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Previous experimental and theoretical work on both longitudinal and transverse shifts of light beams 
at totally reflecting interfaces is briefly reviewed and the discrepancy between the predictions of the 
two principal theoretical approaches is discussed. A theoretical treatment, valid for an interface 
between any two media, is presented. The intensity profile of the reflected beam is the same as that 
of the incident beam (albeit shifted in the reflecting interface) only for certain polarization states 
of the incident beam and provided that the reflection parameters of the interface meet certain 
conditions. If these conditions are not met the reflected beam profile suffers distortion and, possibly, 
deviation from its expected direction. Because the polarization state of a beam is, in general, altered 
by reflection, measurements of the shifts over a large range of angles of incidence at a single 
reflection are needed in order to verify the predictions. 

Introduction 

Although the first observations of a shift, along the reflecting surface, of a light 
beam undergoing total internal reflection were made in 1947 (Goos and Hanchen 
1947), it was predicted much earlier (Picht 1929). Later observations and measure­
ments of the shift have been made by Goos and Hanchen (1949), Mazet et al. (1971), 
Levy and Imbert (1972) and Green et al. (1973). The shift is longitudinal (in the 
plane of incidence). Subsequently, an additional transverse shift (perpendicular to 
the plane of incidence) was predicted (Fedorov 1955) and observed (Imbert 1969, 
1970, 1972; Levy and Imbert 1975). In each case the shifts are generally small (of 
the order of a wavelength or less) and their magnitudes depend on the angle of 
incidence, the refractive indices of the media and the polarization state of the beam. 
The topic has been developed theoretically by a number of authors and a compre­
hensive review of early work has been given by Lotsch (1970/71). 

Because the beam shifts (particularly the longitudinal shift) are largest at or 
close to the critical angle for total internal reflection (and have only been measured 
at such angles) attention has been concentrated on the magnitudes of the shifts over 
a small range of angles of incidence in this region. As has been pointed out by 
Pavageau (1969), because of abrupt changes in certain reflection parameters at the 
critical angle, the profile of the reflected beam is distorted when the incident beam 
is at or very close to this angle, and the magnitude of a shift needs careful definition. 
(Studies of the magnitudes of the shifts close to the critical angle have been made by 
Horowitz and Tamir (1971, 1973), Ricard (1973, 1974) and Horowitz (1974).) 
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The complication just mentioned, however, can be avoided by supposing the 
angular spread of the incident beam to be more and more restricted as the critical 
angle is approached and, in this paper, we shall only consider the reflection of 
incident beams for which this supposition is valid. In these circumstances, expressions 
for the shifts can be developed which are independent of the profile and angular 
spread of the incident beam. Among authors dealing with the topic in this way, 
theoretical investigations have fallen generally into two classes, here called energy­
flux conservation treatments and stationary-phase treatments. Both treatments yield 
similar results for the longitudinal shift at angles of incidence close to the critical angle 
and because, as mentioned earlier, interest has been concentrated on such angles, 
little attention has been paid to the fact that they yield different results at other angles 
of incidence. For the transverse shift, the two treatments yield different results at all 
angles of incidence. Unfortunately, in addition to the fact that measurements of both 
shifts have only been made at angles of incidence close to the critical angle, the 
interpretation of the principal experimental measurements of transverse shifts so far 
made (Imbert 1969, 1970, 1972) has been called into question (Julia and Neveu 1973; 
Boulware 1973; Ashby and Miller 1973, 1976). It is clear that more experimental 
work on both shifts over a large range of angles of incidence is needed. 

It is the purpose of this paper to review the bases of the two classes of theoretical 
treatment and to discuss their validity. It will be pointed out that, whereas the 
assumptions made in stationary-phase treatments are unobjectionable, energy-flux 
conservation treatments, as given by previous authors, have involved inappropriate 
simplifications. 

All previous experimental work and most theoretical work has been concerned with 
the special case of total internal reflection in all-dielectric systems, and there is need 
for a more general treatment. Such a treatment, valid for all plane reflecting surfaces, 
will be given here. It will be based on arguments which are extensions of those used 
in stationary-phase analyses and will yield expressions for both longitudinal and 
transverse shifts. It will be shown that the reflected beam profile is free of distortion 
(to a first order) only for particular polarization states of the incident beam. 

Previous Work 

In this section the application by previous authors of energy-flux conservation and 
stationary-phase arguments to the evaluation of both longitudinal and transverse 
shifts will be reviewed and comparisons made between their predictions (they do not, 
in general, agree). It will be pointed out that energy-flux conservation treatments 
have involved gross simplifications and have, in any event, only treated the case of 
total internal reflection at interfaces between dielectrics. While stationary-phase 
treatments do appear to be valid for the special case of total internal reflection, they 
are not applicable to the general case of reflection. The possibility of extending the 
basic ideas involved in stationary-phase treatments to the treatment of reflection at 
general interfaces will be pointed out. 

Longitudinal Shifts 

Although the first predictions of the shift of a light beam on total reflection were 
made about 50 years ago by Picht (1929) using energy-flux conservation arguments, 
specific expressions for its magnitude were not obtained until about 20 years later by 
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Artmann (1948), who used a stationary-phase approach, and by von Fragstein 
(1949), who used energy-flux conservation principles. 

Energy-flux conservation arguments depend on the fact that the time-averaged 
Poynting vector in the evanescent wave above a totally reflecting interface is not 
zero. The standard energy-flux conservation approach may be taken as that given 
by Renard (1964) and may be outlined as follows. 

A 

Incident beam 

18 
I 
I 
I 
I 

Reflected beam 

Fig. 1. Energy-conservation requirements can only be met if the reflected beam is displaced so that 
the average energy flow through OA equals that through OB. 

Fig. 1 shows an incident beam and the totally reflected beam; the point 0 is at 
the centre of the reflected beam. This latter beam is shown as displaced from its 
expected position by the distance d for the following reason. There is an energy-flux 
crossing the plane OB from left to right. If energy is to be conserved, there must be 
an equal net average energy flux upward through the plane OA. Since the incident 
and reflected beams have the same intensity, this can only occur if the reflected beam 
is displaced as shown, leaving an upward energy flux at the left-hand side of the 
incident beam which is not compensated by a downward flux due to the reflected beam. 
It is argued that the difference between the upward energy flux due to the incident 
beam and the downward energy flux due to the reflected beam through the plane OA 
is equal to the flux carried in a strip of width d near to the centre of the incident 
beam and so this must equal the total flux over the plane OB due to the evanescent 
wave. Expressions for these are written, assuming the electric and magnetic fields 
near to the beam centre, both above and below the interface, are approximated 
sufficiently closely by those in a plane wave. 

The results obtained show that the components of the incident beam linearly 
polarized perpendicular and parallel to the plane of incidence undergo different 
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shifts d1. and d ll , which are given by 

d _ A sin f) cos2f) 
1. - n (1- n2)(sin2f) _ n2}t' 

A sinf)cos2f) n2 

n (1- n2)(sin2f) - n2}t sin2f) - n2 cos2f) , 

where A is the wavelength in the medium containing the incident and reflected waves, 
f) is the angle of incidence and n is the refractive index of the second medium relative 
to the first (thus n < 1). 

A stationary-phase treatment of the problem was first given by Artmann (1948) 
who was primarily interested in the magnitude of the shift at angles of incidence 
close to the critical angle. A treatment applicable to other angles of incidence was 
subsequently given by Schilling (1965). In this approach the incident beam is looked 
upon as a superposition of plane waves whose propagation vectors cover a range of 
directions and which, accordingly, undergo different phase changes at reflection. 
Consequently, at any point P on the reflecting interface, the phase relationships in 
the reflected ensemble of plane waves are not the same as those in the incident 
ensemble. Another point on the reflecting interface can be found, however, at which 
the phase relationships in the reflected ensemble are, at least to a first order, the 
same as those in the incident ensemble at P. The distance between these two points 
is the beam shift. 

The results of the stationary-phase arguments again show that the components of 
the incident beam linearly polarized perpendicular and parallel to the plane of 
incidence undergo different shifts: 

d _ A sinf) 
1. - - ( . 20 2)' , n S111 - n ,,-

A sin f) n2 

d ll = n (sin2f) _ n2}t sin20 _ n2 cos2f)' 

In each case these are different from the expressions resulting from energy-flux 
conservation treatments by the factor (1-n2)/cos2 f). 

Transverse Shifts 

It was pointed out by Fedorov (1955) that, since the time-averaged Poynting 
vector in the evanescent wave in the low-index medium during total internal reflection 
has, in general, a component perpendicular to the plane of incidence, a transverse 
shift of the beam is also to be expected. Such shifts were subsequently observed 
(Imbert 1969, 1970, 1972; Levy and Imbert 1975). An expression for the magnitude 
of the shift has been developed by Imbert (1968) using energy-flux conservation 
arguments. It involves the same assumptions as those used in the energy-flux conser­
vation treatment of longitudinal shifts. The magnitude of the transverse shift is found 
to depend on the polarization state of the incident beam. For the simple case of a 
circularly polarized incident beam, the transverse shift yC is given by 

where A, f) and n are as defined above. The plus and minus signs apply to right-handed 
and left-handed circularly polarized incident waves. 
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Stationary-phase analyses of the situation in most of the experimental work, 
in which the beam undergoes many reflections inside a prism, have been given by 
Julia and Neveu (1973), Boulware (1973) and Ashby and Miller (1973, 1976). These 
authors conclude that the measured shift in an experiment of this type is not due to 
the addition of transverse shifts at each reflection. Indeed, it has been claimed 
(Canals-Frau 1975) that stationary-phase arguments do not predict any transverse 
shift at a single reflection. This, however, is at variance with the findings of several 
other authors (Schilling 1965; Ricard 1974, 1976; Hugonin and Petit 1977). This 
latter group of authors show that the magnitude of the shift depends on the 
polarization state of the incident beam and on the angle of incidence and that it 
occurs at angles of incidence both above and below the critical angle for total internal 
reflection. They obtain essentially identical results and give expressions for the 
shifts which are generally applicable to all polarization states of the incident beam 
and all angles of incidence. For the purpose of illustrating the difference between 
their results and those provided by energy-flux conservation arguments it will suffice 
to quote the result for the case of a circularly-polarized incident beam undergoing 
total internal reflection. It is 

which differs from the energy-flux conservation expression by the factor (1- n2 ). 

Comparison of Bases of Energy-flux Conservation and Stationary-phase Treatments 

There is disagreement between the predictions of energy-flux conservation and 
stationary-phase treatments, and consequently the bases of each will now be 
examined more closely. The possibility of a treatment that is more general than any 
previously given will then be discussed. 

In the standard energy-flux conservation treatments the Poynting vector, in the 
region of overlap of the incident and reflected beams, is thought of as simply the sUm 
of the Poynting vectors in the two beams taken separately. This is not in general 
true; there is no principle of superposition for Poynting vectors. The only valid 
procedure is to evaluate the integral of the time-averaged Poynting vector over the 
whole plane OA in Fig. 1. Obviously, the beams cannot then be thought of as 
simple plane waves; indeed the concept of a shift for such a wave has no meaning. 
This same criticism of the standard energy-flux conservation treatment has recently 
been made by Agudin and Platzeck (1978). 

By contrast, stationary-phase arguments involve no assumptions other than the 
validity of the procedure of resolving the beam into an ensemble of plane waves and 
the linearity of the electromagnetic wave equation and of the boundary condition on 
the electric and magnetic fields at the interface. 

While a stationary-phase condition is adequate to treat the case of total internal 
reflection at an all-dielectric interface, the general case of reflection at any interface 
requires a further condition; in addition to the phase relationships, the amplitude 
ratios in the incident and reflected plane-wave ensembles must also be constant. A 
treatment incorporating both of these conditions may be termed a stationary­
amplitude treatment (complex amplitude). Such a treatment for the reflection, at 
any single plane interface, of a beam in any fully polarized spatially coherent state 
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will be given in the next section, and will yield expressions for both the longitudinal 
and transverse shifts. The longitudinal shift is due essentially to the dispersion of the 
phase change at reflection. The transverse shift is essentially a geometrical effect and 
results from a mixing of the linearly polarized components of the plane waves con­
stituting the beam, due to their different planes of incidence. The results will show 
that the profile of the reflected beam is, in general, undistorted only if the range of 
angles of incidence covered by the incident plane-wave ensemble is small enough for 
both real and imaginary parts of the reflection coefficient to be regarded as varying 
linearly with angle of incidence; and, further, that the conditions on the polarization 
state of the incident beam for undistorted shifts, even of the principal linearly 
polarized components of the beam are, in general, much more stringent than has 
been pointed out previously. 

Reflecting 

surface 

Fig. 2. Planes containing the propagation vectors of the principal group (A) and three 
minor groups (B, C, D) of the plane-wave components of an incident beam. 

Stationary-amplitude Analysis 

In this section, the conditions will be sought under which the profile of a light 
beam reflected from a plane interface between any two media is the same as that of 
the incident beam. It will be shown that, in general, this does not occur but that 
within a first-order approximation (ignoring effects dependent on higher powers of 
the beam's angular divergence) the two components of the reflected beam polarized 
perpendicular and parallel to the plane of incidence may individually retain the 
profile of the incident beam (although each is shifted by a different distance along 
the interface), provided that the reflection parameters of the interface and the 
polarization of the incident beam fulfil certain conditions. The approach will be to 
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consider the incident beam as an ensemble of plane waves and to seek a point in the 
interface at which the amplitude ratios and phase differences between pairs of plane 
waves in the reflected ensemble are the same as those between all corresponding pairs 
in the incident ensemble. 

The incident light beam is considered as a superposition of plane waves whose 
propagation vectors occupy only a small angular range, and one of these, whose 
propagation-vector direction is approximately central within the ensemble, is 
nominated as the principal wave. If the beam shape is symmetrical it is of course 
possible to define a principal wave more precisely but, in general, more exact 
definition is unnecessary. The plane of incidence of the principal wave will be called 
the principal plane of incidence and the group of plane waves which have this plane 
as their plane of incidence will be called the principal group. A group of plane 
waves whose propagation vectors are parallel to any given plane perpendicular to 
the principal plane of incidence will be called a minor group. 

Fig. 2 illustrates the meaning of the terms 'principal group' and 'minor group'. 
Plane A is the principal plane of incidence and contains the propagation vectors of 
the principal group. Planes B, C and D are perpendicular to plane A and each 
contains the propagation vectors of a minor group. 

If the intensity profile of the reflected beam is to be identical with that of the 
incident beam except for an inversion with respect to the reflecting surface (and a 
possible uniform reduction in intensity), the relative phases and amplitudes and the 
angular relationships between the field vectors of the plane waves constituting the 
beam must be unchanged by reflection. This condition cannot be met in the most 
general sense because the sand p (TE and TM) components of a plane wave undergo 
different phase changes at reflection (resulting in the polarization state of the 
reflected wave differing, in general, from that of the incident wave). As will be shown, 
however, it can be met (at least within a first-order approximation) separately for the 
components of the plane waves whose magnetic vectors are parallel to the principal 
plane of incidence and the components whose electric vectors are parallel to this 
plane. The electric vectors of these two components will be called E1- and Ell 
respectively. For the plane waves of the principal group, E1- and Ell are sand p 
components respectively at reflection. For waves not in the principal group, however, 
this will not be so. 

The cartesian coordinate system to be used is shown in Fig. 3. The x and y axes 
lie in the reflecting surface. The incident plane-wave ensemble is represented by the 
cone of propagation-vector directions at the approximate centre of which is the 
propagation vector of the principal wave. The angle of incidence of the principal 
wave is e. The axes are oriented so as to make the z-x plane the principal plane of 
incidence. 

Expressions for E 1- and Ell for a typical plane wave of the ensemble have the form 
(omitting the factor e- iwt which plays no part in the analysis) 

E1- = Eo exp(i {k(ax+ py+ yz) + ¢}) , Ell = REoexp(i{k(ax+py+yz)+¢+I/t}) , 

(1) 

where k is the wave number (21[/).), a, {3, yare the direction cosines of the propagation 
vector (sin e, 0, cos e for the principal wave), ¢ is the phase of the wave relative to 
that of the principal wave at the origin, I/t is the phase difference between the two 
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orthogonally polarized components, and Eo and R are real. Any fully polarized plane 
wave can be expressed in this form by suitable choices of Rand t/!. 

Fig. 3. Cone of propagation-vector directions of the plane-wave components of a beam 
incident at a principal angle of incidence 8 on a reflecting surface. 

As stated above, the two components (1) are not, in general, sand p components 
at the reflecting surface. Suppose E1- makes an angle e with the plane of the surface. 
The electric vectors of the sand p components are then 

Es = E 1- cos e + Ell sin e 

= Eo exp(i{k(ocx + j3y + yz)+¢}) (cose +Rexp(it/!) sine) , 

= Eo exp(i {k(ocx+ j3y+ yz)+ ¢}) (R exp(it/!) cos e -sine) . 

Introducing reflection coefficients Ps exp(ibs) and Pp exp(ibp), where p is real and b 
is the phase delay at the reflection, we find that the electric vectors of the sand p 
components of the plane wave after reflection are 

E~ = Eoexp(i{k(ocx+j3y-yz)+¢}) (cose +Rexp(it/!)sin e)psexp(ibs) , 

E~ = Eo exp(i {k(ocx + j3y- yz) + ¢}) (Rexp(it/!) cos e -sin e)ppexp(ibp). 
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In order to compare the structures of the inCident and reflected beams, expressions 
are needed for the magnitudes E~ and Ell of the electric vectors of the components 
of the reflected wave whose magnetic and electric vectors respectively are parallel 
to the principal plane of incidence. These expressions are 

E~ = E~COS8 +E~sin8, 

and so, defining the quantities r 1 and '11 by 

'1. = E~/E1.o, 

Ell = E~COS8 -E~sin8 

where E1.o and E llo are the magnitudes of the electric-vector components of the 
incident wave at the origin, we fmd 

'1. = exp(ik(ax+ py- yz) ){ (cos 8 + R exp(it/!) sin 8 )Ps exp(ic5s) cos 8 

+ (R exp(it/!) cos 8 - sin 8 )pp exp(ic5p ) sin 8}, (2a) 

'11 = exp(ik(ax+ py- yz)) { (cos 8 - R- 1 exp( -it/!) sin 8 )pp exp(ic5p ) cos 8 

- R- 1 exp( - it/!)(cos 8 + sin 8)Ps exp(ic5s) sin 8}. (2b) 

The quantities, 1. and '11 can be looked upon as effective reflection coefficients for the 
plane waves. 

If the relative phases and amplitudes of the perpendicular and parallel components 
of the plane waves in the reflected ensemble are to be the same as those in the incident 
ensemble, '1. and, II must be independent of the propagation-vector direction. This· 
is ensured by requiring the constancy of, 1. and '11 : 

(i) for the waves of the principal group; 

(ii) for the waves of a minor group. 

It will be shown that these two conditions yield expressions for the longitudinal and 
transverse shifts respectively of the beam. 

Longitudinal Shift 

For the planes waves constituting the principal group, we have p = 0 (and 8 = 0) 
and so '1. and '11 can be expressed as functions of a only by putting y = (1- ( 2)t 
and 8 = 0 in equations (2a) and (2b). Writing ao, '1.0 and '110 for the values of a, 
'1. and '11 for the principal wave, we can expand, 1. and '11 as a Taylor series in a - ao: 

(3a) 

(3b) 

For the expressions (3) to vanish exactly, all derivatives of,1. and '11 with respect 
to a must vanish. However, provided a - ao is always sufficiently small (i.e. the angular 
plane-wave spectrum of the beam is sufficiently narrow) all terms except the first 
may be ignored. Then, for the wave components with magnetic vectors parallel to 
the principal plane of incidence, dr l./da vanishes when 

'{k( az) dc5s} 1 dps 0 
1 • X+ (1-a2}t + da + Ps da = , (4a) 
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and, for the components with electric vectors parallel to the principal plane of 
incidence, drll/doc vanishes when 

(4b) 

The shifts along the reflecting surface of the reflected beam are found by putting 
Z = ° (a comment on this will be made in the Discussion below): 

Transverse Shift 

1 dbp i dpp 
xII = ---+--k doc kpp doc . (5) 

For plane waves of a minor group, r.1 and rll can be expressed as functions of 
[3 only by putting oc = oco(l- [32)1" and y = yo(l- [32)1" into equations (2a) and (2b), 
where oco, 0, Yo are now the direction cosines of the propagation vector of the wave 
of this minor group which is also a member of the principal group. The symbols 
r.1O and rll o are now used to denote the values of r.1 and rll for this latter wave. The 
quantities r.1 and rll can be expanded as a Taylor series in f3 as 

r.1 -r.1O = [3dr.1/d[3 +1:[32 d2r.1/d[32 + ... , 

rll-rll o = [3drll/d[3 +1:[32 d2rll/d[32 + ... . 

(6a) 

(6b) 

Assuming again that the angular plane-wave spectrum is sufficiently narrow that only 
the first terms of the series need be retained, we find that the expressions (6) vanish 
when, for the wave components with magnetic vectors parallel to the principal plane 
of incidence, 

(7a) 

and, for the components with electric vectors parallel to the principal plane of 
incidence, 

(7b) 

It can be shown that cos e = oco(oc~ + [32y~)-1" and so 

de/d[3 = yo/oco. 

As long as the angular width of the beam's plane-wave spectrum is small, oco and Yo 
can be taken as the values of oc and y for the principal wave and so de/d[3 ~ cot e. 
The conditions (7a) and (7b) then become 

Y.1 = i: ( exp(iljJ) + ~: exp(iljJ') ) cot e , (8a) 

YII = - k~(eXp(-iljJ)+ ;;eXP(-iljJ'))cote, (8b) 
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where t/I ' has been written for t/I+op-os' the phase difference between the orthogonal 
components of the waves after reflection. 

Application to Dielectric Media 

Equations (5) and (8) are generally applicable to reflection at a plane interface 
between any two media. Since, however, previous authors have dealt exclusively 
with the case of total internal reflection in all-dielectric systems, it is appropriate 
for purposes of comparison to examine the form taken by equations (5) and (8) in 
such a situation. Before doing so, however, the simplification resulting from the 
assumption that only the medium containing the incident wave is a dielectric will be 
examined. The simplification results from the fact that k is real. These results are 
applicable to cases of practical interest such as the reflection oflight beams at metallic 
surfaces. 

Incident Waves in Dielectric Medium 

The wave number k is real and, since p and 0 are real by definition, the equations 
(5) yield the pairs of conditions 

dPs/doc = 0; 

dpp/doc = o. 

(9a) 

(9b) 

The second of each pair is the condition for the amplitude ratios between the plane 
waves in the reflected ensemble to be the same as those in the incident ensemble. 
They are, of course, only satisfied if p is stationary with respect to angle of incidence 
at the angle of incidence 8. As has been pointed out by White et al. (1977), if this is 
not so, the reflected beam suffers distortion of its profile and deviation from its 
expected direction. These effects can be reduced to any desired extent (unless p 
undergoes a discontinuity within the angular plane-wave spectrum) by restricting 
the angular width of the beam's plane-wave spectrum (consequently increasing the 
beam's linear width). With the assumption that the second of each pair of conditions 
is satisfied or may be ignored, the first of each pair (the condition for the phase 
relationships between the plane waves to be the same in the incident and reflected 
ensembles) implies a shift, in the plane of incidence, of the reflected beam from its 
expected position. 

Equations (8) yield, when k is real, the pairs of conditions 

YJ. = - ~(sint/l + ~:sint/ll)cot8, 

YII = - ;k(Sint/l + ~;Sint/ll)cot8, 

R(COSt/l + ~:COSt/lI) = 0; (lOa) 

i(cost/l+~;cost/ll) =0. (lOb) 

The second of each pair (the amplitude-ratio condition) determines the value of t/I 
if the profile of the reflected beam is to be undistorted. The first of each pair (the 
phase condition) indicates a shift in the reflected beam in a direction perpendicular 
to the principal plane. Equations (9) and (10) show that, if the centre of the incident 
beam falls at the origin, the centre of the reflected-beam component polarized 
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perpendicular to the plane of incidence will leave the surface at x.1' Y.1 and the com­
ponent polarized parallel to the plane of incidence at xlI'YIl' 

Since all experimental work has been performed on plane interfaces between two 
dielectric materials, expressions for the shifts will now be found for this case. 

Plane Interface between Two Dielectric Media 

It is convenient to consider separately two ranges of a: 
Range 1. 0 ~ a ~ sinOe, where Oe is the critical angle. In this range we have 

dDs/da = dDp/da = ° 
(excluding the discontinuity in Dp at the Brewster angle), and 

(1- a2)t _ (n 2 _a2)t 
Ps = (1_a2)t+(n2_a2)t' 

n2(1- a2)t _(n2 _ a2)t 
Pp = n2(1_a2)t+(n2_a2)t' 

where n has been written for the ratio of the refractive indices of the second and first 
media. To facilitate comparison with the results of previous authors, the values of 
x from equations (9) will be converted to shifts, in a direction perpendicular to the 
beam's propagation direction, by multiplying by cos O. Equations (9) and (10) then 
give 

d.1 = d ll = 0, (1Ia) 

(llb) 

(llc) 

the plus or minus signs in equations (lIb) and (lIc) corresponding to ljJ = =+= tn. The 
second of the pairs of conditions in equations (9) is not satisfied and the reflected 
beam is distorted and deviated. 

Range 2. The second range of a (applicable only for n < 1) is sin Oe < a ~ 1 
(the range of total internal reflection). In this range 

Ps = Pp = 1, 

tantDs = - {(a2 -n2 )/(1 _a2)}t, 

Equations (9) and (10) then give 

A sin 0 n2 

d ll - 'it (sin2 0 _n2)t sin2 0 -n2cos20; 

AR sinOcosO 
Y.L = ± - . 2 2 20).1. , n (sm 0 - n cos 2 

A sinOcos 0 
YII = ± Rn (sin20 - n2 cos20)t' 

(12a) 

(12b) 

the plus or minus signs in equations (12b) corresponding to ljJ = =+=tn-t(Dp-Ds). 
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Discussion 

The foregoing analysis, resulting in equations (5) and (8), is applicable to any 
plane reflecting surface. It is a first-order analysis in the sense that all terms except 
the first in the Taylor series of equations (3) and (6) have been assumed negligible. 
In fact, the analysis could have been extended, in the case of the longitudinal shift, 
by requiring both dr/dO( and d2r/d0(2 in equations (3) to vanish. It is easy to show 
that, when p is constant, d2r/d0(2 vanishes when, in addition to equations (4), we have 

z = -k-l(1_0(2)3/2d2c5/d0(2. 

This implies a shift not wholly parallel to the reflecting surface (i.e. a shift of the 
reflected beam along its propagation direction). It does not, of course, affect the 
validity of equations (5) (which give the value of x when z = 0) or of any equations 
derived from them. An effect of this sort has been pointed out previously by Julia and 
Neveu (1973) and by McGuirk and Carniglia (1977). 

In general, terms higher than the second in the series of equations (3) and the 
first in those of equations (6) will not vanish simultaneously. Consequently, if the 
angular plane-wave spectrum of the beam straddles angles of incidence over which 
rapid changes of the reflection parameters or their derivatives occur, it would be 
expected that the profile of the reflected beam would be distorted and that, as shown 
by White et al. (1977), it might be deviated from its expected direction (the results of 
Read et al. (1978), who used microwave beams, appear to be, at least in part, a 
demonstration of this). 

Another fact which the present analysis makes clear is that, even if the distorting 
effects referred to in the previous paragraph are negligible, the profile of the 
reflected beam as a whole is, in general, distorted since the components of the beam 
linearly polarized perpendicular and parallel to the plane of incidence undergo differ~ 
ent shifts. Moreover, even if one such component in the reflected beam is isolated, 
only certain polarization states of the incident beam can result in an undistorted 
reflected beam (in the particular case of total internal reflection, equations (12) show 
that there is a unique angle of incidence, namely arccos{(1-n2)/(1 +n2) }t, at which, 
for two particular elliptically polarized states of the incident beam, all components 
suffer the same shift). The results referred to in this paragraph accord with the 
findings of Hugonin and Petit (1977) in their study of the quality of images formed by 
reflection at totally reflecting surfaces and of Costa de Beauregard and Imbert 
(1972, 1973). 

The results of the present analysis will now be compared with those of previous 
authors. These have mainly treated specifically the special case of total reflection at 
an all-dielectric interface (indeed the energy-flux conservation treatment, in the 
simple form presented by authors using this approach, cannot deal with the case of 
reflection by an absorbing medium). A comparison will therefore be made between 
the equations (12) and the corresponding expressions previously obtained. 

Longitudinal Shifts 

The values of dl. and d ll in equations (12a) are the same as those obtained by 
previous authors using stationary-phase methods. They also agree with those of 
Agudin (1968) who uses Fermat's principle to evaluate the shifts. They are, however, 
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greater by the factor (1 - nZ)jcosZO than expressions obtained using the standard 
energy-flux conservation treatment. The two treatments thus agree in the immediate 
neighbourhood of the critical angle but not at greater angles of incidence. In 
particular, d1- and d ll in equations (12a) approach the values 

as the grazing incidence is approached, whereas the energy-flux conservation treat­
ment predicts that d1- and d ll both approach zero. It has been argued (e.g. Renard 
1964) that nonzero values of the shift at grazing incidence are unreasonable on the 
grounds that the incident and reflected beams should be indistinguishable at this 
angle. In fact this is untrue; the reflected beam would be distinguished from the 
incident beam in that its phase would be reversed. More importantly, however, since 
the concept of angle of incidence only has meaning for a plane wave, the notion of 
truly grazing incidence for a beam of finite width is unrealizable because of the range 
of propagation directions of the plane waves into which it must be considered as 
resolved. The beam can never suffer a zero deviation and, consequently, the objection 
is groundless. 

Since the shifts are large at angles of incidence only slightly greater than the 
critical angle, experimental measurements have been confined almost entirely to such 
angles at which, unfortunately, the disagreement between the results from energy-flux 
conservation and stationary-phase treatments is extremely small. Rhodes and 
Carniglia (1977) claim to have evidence for a nonzero shift near to grazing incidence 
from studies of the positions of interference fringes in a Lloyd's-mirror experiment in 
which the mirror was a totally reflecting interface. Care is needed, however, in inter­
preting these results as evidence of a longitudinal shift; the position of a fringe depends 
on the phase change at reflection rather than on its derivative, and an alteration in 
fringe position as n alters merely indicates an alteration in this phase change. 

l'ransverse Shij'ts 

Expressions for the transverse shift of a beam suffering total reflection at an 
all-dielectric interface have been derived by several authors (e.g. Imbert 1968; 
Ricard 1970) using what is essentially an energy-flux conservation argument. The 
expression developed by Imbert (1968) for the transverse shift suffered by a circularly 
polarized beam incident at the critical angle is 

yC = ±A/(nsinOcosO), 

the plus and minus signs applying to right and left circularly polarized beams. This 
expression differs from that derived from equations (12) in that it is larger by the 
factor seczO. The view has been expressed (Costa de Beauregard and Imbert 1972, 
1973) that circularly polarized evanescent waves can be regarded as eigenmodes and 
that the totally reflecting interface, in effect, resolves the incident wave into two 
elliptically polarized components which excite these modes. The present analysis 
does not support this view; the polarization states into which the incident beam is 
resolved by the interface are essentially linearly polarized perpendicular and parallel 
to the plane of incidence. An incident beam, for example, linearly polarized either 
perpendicular or parallel to the plane of incidence would, from the eigenmode view-
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point, be expected to excite both modes and the reflected beam would be expected 
to emerge as two components shifted transversely in opposite directions. Equations 
(12), however, show that the shifts for such beams would be purely longitudinal. 
It is true that (except for the linearly polarized beams just mentioned) the whole 
reflected beam will suffer a uniform transverse shift only if the evanescent wave is 
circularly polarized. However, equations (12) show that perpendicular and parallel 
components of the beam separately undergo undistorted shifts (both longitudinal 
and transverse) as long as the evanescent wave is elliptically polarized with a principal 
axis of the ellipse parallel to the: interface (incident waves linearly polarized perpen­
dicular and parallel to the plane of incidence are limiting cases of this condition). 

Stationary-phase treatments of the transverse shift at a single reflecting surface 
have been given by Schilling (1965), Ricard (1974, 1976) and Hugonin and Petit 
(1977). Their results differ from those of equations (10) in that, since a stationary­
phase and not a stationary-amplitude treatment is used, only the first of each pair 
of conditions in equations (10) is obtained and no restriction is placed on 1/1. In 
addition, separate shifts for the perpendicular and parallel components of the beam 
are not distinguished and the shift for the whole beam is given as an intensity-weighted 
mean of Yl. and YII' valid for all values of 1/1. 

The only experimental measurements of the transverse shift to which the present 
analysis might, at first sight, apply appear to be those of Imbert (1969, 1970, 1972). 
These have involved the use of a prism inside which the beam undergoes many 
reflections while following a helix-like path. In view of the nonplanar path of the 
beam it is difficult to analyse the results in terms of the effect of a single reflection. 
In addition, because the polarization state of the beam is only preserved (approxi­
mately) between successive reflections at angles of incidence very close to the critical 
angle, it is impossible to measure the shift over a range of angles of incidence in this 
way. Stationary-phase analyses of this type of experiment have been given by Julia 
and Neveu (1973), Boulware (1973) and Ashby and Miller (1973, 1976). These 
authors consider the propagation of polarization eigenstates through the successive 
reflections and reach the conclusion that the helix-like path gives rise to a resultant 
shift which is composed, at least partIy, of components of the longitudinal shift at 
each reflection. They disagree with the general expressions for the shift given by 
Imbert and claim that the agreement between his theoretical and experimental results 
is fortuitous. 

The transverse and longitudinal shifts at a quasi-single reflection have been 
observed by Levy and Imbert (1972, 1975). For the transverse shift, the 'surface' was 
a four-layer dielectric stack and, for the longitudinal shift, a two-layer stack. The 
layers were deposited on a transparent substrate, and their thicknesses were chosen 
so that the phase change at reflection varied very rapidly (and the energy-flux in the 
evanescent wave became very large) over a small range of angles of incidence 
('" O· 01 0). In view of the large variations in the phase change and its derivatives over 
the range of angles of incidence occupied by the plane waves constituting the beam, 
the approximations used in the present analysis are invalid in this situation. 

Conclusions 

A method has been presented for evaluation of the longitudinal and transverse 
shifts of a light beam on reflection at a plane interface between any two media. The 
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predictions of the longitudinal shifts for the case of total internal reflection at an inter­
face between dielectrics agree, as expected, with the predictions of stationary-phase 
treatments; they do not agree with the predictions of the simple energy-flux 
conservation treatments so far presented. The predicted transverse shifts for the 
case of total internal reflection at an interface between dielectrics agree in part with 
those of the previous published stationary-phase treatments but not with the general 
interpretation of those treatments; they do not agree with the predictions of authors 
using energy-flux conservation treatments. 

Energy-flux conservation treatments have involved the simplification of treating 
both the incident and evanescent waves as plane waves. By contrast, the stationary­
amplitude treatment depends solely on the validity of the procedure of resolving the 
beam into a set of plane waves and on the linearity of the boundary conditions to 
which the electric and magnetic fields are subject at the interface, and it is difficult 
to see how any error can arise in its application. It is equally difficult, however, to 
believe that either approach is wrong in principle and it is likely that more rigorous 
energy-flux conservation treatments would yield results agreeing with those obtained 
by the stationary-amplitude method. 

For situations involving very rapid changes in the reflection parameters (the 
dielectric stacks of Levy and Imbert (1972, 1975) or a single dielectric interface at the 
critical angle or Brewster angle), analytic treatments fail and resort must be had to 
numerical computation of the intensity distribution in the reflected beam. In such 
cases the beam suffers distortion of its profile and possibly deviation from its expected 
direction and the notion of a 'shift' becomes indistinct. 

Experimental measurements of both types of shift have not, so far, been carried 
out over a range of angles of incidence sufficient to resolve the disagreement between 
the two treatments. It is clear that measurements of the shifts over a large range of 
angles of incidence are needed. Such measurements (at least for transverse shifts) 
must be carried out using single reflecting surfaces because of the change in the 
polarization state of the beam at each reflection. 
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