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Abstract 

Fundamental plasma radiation can result from direct coupling of Langmuir waves into o-mode 
waves in an inhomogeneous magnetized plasma. The coupling occurs for Langmuir waves propaga
ting nearly along the direction of increasing plasma density, and the resulting o-mode waves propagate 
towards lower plasma densities. An analytic theory for the coupling (which is of z-mode waves 
into o-mode waves) is developed using approximate solutions of the Booker quartic equation. The 
results are shown to agree with the results of numerical calculations for the 'Ellis window' in the 
generation of the z trace in the terrestrial ionosphere. This 'direct conversion' of Langmuir waves 
into o-mode waves is an alternative mechanism for fundamental plasma emission, possibly replacing 
or supplementing the more familiar scattering from the charge clouds around thermal ions. Possible 
applications of 'direct conversion' to various solar radio bursts are explored, but for none is it found 
to be more favourable than alternative mechanisms. 

1. Introduction 

Coupling between z-mode waves and o-mode waves in an inhomogeneous plasma 
is of interest in three connections: (i) It is the accepted mechanism for ~he production 
of the z trace in ionospheric sounding (Rydbeck 1950; Ellis 1956; Budden 1961, 
p. 424). (ii) It is a possible mechanism for fundamental plasma emission (i.e. emission 
at the fundamental of the local plasma frequency) from the solar corona (Field 1956; 
Ginzburg and Zheleznyakov 1958, 1959; Denisse 1960; Wild et al. 1963; Kundu 
1965, p. 58; Ginzburg 1970, p. 357; Zheleznyakov 1970, p. 385). (iii) It has been 
suggested as the mechanism for Jupiter's decametric radio emission and for certain 
emissions in the terrestrial magnetosphere (Oya 1974; Benson 1975; JonesJ976, 
1977). Existing quantitative treatments of the coupling for ionospheric applications 
involve cumbersome numerical calculations (Budden and Terry 1971; Smith 1973; 
Budden and Smith 1974). In the application to fundamental plasma emission, 
simplifying assumptions have beeri made, e.g. Field (1956) assumed a sharp density 
gradient and Ginzburg and Zheleznyakov (1959) assumed 'vertical incidence' onto 
a smoothly varying stratified medium. The general case (within the framework of 
geometric optics or mode-coupling theory) of 'oblique incidence' onto a stratified 
medium is discussed in the present paper. My purpose is to find an approximate 
analytic expression for the coupling coefficient from the z mode to the 0 mode, and 

. to apply it to fundamental plasma emission. 
The coupling of z-mode waves into o-mode waves in an inhomogeneous plasma 

occurs due to tunnelling across a stop band. The stop band is a spatial region, in 

* Part V, Aust. J. Phys., 1977,30,661-9. 
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which the waves are evanescent, and which separates a region where the z mode can 
propagate from a region where the 0 mode can propagate. Viewing the wave proper
ties as a function of wiwp, one sees that the stop band corresponds to a range of 
wiwp separating the z- and o-mode refractive index curves at fixed refractive index 
(i.e. fixed wavenumber). From this viewpoint, the coupling modes are separated in 
frequency at fixed wavenumber. (Of course it is wp and not w which changes across 
the stop band.) The present case of mode coupling differs from that considered in 
earlier papers in this series (cf. Parts I and II, Melrose 1974a, 1974b) where the coup
ling waves are separated in wavenumber at fixed frequency. In the present case, 
coupling occurs due to a gradient in the plasma frequency (i.e. owing to a density 
gradient), and the stop band is across the plasma level (where the frequency equals 
the plasma frequency). The approach adopted in the present paper is analogous 
to that adopted in Part II, in that the coupling is treated by using approximate 
solutions of the Booker quartic equation in the general case of oblique incidence. 
On the one hand, this approach is qualitatively different from the phase-integral 
method used by most authors (e.g. Budden 1961, p. 239; Zheleznyakov 1970, pp.353 
and 385; Golant and Piliya 1972) in which vertical incidence is usually assumed. 
(The results of the present method are compared in Section 4 with those obtained 
by the phase-integral method.) On the other hand, the nature of the solutions of the 
Booker quartic equation (Section 2) and the manner in which they are used to treat 
the coupling (Section 3) are quite different from those of Part II. In the application 
to fundamental plasma emission, the Langmuir waves must propagate along ray 
paths which cause them to encounter the coupling region. This question of 'acces
sibility' to the coupling point is discussed in Section 5. 

The terms 'Langmuir' waves and 'z-mode' waves are used here in the following 
sense: 'Langmuir' waves have a phase speed significantly less than the speed of 
light, and in their dispersion relation the effect of the finite thermal speed of electrons 
is more important than the effect of the ambient magnetic field. For 'z-mode' waves 
the refractive index is of order unity, and thermal corrections to the magnetoionic 
dispersion relation are negligible. It is assumed that these two modes are limiting 
cases of a single mode (e.g. Melrose 1976) and that they can transform into each 
other through refraction changing the magnitude of the wavenumber. 

Fundamental Plasma Emission 

Before proceeding it is appropriate to discuss the reasons for reconsidering 'direct 
conversion' of Langmuir waves into o-mode waves. There are two basic reasons: 

The first reason is that the efficiency of the widely accepted mechanism for funda
mental plasma emission (scattering by thermal ions) was overestimated by Ginzburg 
and Zheleznyakov (1959) and has been overestimated by many subsequent authors. 
It has been pointed out by Smith and Riddle (1975), Smith (1976) and Melrose (1977) 
that scattering by thermal ions is an inefficient process, and that one does not seem 
able to account for fundamental plasma emission in terms of it. A semiquantitative 
argument leading to this conclusion is as follows. For scattering by thermal particles 
(ions or electrons, depending on the circumstances) the cross section is roughly the 
Thomson cross section aT. The efficiency of conversion Q for this scattering 
process is given roughly by the product of the number density of scatterers (n j :::::: ne)' 
the cross section aT and the distance L over which escaping radiation at a given 
frequency can be produced. The distance L must be less than (Dwiwp)LN' where 
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(jw is the intrinsic bandwidth of the emission, wp is the plasma frequency and LN 
is the characteristic length for changes in the plasma density. The mechanism has 
an intrinsically narrow bandwidth, 

(jw/wp ~ (me/mJ! ~ 1/43. 

For ne = 108 cm- 3 one finds Q ~ 10- 8 for LN = 105 km. As pointed out by Melrose 
(1977), the difficulty implied by the low efficiency of conversion due to scattering by 
thermal ions is so formidable that alternative mechanisms for fundamental plasma 
emission should be reconsidered. These arguments apply only to 'spontaneous' 
scattering by thermal ions, and it could be argued that induced scattering (e.g. Kaplan 
and Tsytovich 1967), parametric versions of this scattering (e.g. Papadopoulos et al. 
1974; Smith and de la Noe 1976) and collapse into solitons (e.g. Bardwell and 
Goldman 1976) are much more efficient than 'spontaneous' scattering. This is true, 
but each of these processes becomes important only when a threshold energy density 
in Langmuir waves is exceeded. For type III bursts, Melrose (1977) argued: (i) that 
reabsorption of the energy in Langmuir waves could not be effective and (ii) that, 
for the energy losses by the stream of electrons to be consistent with the observed 
lack of slowing down, the energy deposited in Langmuir waves would have to be less 
than the threshold value for induced scattering. Similar arguments apply to the 
parametric conversion mechanisms and to soliton collapse. Thus an energy density 
in Langmuir waves which is sufficiently low to avoid unacceptable energy losses by 
the stream leads to a power radiated at the fundamental that is much less than is 
observed, while an energy density in Langmuir waves which is high enough to give 
sufficient power at the fundamental implies excessive energy losses. To avoid this 
dilemma one requires a relatively high efficiency of conversion of Langmuir waves 
into transverse waves at relatively low energy density in the Langmuir waves. A 
mechanism other than scattering by thermal ions is a possible way out ofthe dilemma. 
'Direct conversion' is such a conceivable alternative. 

The second reason for reconsidering direct conversion is that the estimate by 
Ginzburg and Zheleznyakov (1959) for the average efficiency of direct conversion, 
specifically Qav ~ 3 X 10- 9 , holds for a smoothly varying corona with LN ~ 105 km. 
There is now much evidence that the solar corona might be inhomogeneous on a fine 
scale. The evidence is indirect and includes the following: (i) Coronal scattering 
requires local density inhomogeneities with scale sizes of a few hundred kilometres 
(Steinberg et al. 1971; Riddle 1972, 1974). (ii) The depolarization of some solar 
radio bursts seems to require small-scale (~100 km) irregularities (Melrose 1975). 
(iii) Various irregular structures have been invoked in connection with the split-band 
structure in some type II bursts (McLean 1967; Smerd et al. 1974), with type Illb 
bursts (Takakura and Yousef 1975), with the directivity of type I bursts (Bougeret 
and Steinberg 1977) and with the relative positions of fundamental and second
harmonic type II and type III bursts (Duncan 1979). Suppose, e.g. that one has 
LN ~ 100 km rather than LN ~ 105 km. The estimate by Ginzburg and Zheleznyakov 
(1959) gives Qav ex LN 1, which would then imply Qav ~ 3 X 10- 6• This value of 
Qav is larger than their overestimated value of Q for scattering by thermal ions. 

Despite the above-given rather strong reasons for reconsidering direct conversion 
as an alternative for fundamental plasma emission, the application to various solar 
radio bursts (Section 6) remains unclear. There is no clear example where the mecha
nism is obviously the most favourable. 
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Fig.I. Variation of the squared refractive index n2 for the magnetoionic modes as a function of 
frequency co near the plasma frequency COp, plotted for De/cop = 0·2 and the indicated values 
of (). The region near co = COp in (a) is shown on an expanded scale in (b). The upper curve 
is the z mode for co < COp and the 0 mode for co > COp. 

2. Wave Properties in Coupling Region 
~, 

(a) Coupling Point 

The refractive index curves for the z mode and the 0 mode are illustrated in Figs 
la and Ib for (J = 0 and for small but nonzero(J respectively, where (J is the angle 
between the wave vector k and the ambient magnetic induction B. The coupling 
point is that point where the z-mode and o-mode curves touch, namely, OJ = OJp 

and sin (J = O. At the coupling point, one has 

(1) 

(The symbol: = denotes a definition of the quantity on the left.) For sin (J slightly 
different from zero, the refractive index curves do not join, as shown in Fig. lb. 
There is a gap in frequency across OJ = OJp with n2 nearly equal to n~ on either side. 
Coupling across this gap allows conversion of energy in z-mode waves into energy 
in escaping o-mode waves. 
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The point w = wp and sin () = 0 is a singular point in the magnetoionic theory. 
This is evident from the magnetoionic dispersion equation in the form 

( 2 1-X + Y) (2 1-X - Y) (Xy2 
) 2 2 . 2 

(1-X) n - 1 + Y n - 1- Y + 1- y2 (1- n )n sm () = 0, (2) 

where 
and Y: = Qe/w (3) 

are the magnetoionic parameters. In the limit sin () = 0 and w = wp (that is, X = 1) 
one has n2 = n~ (see equation 1) only if the limit sin () -4 0 is taken first. If the limit 
X -4 1 is taken first, equation (2) implies n2 = 1 for the z mode and n2 = 0 for the 
o mode. This singular nature of the point w = wp and sin () = 0 is associated with 
the polarization. One can show that all waves at sin () = 0 have circular polarization. 
On the other hand, one can show that all waves at w = wp have linear polarization. 
If one approaches w = wp and sin () = 0 along a path where (sin2 ()/( w - wp) remains 
small then the 0 mode and z mode tend to the same circular polarization and to the 
same value n2 = n~. However, if (sin2 ()/(w - wp ) is much greater in magnitude than 
unity along the path then the z mode tends to n2 = 1 and the 0 mode tends to n2 = 0, 
and their polarizations become orthogonal and linear at w = wp' 

In the discussion above, the effect of thermal motions on the wave properties is 
ignored. It is shown in the Appendix that thermal motions are not important. 

kc/w 

x 

(b) Booker Quartic Equation 

Fig. 2. Illustration of the directions and 
angles involved in the Booker quartic 
equation. 

In order to consider mode coupling between two of the magnetoionic modes, it 
is convenient to rewrite equation (2) as the Booker quartic equation (Booker 1936; 
Budden 1961, p. 122; Parts I and II). In the present case the only relevant gradient 
is in the plasma frequency wp' and the unit vector v is parallel to grad wp' The angles 
used here are defined in Fig. 2. The other variables in the Booker quartic equation 
are the independent variable 

r : = c/w I k x v I, 

whose constancy is implied by Snell's law, and the dependent variable 

q : = c/w k • v . 

(4) 

(5) 
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Figs 3a and 3b. Real and complex solutions q as a function of w/wp for the Booker quartic 
equation, plotted for Q./wp = 0·2, !jf = 30° and rjJ = 0: (a) For r = ro the coupling point 
is where the two real solutions cross. (b) For r = 0·99 ro the solutions do not overlap, but 
two oppositely directed tongues (in the z mode and the 0 mode) are separated by only a small 
frequency range. 

The Booker quartic equation then follows from equation (2) by writing 

(6a) 
and 

n cos e = q cos IjJ + r sin IjJ cos ¢ . (6b) 
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Solutions of the Booker quartic equation are presented in Fig. 3. In Fig. 3a the 
parameters are chosen such that the point sin () = 0 and W = wp lies on the curves. 
This requires ¢ = 0 and 

(7a) 

Then at W = wp the four solutions of the quartic equation include a double solution at 

(7b) 

In Fig. 3b, the value of r has been chosen slightly different from ro (still with ¢ = 0). 
The point q = qo is approached from either side of W = wp but there is now a region 
across W = wp where the two relevant solutions are complex. As I r-ro I (or ¢) 
is further increased the two 'tongues' recede further from each other leaving a wider 
gap across w = wp where the solutions are complex. In Fig. 3c, which is on a larger 
scale, the value of I r-ro I has been chosen such that the tongue in the z mode has 
disappeared. The solid curves in Figs 3a and 3b are indistinguishable from those in 
Fig. 3c except near the point w = wp ' q = qo. 
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Fig. 3c. Solutions q as a function of w/wp for the Booker quartic equation, 
plotted for De/wp = 0·2, I/f == 30° and ¢ = O. For r = 0·9 ro here the right
pointing tongue in the z mode (evident in Fig. 3b) has disappeared. On the same 
scale as Fig. 3c, the solutions shown in Figs 3a and 3b appear similar to that 
shown here. 

(c) Quadratic Approximation 

In order to treat the coupling between the z and 0 mode semi quantitatively, one 
requires approximate solutions for q for the two modes in the neighbourhood of 
the coupling point. It is clear from Figs 3a and 3b that the two solutions may be 
approximated by the solutions of a quadratic equation for sufficiently small values of 
r-ro, w-wp and ¢. Consequently, it is appropriate to find a suitable quadratic 
approximation. 
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Let us write 

(8) 
and 

(9) 

One has Il = 0, 4> = 0, r-ro = 0 and x = 0 at the coupling point. For small values 
of these parameters the quadratic approximation to equation (2) is 

2 88 2 2 r - ro 482(2 + Y.o) 
x + -xcost/! +ro4> +88-- - = O. 

ro . ro Yo(1 + Yo) 
(10) 

The solutions of equation (10) are 

(11) 

It follows that there are complex solutions for 

(12) 

Dr K. G. Budden (personal communication) has derived a quadratic approximation 
similar to equation (10). He chose to use the variable Y itself, rather than Yo as 
used in equation (10). This leads to simplifications in subsequent formulae; however, 
the differences between the approaches are small. Dr Budden has also compared 
the results obtained using the quadratic approximation with results for the trans
mission of z-mode into o-mode waves obtained using a version of the phase-integral 
method. He obtained excellent agreement. 

(d) 'Upper' Reflection Point 

For our purposes, it is desirable to have an approximate equation of wider validity 
than equation (10). In particular, it is desirable to have a semiquantitative treatment 
of the region above and to the left of the coupling point in Fig. 3b. In this region 
the curve for the z mode has an extremum as a function of W - wp. This is a reflection 
point, which will be referred to as the 'upper reflection point' in the z mode to dis
tinguish it from the reflection point at the tip of the 'tongue' in the z mode (Fig. 3b). 
It is relevant to know under what condition both reflection points occur. One could 
determine this condition by looking for the double solutions of the quartic equation. 
However, this leads to cumbersome results which are not useful for semiquantitative 
purposes. 

A major simplification follows by noting that the upper reflection point is insensitive 
to small changes in 4> and r-ro. As 4> or I r-ro I are increased, the lower reflection 
point in the z mode (the tip of the tongue) recedes and the upper reflection point 
hardly moves at all. Consequently, one may estimate the condition under which the 
reflection points merge as follows: (i) find the position of the upper reflection point 
for 4> = 0 and r = ro and, in particular, find the value of 8: = (W-Wp)/wp at which 
it occurs; (ii) use the solutions of the quadratic inequality (12) to find 8 as a function 
of 4> and r - r 0; (iii) identify the merging of the two solutions with the equality 
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of the two resulting expressions for 8. The validity of the procedure may be justified 
by comparison of the results obtained from it with the results of numerical solutions 
of the full quartic equation. 

For ifJ ==: 0 and r = ro the quartic equation reduces (to first order in 8) to 

2 2 (2 2 2 Yo) Y~ (1 2 2 ) ( )2 . 2,1, 0 28(q -qo) q -qo + --2 + --2 -1 y; -(q -qo) q-qo sm 'I' = . 
1- Yo 1- Yo + 0 

(13) 

One of the solutions of equation (13) is q = qo; this corresponds to the nearly 
horizontal line in Fig. 3a. After factoring out this solution, a cubic equation remains. 
One of the solutions of the cubic equation for OJ ~ OJp is at negative q (see Fig. 3c) 
and is of no interest. The remaining two solutions for 8 = 0 are q = qo and 
q = (I-r~)t. Approximating the relevant curve in Fig. 3a by the solution of a 
quadratic equation which passes through these two points, one finds that the reflection 
point would occur midway between them, i.e. at 

(14) 

The value of 8 at the ,reflection point may then be estimated by inserting equation 
(14) in (13). One finds 

Y~ sin2 t/I (q - qo)(l- q2 - r~) 
8 = - 2(1- Y~)(q+qO){q2_q~ +2Yo/(I- Y~)r (15) 

The parameters in Fig. 3a correspond to qo = O' 35 and (1-r~)!- = 0'98, and 
then the definition (14) implies ql = 0·67 and (13) implies 8 = 1·1 X 10- 3• This 
value of 8 is in satisfactory agreement with the exact result from Fig. 3a. In the 
following section, equation (IS) is further approximated by 

(16) 

which overestimates 8 by a factor of about 2 for the parameters chosen in Fig. 3a, 
and underestimates 8 by a factor of 2 in the limit of small Yo. 

3. Coupling 

(a) Attenuation Factor 

The coupling may be treated semi quantitatively by noting that the waves decay 
spatially through the region where q is complex. This spatial decay may be described 
in terms of an attenuation factor A for the wave energy, that is, 

A = exp ( - 2(OJ/c) J:.2 dz I 1m q I ) , (17) 

where z denotes distance normal to the strata. Let I 1m q I max be the maximum vahle 
of 1m q, and let I10J be the separation in frequency of the tips of the two tongues. 
Let the characteristic length LN for changes in the plasma density be defined by 

(18) 
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The factor A may be approximated by 

A = exp{ -(2wlcK 1 Z2 -zlll Imq 1 max} 

~ exp{ -(4(LN Awlc)IImqlmax}, 

D. B. Melrose 

(19a) 

(19b) 

where ( is a number, less than but of order unity, which depends on the density 
profile. 

(b) Estimates of Aw and 1 1m q 1 max 

We may use the quadratic equation (10) and its solutions (11) to estimate the 
values of Aw and 1 Imq 1 max' Let us consider Aw first. For <p #- 0 and r-ro = 0, 
the complex solutions are centred on w = wp and extend over a total range 

for <p#-O, r-ro = o. (20a) 

For <p = 0 and r-ro #- 0, the complex solutions are at w < wp for r-ro < 0, as 
in Fig. 3b, and at w > wp for r~ro > O. The complex solutions extend over a range 

r-ro #- O. (20b) 

The maximum value of 1 Imq 1 also follows from equation (11). For <p #- 0 and 
r-ro = 0, one has 

1 Imq 1 max = (ro 1 <p 1 Isinlfr) for <p #- 0, r-ro = o. (21a) 

The maximum value for <p = 0 and r-ro #- 0 depends on e. If one sets e equal 
to Awlwp, with Aw given by half its value in equation (20b), i.e. the value midway 
between the two tongues, one finds 

IImqlmax = Ir-rol/sinlfrcoslfr for <p = 0, r-ro#-O. (21b) 

(c) Comparison with Numerical Results 

We can now write down a semiquantitative condition for most of the energy in 
z-mode waves to tunnel through into o-mode waves. There remains an undeter
mined factor ( in the approximation (19b) which depends on the details of the density 
profile. Rather than carry out a calculation for a specific profile to estimate (, it is 
convenient to compare the results of the present approximate analytic calculations 
with the numerical calculations of Smith (1973). 

Smith (1973) considered coupling of the 0 mode into the z mode in connection 
with the generation of the z trace in the ionosphere. The parameters chosen were 
Yo = O· 5, sin lfr = O· 5, LN = 5 km, <p = 0 and, by implication, wp = 1·6 X 107 S-l. 
The results imply a full width of the 'Ellis window' of 5· 8° for attenuation by a 
factor A = t. (The Ellis window is defined somewhat loosely as the angular width 
of the cone for which the z trace is observed in ionospheric sounding; the term is 
used loosely here to refer to the angular region in which z-mode - o-mode coupling 
is effective.) In the ionospheric case, the angle of incidence 0, is related to ro by 
ro = sin 0\, and a range of halfwidth of 2· 9° in 0, corresponds to 1 r- ro Ilro = 0·168 
for the adopted parameters. 
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Setting A = t and inserting equations (20b) and (21b) into the approximation 
(19b) gives 

(22) 

Inserting Smith's (1973) parameters, one identifies 

( = 0·44 (23) 

in this case. As expected, ( is less than but of order unity. Furthermore, the result 
(23) implies a satisfactory agreement between the present analytic approach and 
Smith's (1973) numerical approach. The result corresponding to equation (22) for 
</J = 0 and r - r 0 =F 0 is 

</J = ( ccost/ll.n 2 )t(l+ Yo)t, (24) 
2(wp LN sm2 '" Yo 

where equations (20a) and (2130) have been inserted into the approximation (19b) with 
A = t. 

It is convenient to combine equations (22) and (24) in the form (cf. Part II) 

8 = [(</J sin ",)2 +{(r-ro)/ro}2tan2"'1~ 

= (ccos '" In2)t (1 + Yo)t. 
(WpLN Yo 

(25) 

The angle 8 determined by equation (25) is the effective width of the Ellis window 
about the direction of the magnetic field. Thus z-mode waves which approach the 
layer W = wp with 8 less than this value couple into o-mode waves effectively, while 
those with larger 8 are reflected and propagate towards increasing plasma densities 
as z-mode waves. 

4. Nearly Vertical Incidence 

The present method breaks down for vertical incidence (r = 0). In this case the 
Booker quartic equation reduces to equation (2) with nand 8 replaced by q and '" 
respectively. This equation has two real solutions for q2, and these are just the 
solutions illustrated in Figs la and Ib for small 8 = "'. Thus in this case there is no 
tongue in the z mode. The complex solutions which bridge the frequency gap between 
the z and the 0 modes cannot then be described using equation (10). 

The case of vertical incidence was discussed by Ginzburg and Zheleznyakov (1959) 
based on a formula derived using the phase-integral method (cf. Zheleznyakov 1970, 
p. 385). The essential point in the method is to regard the coupling point as lying 
at a complex point in co().rdin~te space. Thus the distinction between the method 
used in the present paper and the phase-integral method is that in the present method 
the attenuation across the stop band is attributed to the spatial decay of a mode 
with a complex k, while in the phase-integral method it is the coordinate which is 
complex for real k. The two methods must be related by analytic continuation. 

The coupling is effective only for small 8 (cf. equation 25), i.e. only when k and 
B are nearly parallel near the coupling point. ('Parallel' includes anti parallel in the 
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present discussion.) Thus for nearly vertical incidence the three vectors k, Band 
grad ne must be nearly parallel for the coupling to be effective. (Budden and Smith 
(1973) have discussed the case where the three directions are nearly parallel in con
nection with ionospheric sounding near the magnetic poles.) Although the case of k 
parallel to grad ne cannot be treated using the present method, the case of B parallel 
to grad ne can be. This special case is of interest for two reasons: First, one expects 
it to lead to essentially the same result as one obtains for vertical incidence (treated 
using the phase-integral method). A detailed calculation not given here shows this 
to be the case. Thus, this special case may be used to establish the equivalence of 
the two methods, at least to a high degree of plausibility. The second reason for 
the special case to be of interest is that the tongue in the z mode disappears in this 
limit, i.e. for sin ljJ = 0, as implied by equations (15) or (16); any coupling for 
8 ;;:;; Y~ sin2 ljJ can be regarded as of the same form as the coupling for sin ljJ = O. 
Thus this special case also provides an extension of the results obtained in Section 3 
to larger angles where the tongue in the z mode is absent. 

The result quoted by Zheleznyakov (1970, equation 25.34) for the coupling in 
the case of vertical incidence is equivalent to the result (25), with cos ljJ = 1 in this 
case, and with the numerical factor ( replaced by tre. It may be concluded that 
equation (25) includes the special case where the three vectors k, B and grad ne are 
nearly parallel. Conversely, the generalization from vertical to oblique incidence 
turns out to be almost trivial: to within a factor of order unity the result for the 
size of the Ellis window is unchanged on generalizing from vertical to oblique inci
dence. 

It seems surprising that the results obtained here for oblique incidence are virtually 
identical with those obtained for vertical incidence using the phase-integral method. 
The present method is valid only when there is a tongue in the z mode. Only then 
are the evanescent modes in the gap between the z mode and the 0 mode an obvious 
extension of one mode to the other. The tongue is absent for vertical incidence, and 
one might expect the coupling found for vertical incidence to be qualitatively different 
from that found here. Clearly this is not the case. It must be that the two methods 
are more closely related than it seems at first sight. Presumably the link is analytic 
continuation. 

The present method breaks down when the value of 8 = I1w/wp implied by equation 
(20a) or (20b) exceeds the value given in equation (16) for which the tongue in the 
z mode ceases to exist. This restriction is equivalent to the requirement that 82/8 
be less than unity, and only then do the z and 0 modes have similar properties. For 
Yo ~ 1 the parameters at which one has 82 ~ 8 correspond to 

(26) 

which is referred to here as the 'maximum effective gradient'. For larger gradients, 
waves over a wider range of 8 can tunnel through the stop band. However, this is 
offset by the fact that the polarizations of the modes for 82 ~ 8 are nearly orthogonal, 
and hence the coupling between them must be weak. Once the value defined by the 
approximation (26) is reached, one does not expect the efficiency of conversion to 
increase significantly with increasing density gradient. 
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5. Accessibility to Coupling Point 

(a) Efficiency of Conversion 
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Let us assume that the initial Langmuir waves have phase speeds v and that their 
wave vectors are confined to a range of solid angles AQ. The only waves converted 
completely into o-mode waves have r = ro and ¢ = O. For wave vectors in a small 
range about the direction defined by r = ro and ¢ = 0, a partial conversion occurs. 
Let ~ 50 % conversion correspond to a range AQc • Conversion occurs only if the 
range AQc is contained in the range AQ. To within a factor of order unity, the average 
efficiency of conversion may be identified as the ratio of the range of solid angles 
for which effective coupling occurs to the total range of solid angles filled by the 
waves. Let us define a generalization of the Ginzburg-Zheleznyakov Qav by 

(27) 

Langmuir waves with r = ro are propagating initially at an angle P = Po, with 

Po =rovlc, (28) 

to the direction grad wP' and a given range of I r - r 0 I corresponds to a range 

Ap = Ir-rolvlc (29) 

about Po. The waves in a range Ap about Po and ± ¢ about ¢ = 0 fill a solid angle 

(30) 

Inserting equation (30) in (29) and equating I r- ro I and ¢ to the values given by 
equations (22) and (24) gives 

(31) 

where the value (23) for, has been inserted. The result (31) remains valid for vertical 
incidence (sin rjJ = 0). Note from equation (28) that Langmuir waves with small 
phase speeds (v ~ c) must be propagating very nearly along the direction grad wp 
for the coupling to be effective, i.e. they must have p ~ Po ~ 1. 

(b) Numerical Values 

Let us now insert numbers in equation (31) to estimate the efficiency of conversion. 
As illustrative values, let us take vic = 3, cos2 rjJ = -l, wp = 2n x lOs s-1, AQ = 4n 
and Yo: = Qelwp = 0·1. Then equation (31) gives Qav ~ 1021LN' with LN in centi
metres. For the average density gradient in the solar corona one has LN ~ 1010 em, 
and hence Qav ~ lO- s, in reasonable agreement with the estimate made by Ginzburg 
and Zheleznyakov (1959). For small-scale inhomogeneities with LN ~ 10 km (Melrose 
1975) one would have Qav ~ 10- 4 . The maximum effective gradient (cf. approximation 
26) corresponds to LN ~ 3 km with these parameters. The efficiency of conversion 
could be higher by an order of magnitude or two either for higher initial phase 
speeds (v ~ c) or for highly collimated Langmuir waves (AQ ~ 0·1). There is 
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observational evidence in support of highly collimated Langmuir waves in some type 
III bursts (Melrose et al. 1978). 

6. Discussion and Conclusions 

The results of the foregoing discussion are summarized as follows: 

(i) Direct coupling of Langmuir waves into escaping o-mode waves occurs for 
Langmuir waves propagating initially in a small cone of angles about the direction 
of increasing plasma density. 

(ii) The efficiency of conversion Q may be identified as the ratio of the range of 
solid angles ~Qc for which the coupling occurs to the total solid angle ~Q filled by 
the Langmuir waves. An explicit expression for Qav is given by equation (31). 

(iii) The coupling discussed here is not effective for grad n. nearly normal to B 
(that is, for cos ljJ ~ 0). 

(iv) The efficiency of conversion increases with increased gradient in the plasma 
density (ocLii 1) up to a maximum effective gradient determined by the approximation 
(26). 

(v) The analytic results obtained here are consistent with the result of numerical 
calculations for parameters appropriate to the generation of the z trace in the terres
trial ionosphere (Smith 1973). 

(vi) Viewed as a plasma emission mechanism, direct coupling produces (a) only 
fundamental emission which is (b) polarized 100% in the sense of the 0 mode and 
(c) has an intrinsic bandwidth which is effectively zero. The bandwidth in practice 
would be determined by the range of plasma frequencies from which emission arises. 
Direct conversion into the x mode involves tunnelling across a stop band of width 
~w ~ tQ. and hence requires LN ~ c/Q. ~ 10- 2 km for the above-used parameters. 

(vii) The efficiency of conversion for Q./wp = 0·1, wp/2n = 100 MHz and 
sin2 ljJ = t, for isotropic Langmuir waves with phase speed v = tc is Qav ~ (103 L N)-l, 
with LN in kilometres. The maximum effective gradient corresponds to LN slightly 
less than 10 km. Arguments given by Melrose (1977) suggest that Qav ~ 10- 4 is 
required to account quantitatively for type III emission. For highly collimated 
emission with ~Q ~ 0·1 (Melrose et al. 1978) and LN = 100 km (Melrose 1975) one 
has Qav ~ 10- 3. Thus the required efficiency of conversion is possible in principle 
but requires small-scale density inhomogeneities. 

Application to Solar Radio Bursts 

Applying the direct conversion mechanism to the interpretation of solar radio 
bursts leads to equivocal results. We compare the direct conversion mechanism with 
scattering by thermal ions for bursts of types I, II and III as follows: 

Efficiency of Conversion. The strongest argument in favour of direct conversion 
is that it can be efficient enough to account for the inferred efficient conversion of 
Langmuir waves into transverse waves. Scattering by thermal ions is not efficient 
enough except when the Langmuir waves are generated in intense clumps (Melrose 
1977). 

Harmonic Structure. Types II and III bursts show harmonic structure, and the 
fact that direct conversion leads only to fundamental emission could be used to 
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argue against it. On the other hand, all proposed fundamental emission mechanisms 
are qualitatively different from the accepted second-harmonic generation mechanism 
(coalescence of two Langmuir waves) and the same argument would apply to all 
fundamental emission mechanisms. Type I emission shows no harmonic structure 
and is probably at the fundamental plasma frequency (see e.g. the review of Elgaroy 
1977). 

Polarization. Types II and III bursts are unpolarized or weakly polarized in the 
sense of the 0 mode. Direct conversion leads to 100 % polarization in the sense of 
the 0 mode and this could be used to argue against it. On the other hand, scattering 
by thermal ions should also lead to 100 % polarization in the sense of the 0 mode 
(Melrose 1975). For all the mechanisms, one needs to invoke a depolarizing agent 
to account for the observed relatively low polarizations (Melrose 1975). Type I 
emission is 100 % polarized in the sense of the 0 mode. 

Bandwidth. For all forms of plasma emission the observed bandwidth is thought 
to be due to the spread of plasma frequencies in the emitting region. 

Fine Structure. Many solar radio bursts show fine structure, and it is tempting 
to attribute this to local plasma inhomogeneities which are just what is required for 
direct coupling of Langmuir waves into transverse waves. However, effective direct 
coupling requires such large gradients that each inhomogeneity would be quite small, 
for example, ~ 100 km. More generally, one requires Langmuir waves propagating 
nearly along local density gradients which must not be strictly perpendicular to the 
magnetic field. Fine structure could be due to these conditions being satisfied for 
local inhomogeneities in one part of a source but not in others. Under special circum
stances, e.g. parallel sheets of enhanced density, it is conceivable that the emission 
from specific inhomogeneous layers could be observed. 

From the above discussion it may be concluded that little would be gained by 
invoking the direct conversion mechanism for types II and III bursts. It is more plau
sible for type I bursts. However, an alternative mechanism involving coalescence of 
Langmuir waves with ion sound waves or other low frequency waves (Melrose 1980) 
seems at least as favourable. Although the direct conversion mechanism is not 
obviously the most favourable for the more familiar types of solar radio bursts, it 
should be kept in mind as a possible alternative to scattering by ions. 

In the Introduction, a third application of the coupling of z-mode waves to o-mode 
waves across w = wp was mentioned; this is connected with some theories for the 
Jovian decametric emission and for certain terrestrial emissions (Oya 1974; Benson 
1975; Jones 1976, 1977). The theory presented here could be applied to the (terrestrial) 
nonthermal continuum along the lines suggested by Jones (1976). In the case of the 
Jovian decametric emission and the terrestrial kilometric emission, it is thought that 
one has De > wp in the source region. Although the present theory can be extended 
to treat the z-mode to o-mode coupling across w = wp for De > wp' there is a further 
relevant coupling from the z mode to the x mode across w = De. The case De > wp 
should be explored further in connection with these applications. 

In conclusion, direct conversion of Langmuir waves into transverse waves due to 
density inhomogeneities should not be excluded as a possible fundamental plasma 
emission mechanism, but there is no clear example where it is obviously more favour
able than alternative mechanisms. 
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Appendix 

Thermal Corrections near Coupling Point 
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Thermal corrections to the magnetoionic dispersion relations near the coupling 
point could conceivably alter the results obtained above. Near the coupling point at 
n2 = Yo/(l + Yo) between the z mode and the 0 mode, the waves are nearly circularly 
polarized. (All waves are circularly polarized for sin e = 0 and OJ = OJp in a cold 
plasma, and the coupling point is approached by taking sin e --+ 0 before OJ --+ OJp.) 

The dispersion relation for a hot electronic plasma for sin e = 0 for the relevant 
mode is 

n2 = I - {OJ;IOJ(OJ + De)} ¢(y) , (AI) 
where 

¢(y): = 2yexp(-y2) (Y dtexp(t2) = 1 +ty-2 + ... Jo . for y2 ~ 1 (A2) 

is a form of the plasma dispersion function with 

y = (OJ+Qe)I.j2kVe (A3) 

here. Near the coupling point one has 

c (1 + Y. )3 /2 
Y ~ Yo = /2 V yy~ ~ 1 

V e 0 
(A4) 

and thermal corrections are of order lly~, which is small and of no significance here. 
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