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Existing definitions of heat in open systems are considered with the aim of providing acceptable 
physical motivation in restricted circumstances. The extent to which these definitions are independent 
of the usual concept of heat in closed systems is clarified: they all have the feature that internal 
energy may be transferred by convection in workless adiabatic processes. The global definitions 
are compared with various definitions of heat flux in irreversible thermodynamics. As the domain 
of applicability of these definitions is wider than that of equilibrium thermodynamics, it is suggested 
that a minimal check for any definition of heat flux be that it agree with the global definition of 
heat flow between equilibrium states in as wide a range of circumstances as possible. 

1. Introduction 

The question of how best to define heat transfer in open systems is not yet settled, 
although it was first raised many years ago. That a real generalization of closed­
system thermodynamics is required has been emphasized by M tinster (1970): thus 
it is possible to increase the internal energy of an open system without doing work 
and without heat flow simply by adding more mass at the same temperature and 
pressure under adiabatic conditions. It is therefore expected that the usual version 
of the first law of thermodynamics for closed systems, namely dU = dQ+dW, will 
not be valid for open systems. Despite this, it is true that open systems can often 
be analysed by considering the motion of a fixed mass of the working fluid, as is 
done in engineering texts. However, this reduction to closed system thermodynamics 
can only be made after agreement has been reached on a suitable definition of heat. 

For one-component systems, an agreed definition of heat is used by engineers for 
flow problems (see e.g. Rogers and Mayhew 1967). For multicomponent systems, 
Gillespie and Coe (1933) proposed, and partially motivated, a definition which 
reduces to the engineering version when the number of components is unity. In 
Sections 2 and 3 below we attempt to provide physical motivation for these definitions. 
In doing this, a convention is established that the heat flow into an open system is 
zero when the system, its supply tank and discharge tank are all surrounded by an 
adiabatic enclosure. This convention is partly a consequence of conventional notions 
of heat and partly an arbitrary device, depending on the physical conditions. For 
simplicity, all systems considered here are assumed to consist of one phase only. 

In irreversible thermodynamics, which is usually formulated as a local rather than 
a global theory, there exist several definitions of heat flux. That due to Prigogine 
(1947; see also Glansdorff and Prigogine 1971) is most widely used, although many 
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authors employ several non-equivalent definitions (see e.g. de Groot and Mazur 1962), 
while Haase (1953, 1969) uses a different definition, the so-called reduced heat flux, 
exclusively. The Prigogine definition of heat flux is usually justified by showing that 
the balance equation for internal energy per unit mass, following the centre of mass 
motion, agrees with the second law of thermodynamics for closed systems. But the 
balance equations of irreversible thermodynamics apply to open systems also. When 
comparisons with the global definition of heat are made for open systems, it is found 
that Prigogine's heat flux is consistent with the global definition only for systems of 
one component, but Haase's reduced heat flux is consistent in all cases. 
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Fig. 1. Thermodynamic process for a one-component fluid involving mass 
addition: (a) To the system, which is the fluid of the main chamber, (b) fluid 
is added by removing the common wall between the two c~~mbers, and then 
(c) work and heat. are supplied to the resulting closed system. 

There are additional tests that can be used to discriminate between the various 
definitions. Both the Prigogine and the Haase definitions of heat flux are invariant 
under Galilean transformations. However, Haase's definition is also superior in that 
it is invariant under changes of standard values for the partial internal energies and 
entropies (Tolhoek and de Groot 1952). 
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2. Open One-component Systems 

We will take the global definition of heat to refer only to a process connecting 
equilibrium states. No progress can be made until we have some notion of adiabatic 
processes for these systems. We choose to define adiabatic processes in these systems 
by requiring that the process for the original system plus its infinitesimal added mass, 
which together form a closed system, is adiabatic in the usual sense. With this 
definition it is possible to have workless adiabatic processes which increase the 
internal energy (see Fig. 1). Hence for open systems the first law of thermodynamics 
must be of the form 

dU = dW+dQ+dR, (1) 

where d W is work done on the system, dQ is heat addC(d according to the above 
convention and dR accounts for changes by addition of mass. Before dR can be 
specified we need to know the thermodynamic states of the original system and the 
added mass. Each state can be specified by two intrinsic variables, namely tem­
perature and pressure, with values T and P for the system and T' and P' for the 
added mass. Furthermore, the initial state in each system is in equilibrium and 
therefore homogeneous, so the internal energies are U(T, P) and u(T', P')dM for 
the original system and the added mass respectively. 

Three kinds of processes may be distinguished. In decreasing order of generality, 
they are: 

(A) completely irreversible; 

(B) mass-reversible, i.e .. addition of mass takes place reversibly but the subsequent 
change is irreversible; 

(C) completely reversible. 

Even in the general case A, a simple expression for dR follows by treating the original 
system plus added mass as a closed system, as suggested by Gillespie and Coe (1933). 
The internal energy change of this closed system in the process of Fig. 1 is 
(U+dU)- U -u' dM, so 

dU -u'dM = dW+dQ (case A) (2) 

is the normal statement of the first law for this closed system. This is of the form 
(1) with dR = u'dM. For mass-reversible processes, the temperatures and pressures 
of the two systems before addition must be equal. This is the case with continuous 
flow systems, although the conventional analysis of such systems is more general in 
that the initial and final states are not equilibrium states. Thus the added mass has 
the same intrinsic variables as the original system; in particular u' = u, so 

dU= dW+dQ+udM (case B). (3) 

The technique of changing the boundary shows that no extra generality in the 
theory is required for open one-component systems. This can be verified explicitly 
for mass-reversible systems, where the total system (original system plus added mass) 
is initially homogeneous. We then expect that the work done and the heat entering 
per unit mass, namely 

dw = dW/M and dq = dQ/M, (4) 
obey the relation 

du = dw+dq, (5) 
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which is the first law for a closed system. This result follows immediately from 
equation (3). 

For completely reversible processes, the work done can be expressed in terms of 
state variables. As the volume change is (V+dV)- V -vdM, we have 

dW = -P(dV -'-vdM) = -PMdv, (6) 

showing that any work done necessarily changes the specific volume v. Addition 
of mass at the same density is a workless process. Substitution in equation (3) gives 

dU = -PdV +dQ +hdM (case C), (7) 

where h is the enthalpy per unit mass, that is, h = u + Pv. 
Another way of expressing equation (7) is to write dq = Tds, which follows by 

using equations (4). This is a generalization of the Carnot-Clausius equality, and 
~as the attractive feature that heat flow necessarily increases the entropy <;iensity. 
Thus in homogeneous. one-component systems the mass is almost an irrelevant 
variable; all changes can be described by using the laws of closed-system thermo­
dynamics on thermodynamic densities. This situation does not persist for multi­
component systems. 

The order of operations detailed in Fig. 1 is not important for an infinitesimal 
process. The system can suffer an infinitesimal closed change before mass is added 
rather than afterwards, the difference being of second order in infinitesimal 
quantities. The same equations can also be shown to apply to the case of mass loss 
if dM is negative. 

3. Open Multicomponent Systems 

For simplicity we consider ).llulticomporient systems without external forces and 
chemical reactions, although the extensions required to include these are trivial. 

For the completely irreversible case A, the addition of mass dM of a fluid with 
intrinsic variables T',P',x' (where the x = X 1"",Xn are the mass fractions of the 
n components) to a fluid of mass M in state T, P, x leads to a first law of form (1) with 

dR = LuidMj, 
j 

(8) 

where ui is the partial internal energy per unit mass of component i, dM j is the added 
mass of that component, and the convention for defining heat is as proposed in 
Section 2. The usual definition of partial quantities is used, namely 

For a mass-reversible process (case B), each component must be added reversibly, 
with additional irreversible changes on the closed systems formed after each addition. 
Again, the order of operations is not important if the processes are infinitesimal. 
There are various physical arrangements for adding components reversibly, but the 
most· convenient for our purposes is shown in Fig. 2. The added masses in each 
of the vertical cylinders are all at the saine temperature, pressure and chemical com­
position as the main system, but each cylinder i (i = 1, ... , n) is fitted with a membrane 
permeable only to species i. Each vertical piston is used to displace an infinitesimal 
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mass dM i into the main chamber. Subsequent changes of a closed-system variety 
can be carried out by clamping these pistons and using the piston of the main chamber. 
Thus u; = u/ and vi = Vi' where Ui and Vi are values for the main chamber, and so 

dU = dQ +dW + ~>idMi (case B). 
i 

t t t t 
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+ 
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dQ 

Fig. 2. Process for a general change of state in a multicomponent fluid. Masses 
dMh dM2 , ••• of fluid at the same temperature, pressure and composition as the fluid of 
the main chamber are added through semipermeable membranes 1,2, .... The net work 
done by all pistons is d W, and heat dQ enters through the surrounding wall. 

For a completely reversible process (case C), the work done is 

and hence 

dW = -p( dV - ~ VidMi) 

dU = -PdV +dQ + L hidMi 
i 

(case C), 

(9) 

(10) 

(11) 

where hi = Ui+Pvi is it partial enthalpy. This is the definition suggested by Gillespie 
and Coe (1933). There is an alternative form, namely 

dQ = TLMidsi . 
i 

Note that the result (11) is different from what one gets by using the process of 
Fig. 1 with a multicomponent fluid. This would lead to equation (11) with the last 
term replaced by 1i dM, where 

- -1 " h=M £..,hiMi (12) 
i 

is the mean enthalpy per unit mass. The difference between the two terms is just 
the quantity hi(dMi -MidM/M) summed over each component. In fact both results 
are correct in the context of Fig. 1, because that process merely adds more fluid of 
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the same composition, that is, dM;/dM = MJ M. This illustrates an important point, 
namely that the processes considered must be sufficiently general to include all 
possible changes of state. To include composition changes and to carry them out 
reversibly requires the use of semipermeable membranes, as was realized by van't Hoff. 

Other physical arrangements may be used to change composition, either reversibly 
or not. However, equation (8) remains true whatever apparatus is used. For mass­
reversible processes, an alternative arrangement is to fill the vertical cylinders of 
Fig. 2 with infinitesimal amounts dM1 , dMz, ... of pure components of types 1,2, ... 
and adjust the pressures in those cylinders to the membrane pressures P l' P z, ... of 
the corresponding components in the main chamber. The temperatures in all chambers 
are to be equal. With the pure fluids prepared in this way, they will be in thermal, 
mechanical and chemical equilibrium with the main fluid mixture, and by pushing 
each vertical piston down to zero volume the mixing is again carried out reversibly. 
However, the work done, in general, is not given by equation (10). The work of 
mixing is formally equal to 

L PivT(T,Pi)dM, (13) 
i 

where vT is the specific volume of the pure component i. This should be compared 
with the result Pvi(T,P,x)dMi appearing in equation (10). Formally, the membrane 
pressures are determined from the condition of chemical equilibrium, which for 
component i is 

(14) 

in terms of the chemical potentials (JlT is actually the Gibbs energy per unit mass 
for pure i). The specific volumes are also related through the expressions 

(15) 

so that equations (14) and (15) determine Pi and vT in terms of the state variables 
of the mixture. For a perfect gas mixture one can show that PVi = PivT, but in 
general this is not true and the two arrangements lead to different expressions for 
the heat increment. 

We are thus confronted with the unsatisfactory situation that, even with the con­
vention of Section 2 for adiabatic processes, the expression for heat in open multi­
component systems depends on the process chosen, even in the purely reversible case. 
To introduce some order into this situation, it is useful to distinguish the following 
two types of processes. 

(1) Processes of the first kind: the added fluid is at the same temperature, pressure 
and composition as the original fluid. 

(2) Processes of the second kind: the added fluid is in a different state. 
Those of the first kind imply that the thermodynamic variables are continuous across 
the boundary of the original system. Thus it is these processes that can be compared 
with those of irreversible thermodynamics, where the existence of local equilibrium 
at each point of the fluid is assumed. Local equilibrium implies that the intrinsic 
thermodynamic variables are continuous functions of position. 

If one is prepared to accept the restriction to processes of the first kind, then it 
appears likely that the arrangement of Fig. 2 is unique, at least for mass-reversible 
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processes. If this were so, then equations (9) and (11) would constitute unique 
definitions of heat in open multicomponent systems, for the mass-reversible (B) and 
completely reversible (C) cases respectively. 

Finally, we are now in a position to make more sense of the convention proposed 
for adiabatic processes in open systems in Section 2. Crudely speaking, this amounts 
to saying that only heat flows from the surroundings to the original system or the 
added mass will be counted as 'heat', whereas heat flows between the original system 
and the added mass (e.g. on mixing) will be ignored. If the process is of the first 
kind, then no heat exchange between the original system and added mass is expected 
anyway, at least for the mass-reversible case. In these circumstances,our convention 
loses all arbitrary aspects and becomes merely a consequence of the conventional 
concepts of heat. 

4. Comparisons with Irreversible Thermodynamics 

As noted in the Introduction, there exist two different definitions of the heat flux 
vector in irreversible thermodynamics, due essentially to Prigogine (1947; see also 
Glansdorff and Prigogine 1971) and Haase (1953, 1969) respectively. Tolhoek and 
de Groot (1952) have shown that these definitions correspond to the two global 
definitions of heat contained in equations (7) and (11) respectively. For completeness, 
we repeat their argument here, using an integral formulation which displays more 
clearly the restrictions required to deal with processes connecting equilibrium states. 
Only reversible processes will be considered. 

In the absence of an external potential, the total energy in a non-equilibrium 
multi component fluid is the sum of kinetic and internal energies. The local form of 
the first law is a conservation equation for the total energy density. Let E denote 
total energy and e(r, t) its mass density at position r and time t. The conservation 
law is 

iJ(pe)/iJt+\l.jE = 0, (16) 

where P is the mass density, and the energy flux jE is the sum of some convective 
terms, a term describing the rate of working against internal stresses and a heat flux W. 
For fluids, we have two suggestions for jE, namely 

jE = pev + P . v + W 

jE = pev + L hdi + P . v + W 
i 

(Prigogine) , 

(Haase), 

(17P) 

(17H) 

where v is the centre of mass velocity, P is the pressure tensor and ji = Pi(Vi-V) 
is the mass flux of component i in the centre of mass frame at the same position in 
space. Haase's definition (17H) has been used by other authors and is known as 
the reduced heat flux. The standard development of the subject follows by subtracting 
the balance equation for the kinetic energy of the centre of mass motion. When 
this is done, one finds the corresponding balance equations for internal energy 

Du 
PDt +\l.W = -P:\lv. (18P) 
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(18H) 

where D/Dt = a/at + v. \l is the material derivative. 
To obtain global equivalents of equations (18), consider an open system with 

volume V (t) at time t and surface velocity v.(r, t) at some point r on the surface. 
The physical form of the surface can be left unspecified: it may be permeable to 
all components, to some of them in some places, or to none. The nature of the 
surface will dictate appropriate boundary conditions on the various fluxes and, as 
generality is crucial, these boundary conditions need not be given. The internal 
energy of the system changes at a rate 

~~ = f :t (PU) d V + f pUVs' dS 

= f P~~ dV - f pu(v-vs)·dS 

= - f P:\lv dv - f (w + f hdi +PU(V-Vs)) .dS, (19H) 

using Haase's definition of heat flux. 
Now consider the change (jU in U over a small time interval (jt in the quasistatic 

limit, where the process becomes reversible. This limit requires all velocity gradients, 
including the surface velocity gradient, to tend to zero. For a fixed change in U, 
the time interval required will diverge as this limit is taken, that is, (jt cannot remain 
small. Hence the quasi static limit will not be taken explicitly in what follows. We 
simply note that the system then passes through a succession of infinitesimally spaced 
equilibrium states, so that the pressure tensor can be replaced by the hydrostatic 
pressure P, and thermodynamic variables such as P, p and u are spatially uniform and 
can be taken outside integrals. On making the identifications 

(jQ = - f W.dS(jt, (jV = f vs·dS(jt, (20a) 

(jM = - f p(v-vs)·dS(jt, (jM i = - f p;(vi-vs).dS(jt, (20b) 

It IS found that equation (19H) becomes equivalent to the Gillespie-Coe (1933) 
definition (11) of heat in equilibrium thermodynamics. If Prigogine's heat flux (17P) 
is used instead, the amended version of equation (l9H) becomes equivalent to 
equation (7) with h interpreted as mean enthalpy. 

5. Some Additional Tests 

There are two simple tests to be satisfied by any definition of heat: (i) the heat 
flux in any local theory should be invariant under Galilean transformations, and (ii) 
heat transfer should be invariant under changes of reference values for thermodynamic 
potentials. We first consider (i). 
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If one accepts that internal energy can be transported by convection as well as 
by heat flow, then the heat flux should be invariant under a Galilean transformation, 
with the convective part of the internal energy flux transforming in the usual manner. 
The balance equations (I8P) and (I8H) for internal energy are both invariant under 
transformation if the heat fluxes are the same in both frames of reference; thus no 
distinction between them can be made on this basis. To see that this is so, introduce 
a new reference frame such that the position of a material point in the new frame 
is r' = r -vot. Then u' = u, which is obvious from the meaning of internal energy, 
and p' = P which follows from the transformation properties of the momentum 
balance equation (de Groot and Mazur 1962). The mass fluxes ii are also invariant 
since they are defined in the centre of mass frame. Hence W' = W. 

It has been shown by Tolhoek and de Groot (1952) that Haase's reduced heat 
flux is invariant under changes in reference values of the partial internal energies and 
entropies, whereas Prigogine's heat flux is not. This test is only relevant for multi­
component systems; for single-component systems all that need be done is to ensure 
that the arbitrary constants Uo and So in internal energy and entropy scale with the 
mass of the system. But for multicomponent systems each component has arbitrarily 
assigned reference values for energy and entropy, so that the partial mass quantities 
for each component of the mixture contain arbitrary additive constants. Let these 
constants be changed by u~o) and s~o) respectively, so that 

u; = Ui+U~O), si = Si+S~O) (i = 1, ... ,n). (21) 

Note that the Gibbs-Duhem relation in the form TSi = Uj+PVj-J1.i is preserved only 
if the chemical potentials are allowed to shift, i.e. 

(22) 

the shift being temperature dependent. On applying these relations to the two 
contending global definitions of heat, namely equations (7) and (11), we have from 
these equations respectively 

dQ'-dQ = L u1°)(dM j -MidM/M), 
i 

dQ'-dQ = O. 

6. Discussion 

(23P) 

(23H) 

The consequences of using Haase's reduced heat flux in irreversible thermodynamics 
are quite well known, since even those authors who start with the Prigogine definition 
are apt to revert to the reduced heat flux for some applications of the theory, 
particularly diffusion problems. The interpretation given here of the reduced heat 
flux as 'pure' heat flow, unassociated with mass motions, should lend extra weight 
to this choice. 

It is enlightening to compare the expressions for entropy production that follow 
from the two equations (18). The entropy balance equation is obtained by making 
the usual assumption of local equilibrium in the centre of mass frame at each point 
in space, and is of the form 

o(pS)/ot + '1. i. = Us, (24) 
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with the following forms for entropy flux js and source density (Js (de Groot and 
Mazur 1962): 

and 

. T-IW T- I ",. Js = psv + - ~Jilli' 
i 

js = psv + T- 1 W + "[)i Si , 
i 

(Js = -T-I(P-Pl):V'v + W. V'(T- I ) _T- 1 'Lji.(V'Il;)T. 
i 

(25P) 

(25H) 

(26H) 

The division of terms between source density and divergence of flux is of course 
arbitrary, but it is made in the standard way and for the usual reasons. Note that 
the interpretation to come has been forced slightly by making a clean separation 
between gradients of temperature and chemical potential in the second and third 
terms of the equations (26). We assume thatV'(T- I ) is the correct generalized force 
for heat flow and that the isothermal gradient (V'llih = V'lli +Si V'T is the correct 
diffusion force. In many places this separation is not realized through allowing a 
diffusion force of the form V'(lldT). Haase's definition of heat flux then seems 
preferable to Prigogine's, as the coefficient of the thermal force in equation (26H) 
is just the heat flux W whereas the same coefficient in equation (26P) is a mixture 
of the heat and diffusion fluxes. A bonus is that the entropy flux (25H) is a sum of 
heat and diffusion terms with an obvious formjisi for the diffusion flux of species i. 

Similar results are found for the entropy production in discontinuous systems, e.g. 
two systems both in internal equilibrium but connected by a capillary tube (de Groot 
and Mazur 1962; Haase 1969). In fact de Groot and Mazur's discussion of dis­
continuous systems uses the reduced heat flux throughout. When discussing the heats 
of transfer introduced in this context by Eastman (1926) and Wagner (1929), it is 
useful to remember that they too refer to flows of pure heat, even though the transfer 
contributions are caused by mass or diffusion flows. 

7. Conclusions 

Heat transfer in open systems has been defined here so that internal energy inputs 
associated with addition of mass are not counted as heat. Simple expressions follow 
for thermodynamic processes of the first kind, where the added mass is at the same 
temperature, pressure and chemical composition as the original system. For multi­
component systems, a variety of definitions are possible depending on the experi­
mental arrangement for adding fluid, but it is suggested here that, for mass-reversible 
processes which are of the first kind, the arrangement of Fig. 2 is essentially uniqu~. 
Thus equations (9) and (11) would then constitute unique definitions of heat for 
mass-reversible and completely reversible processes of the first kind. 

The restriction to processes of the first kind is not particularly severe; local 
processes described by continuum irreversible thermodynamics are of this kind, as 
the thermodynamic densities are taken to be continuous functions of position. 
Definitions of heat flux given by Prigogine (1947; Glansdorff and Prigogine 1971) 
and Haase (1953, 1969) have been tested against the global definition (11). For 
processes not allowing composition changes, both are consistent with equation (11) 
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but for the more general process of Fig. 2 only Haase's definition agrees. This is 
not to say that Haase's heat flux is consistent with equation (II) for all processes 
connecting equilibrium states, but if our previous supposition is correct, then this 
will be true for all reversible processes of the first kind. 
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