) 

where 

J(k -') - 2 f + 1 d,u (1- ,u2) E(k2 2 2k )t _') , K, w W - n k 2 2 2k + K + K,u, w w . 
-1 +K + K,u 

(22) 

The dispersion relation p(k, w) = 0 is now to be determined from solutions to 
Kraichnan's (1961) equation (21).* However, the number of solutions to the 
Kraichnan DIA equations in general (and not just for this problem) is very small. 
The structure and functional form of the solutions depend on the form assumed 
for E (k, w). In this investigation equation (21) has been found to be too difficult to 

* We take the liberty here of calling equation (21) (or equation 19) Kraichnan's equation, for it 
follows directly from his DIA after some simple, and fairly obvious, substitutions. 
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solve in complete generality for arbitrary forms of E(k, w), but there does exist a 
simple choice for E(k,w) for which exact solutions to equation (21) can be found: 
if Rij(x, t) = (j(t) Rij(x) then E(k, w) = E(k). We shall consider this case throughout 
the remainder of this paper. Since Rij(x, t) has a velocity turbulence spectrum that 
is correlated only over infinitesimal time scales we shall call it the 'sudden' limit. 

3. Dispersion under the Sudden Limit 

When E(k, w) = E(k), equation (21) reduces to 

lP(k,w)=l-iwk-z+Rz KZJ(k,K)dK " foo Joo dw' , 
o -oolP(K,W) 

(23) 

with 

J+1 dll (l-,uZ) 
J(k, K) = 2n kZ Z k E( (kZ + KZ + 2kK,u)t). 

-1 +K +2 K,u 
(24) 

Some care has to be exercised with the w' integral in equation (23). It cannot be 
completed by contour integration in an arbitrary domain of the complex w' plane. 
This is because the Green's function G(x, t) . vanishes for t < o. Accordingly the 
path of integration in the w' plane must be chosen above all zeros and branch cuts 
(if any) of IP(K, w'), with closure in the lower half complex w' plane. 

Equation (23) can be solved by invoking the following ansatz. Suppose that 
lP(k, w) has only one zero in the complex w plane so that we can write 

lP(k,w) = a(k){w-Q(k)}. (25) 
Then 

J~oo (IP(K,w»-ldw' = -in/a(K). (26) 

Thus when equations (25) and (26) are substituted into (23) we obtain 

a(k){w-Q(k)} = l-iwk-z -Rzin roo KzJ(k,K) dK. Jo a(K) 
(27) 

But if the assumed form (25) is indeed a solution of equation (23) the coefficients of 
powers of w in equation (27) must be identical. Then 

a(k) = -ik-z 

and 

Q(k) = -ikZ(l +nRz 5000 
K4 J(k,K)dK). (28) 

Now we have J(k, K) ~ 0 for all real k and K. Thus the normal modes of the mean 
field are given through 

w = Q(k) == -ikZ( 1 +nRz 5000 K4'J(k, K) dK) . (29) 

Since Q(k) = - iA(k) with A(k) > 0, and since the normal mode dependence was 
chosen to be exp(ik • x - iwt), it follows that the temporal dependence of the normal 
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modes is exp{ - A(k) t}, so that all modes decay with a decay time 7:(k) defined by 

7:- 1 = k2( 1 + TCR 2 fooo 
K4 J(k, K) dK) . (30) 

Thus the decay of the normal modes of the mean field is Jaster than in the absence 
of the turbulent velocity field (when R2 = 0 the decay is at a rate k 2 ). 

It is perhaps of interest to exhibit the explicit dependence of 7:- 1 on k. From the 
definition of J(k, K) we have 

5000 K4 J(k, K) dK == f d3K E(K) {I -(k. K)2jk2K2} 

= fTC 5000 K2 dK E(K) , (31) 

so that the decay rate has the dependence 7: -1 oc k 2 ; which also occurs in a null 
velocity situation (R = 0). What changes is the constant of proportionality, as can 
be seen from equations (30) and (31). In making these remarks it should be borne 
in mind that we are using the sudden limit for the velocity turbulence. 

4. Discussion and Conclusions 

(a) Comments on the Calculation 

In this paper we have obtained the statistically exact normal modes of a mean 
scalar field undergoing convection in a turbulent velocity field and otherwise diffusing. 
The general singular integral equation (15) obtained from Kraichnan's DIA describes 
in a statistically exact manner (through the zeros of rJ>(k, w)) the normal mode 
dispersion relation of the mean scalar field for arbitrary values of the Reynolds 
number R. Several points follow directly from equation (15). Firstly only the 
symmetric part of the velocity turbulence tensor enters the problem. Thus as far as 
the mean field is concerned there is no evolutionary difference in a turbulent velocity 
field which is mirror-symmetric or helical. Secondly, as was remarked in the 
Introduction, equation (15) is a nonlinear singular integral equation; to date we 
have been unable to find its general solution for arbitrary functional forms of 
J(k, K, w). Thirdly, for the particular case of velocity turbulence that is switched 
on and off infinitely rapidly we have seen that the normal modes of the mean scalar 
field decay at a rate which is always Jaster than the decay rate obtaining in the absence 
of the turbulent convection. And the results obtained in Section 3 are valid for 
arbitrary values of the Reynolds number R == LvjrJ. 

(b) Comments pertaining to Astrophysics 

It is recognized, of course, that the simple problem considered here is perhaps 
not precisely the problem of, say, charged particle diffusion through HI and HII 
regions. These regions presumably contain rather involved and convoluted magnetic 
fields as well as turbulent velocity fields. But that has not been our main point. We 
set out to demonstrate the ease with which the statistically exact DIA equations can 
be applied to problems in astrophysics which contain, or are suspected of containing, 
a high degree of turbulence-the point being that for all values of the parameters 
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involved the DIA results are exact and not approximate. Accordingly the results 
have the advantage of being solutions that can be used as templates against which 
approximate solutions can be gauged for accuracy. The DIA equations possess the 
further advantage that they describe an ensemble of physically possible dynamical 
systems, so that the results obtained apply with certainty to real physical processes. 

It is considered that the prescription spelled out here, not only for obtaining the 
DIA equations applying to any given astrophysical problem but also for solving 
the equations under simple limits on the temporal structure of the turbulence, is 
worth a more detailed investigation than has been given. In particular it would 
seem very likely that the present simple problem is indicative of a method for solving 
a rather wide class of turbulence problems in astrophysical situations by analytic 
investigation. In fact the simple problem studied here was designed to illustrate 
this likelihood. 
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