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Abstract 

A fully quantum theoretical calculation is carried out for the average energy loss rate by test ions 
released in a plasma. The calculation is based on the divergence-free kinetic theory of Kihara and 
Honda. The rate is given in terms of several auxiliary functions which may be evaluated numerically 
for a given test ion once the Maxwellian temperatures and densities of each plasma species (electrons 
and ions) are specified. The examples considered earlier by Sigmar and Joyce are re-evaluated and 
the accuracies of their approximate calculations are found to be generally quite good. Several new 
quantitative results are presented. 

1. Introduction 
In a recent paper George et al. (1979; hereinafter referred to as Paper I) presented 

a fully quantum theoretical calculation of the energy loss by a test ion to plasma 
electrons. The calculation was based on the divergence-free kinetic equation of Kihara 
(1964) and Honda (1964a, 1964b) and contained all known energy loss formulae as 
appropriate limiting cases. As far as the energy loss by a nonrelativistic ion to quies­
cent plasma electrons with a Maxwellian velocity distribution is concerned, we thus 
believe that Paper I constitutes the most general solution of the problem. 

The question we wish to take up in the present work is concerned with the energy 
loss to plasma ions. The loss to ions and the contribution of ions to the dynamical 
dielectric response function are both certainly negligible as long as the test ions are 
much faster than the thermal electrons. As the ion slows down and approaches the 
thermal energy, however, the loss to plasma ions becomes appreciable. The energy 
loss by fusion-produced ions to plasma ions is thus important in a hot plasma; the 
speed of a 3· 5 MeV IX particle is approximately lIS of the electron thermal speed at 
a temperature Te (in energy units) of 10 keV. We also note that, for slower ions, the 
terms proportional to the electron-ion mass ratio mel M in the loss rate are not quite 
negligible (Butler and Buckingham 1962). These terms were neglected in Paper I but 
will be kept in the present calculation. 

A calculation of the energy loss rate to both electrons and ion species within a 
plasma was presented some time ago by Sigmar and Joyce (1971). Their calculation 
was based on the Balescu-Lenard kinetic equation, and thus the screening and collec­
tive effects were correctly taken into account but a cutoff had to be introduced in 
order to make finite the contribution from collisions accompanying large momentum 
transfers. Quantum diffraction effects (George and Hamada 1978) were only approxi­
mately taken into consideration through an appropriate choice of the cutoff. From 
a theoretical point of view, such a treatment is not completely satisfactory .. 
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The calculation presented here is based on the fully quantum theoretical and 
divergence-free kinetic equation of Kihara (1964) and Honda (1964a, 1964b). Thus 
no cutoff is required and quantum diffraction effects are correctly taken into account. 
The final energy loss rate is given in terms of the quantum-theoretical Coulomb 
logarithm and several functions defined by one-dimensional integrals which can be 
evaluated numerically once the plasma parameters are specified. The accuracy of 
the calculation critically depends on the ratio bmin/bD, where bD is the effective Debye 
length and bmin the effective minimum impact parameter, either classical or quantum 
theoretical (George and Hamada 1978). The error involved in the final result is at 
most of the order of (bmin/bD)ln(bD/bmin) for bD ~ bmin. For a typical magnetically 
confined fusion plasma of density,...., 1014 cm- 3 and temperature,...., 10 keY, the ratio 
bmin/bD is of the order of 10- 8 • For an inertially confined high density plasma of 
density,...., 1022 cm- 3 and temperature,...., 10 keY, the ratio is of the order of 10-4 • 

The accuracy of our results is therefore expected to be sufficiently high. 

2. Energy Loss Rate 

We consider Coulomb collisions of a test ion of mass M, charge Ze, and velocity 
V with plasma particles, i.e. electrons and ions. The jth species of plasma particles 
is characterized by mass mj' charge ej and number density nj. We assume that none 
of the species are degenerate and that all species are represented by a Maxwellian 
velocity distribution 

jj(v) = n/mj/2nT)3/2exp(-mjv2/2T), (1) 

where Tj is the temperature of species j in energy units. 
According to Honda (1964a, 1964b), the average time variation of energy of the 

test ion can be evaluated in two parts: 

dE/dt = (dE/dt)I + (dE/dt)n, (2) 

where the first term is the result obtained in the Born approximation and the second 
term represents the correction to it. In the quantum limit where all close collisions 
are dominated by quantum diffraction effects, the second term vanishes so that the 
Born approximation alone gives the correct loss rate. 

The Born approximation leads to (Honda 1964b) 

(dE) 4(Ze)2" 2 f f co 2 de I = -Ii -7 ej dgjj(g- V). dk. 1.2 _Fl. _.,\ .2 1J(k.g +lik /2Jlj) , (3) 

where 

co = k. V + Iik2/2M , (4) 

9 = V-v is the relative velocity and Jlj = mjM/(mj+M) is the reduced mass. The 
dielectric response function e(k, co) is given by (Kihara and Aono 1963) 

where 

e(k, co) = 1 + L: (kDj/k)2{X(pj) +i yep)}, 
j 

kOJ = (4nnjeJ/Tj)t 

(5) 

(6) 
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is the Debye wave number of species j and 

X(p) = 1-2pexp(-p2) f: dtexp(t2), 

with 

Pj = (w/k)(m)2Ty: . 

yep) = nt pexp(-p2), 

The correction to the Born approximation is given by (Honda 1964b) 

721 

(7) 

(8) 

(~~L = (Ze)2 17 ::j f dgjig- V) {(1+ ~)g;t - ;~}{Y+ReV!e~;j)}, (9) 

where 

Wpj = (4nnj e;/mj)t (10) 

is the plasma frequency of species j, Y = 0·57721 ... is Euler's constant and V! is the 
digamma function, Re denoting the real part (Abramowitz and Stegun 1972). We 
wish to evaluate the rates (3) and (9) in the present section. 

(a) Born Approximation 

In order to evaluate the rate (3) we first assume that 

kQj = (fJ,)h)(2T)my: ~ kDj , (11) 

for allj. This condition is satisfied when we have Tj ~ hwpj. Now let kl be a wave 
number such that 

kQj ~ kl ~ kDj · (12) 

We then divide the integration over k into two regions: (i) kl ~ k ~ 0 and (ii) 
00 > k ~ k 1• It will be seen that the final result is independent of kl to a very good 
approximation as long as the conditions (12) are satisfied. 

Region (i) above corresponds to distant collisions. The dielectric response function 
which describes the Debye shielding and collective excitation is important here but 
we expect that the quantum diffraction effect is negligible. In order to see this explicitly 
we first note that the term hk2 /2f.1j within the b function in the integrand of equation 
(3) gives only a small contribution as long as g ~ hk1/2f.1j. Since in general we have 
g ~ (2Tj /m j)t = hkQj/f.1j this is indeed the case according to the conditions (12). 
Hence we have 

f dgjig- V)b(k.g +hP/2f.1) 

= (njx)kV In)exp{ _(k.X)2}(1 -mjhk. V/2Tj f.1j) +O(kilk~j)' (13) 

where k = k/k and 

Xj = (mj/2T)t V (14) 

is the test ion velocity measured in terms of the thermal speed of species j. 
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Let us next consider the dielectric response function e(k, w). Defining the effective 
Debye wave number by 

kD = (t k5j) t , (15) 

we see from equations (5) and (7) that e(k, w) is appreciably different from unity only 
for k ;5 k o. Since we are only interested in a test ion speed such that V ~ hkD/ M, 
we may replace P j defined by equation (8) by 

Pj = (xj.k), 

which makes 1 e(k, w)1 2 an even function of k. 
Substituting the result (13) into equation (3) we then obtain in region (i) 

(dE(i)) (Ze)2 2 f (k. xy 1) .~ Z dt I = - n3/ ZV t Wpj mj Xj dQk -;;;- - 2M exp{ -(k. x) } 

x dk--fkl k3 

o 1 kZe IZ' 

(16) 

(17) 

which indeed shows that there is no quantum diffraction effect in region (i). Writing 

" 2 ~ A = L. (kDj/ko) X(k. x), 
j 

B = L (koj/ko)Z Y(k. x j ), 
j 

(18) 

and noting the definition (5), we find 

f: 1 
dk Ik~:12 = In(~J -tln(AZ+BZ) - ~arctan(~) +oG~). (19) 

It is appropriate to introduce two ubiquitous auxiliary functions at this point: 

lJl(x) = erf(x) - 4>(x) , 4>(x) = (2/Jn)xexp( _XZ). (20) 

Substituting the result (19) into equation (17) and carrying out the remaining integra­
tions we then find 

(dE(i)) (Ze)2" z{( mj ) (kl) } dt I = - V- 'J Wpj lJl(x)- M 4>(x) In kD +Gix) , (21) 

where 

1 fXj 
{( mo) Z mo}{ ( ) 2A. (Bo)} G/x j ) = - In 0 dsexp(-s2) 1+ Ni s - 2~ In A]+B] + B/arctan A~ , 

(22) 

with 

Aj = L (kDi/ko)2X(SXJX) , B j = L (koJko)zY(sxJx). (23) 
i i 

The arctan function in equation (22) . should be evaluated in the range O-n since 
Y> O. 
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As equations (13) and (19) indicate, the errors involved in (21) are at most of the 
order ko/kQj for the choice 

k1 :::::: (kokQj)~' 

If we neglect the contributions from plasma ions altogether and also neglect terms 
of order me/M, we find that G defined by equation (22) is related to May's (1969) 
quantity A1(x) through the relation 

G(x) = P(x)A 1(x). (24) 

The loss rate (21) then reduces to the one obtained previously (equation 26 of 
Hamada 1978). 

Let us next turn to region (ii), 00 > k ~ k1 ~ k oj . We are now concerned with 
close collisions. In view of equations (5) and (7) it is now a good approximation 
to replace e(k, w) by unity. The error caused by this approximation is at most of the 
order (ko)k1)z, The integration over k in equation (3) can then be easily carried out: 

(dE(ii)) (Ze)Z" Z f Z (Xj ' s 1) { (2kQj)} -d - = - ~ i..J mjwpjxj ds exp{ -(xj-s) } -3 - - Ins +In -k ' 
tIn V j /1jS Ms 1 

where we have set 

Using the relations 

we arrive at 

s = (m)2T)t g. 

f dss- 1 exp{-(x-N} = n3/ Z erf(x)/x, 

f dss-\x.s)exp{-(x-s)Z} = n 3 / Z p(x)/x, 

(25) 

(26) 

(27a) 

(27b) 

e~~ii)) I = - (Zi
Z ~ W;j{ (P(X) - ;; cP(X)) Ine:~j) +F1(xj) + ;; FiXj)} , (28) 

where 

F 1(x) = n- 3/Zx f ds S-3 exp{ -(x-s)Z} (x.s)lns 

= tn- t fo'" ds s-2[(2sx+ l)exp{ _(X+S)2} +(2sx-l)exp{ -(x-s)2}]In s, (29) 

Fz(x) = F 1(x) _n- 3/ Zx f ds S-l exp{ -(x-s)Z}lns 

= F1(x) -n- t f: ds [exp{ _(x-s)2}-exp{ -(X +s)Z}]ln s . (30) 

For the choice k1 :::::: (kokQ)t, the errors involved in equation (28) are at most of the 
order of (ko/kQ)ln(kQj/ko). 
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The functions Fl and F2 are universal functions with the following limiting values: 

Fl(x ~ 1) = Inx -ix-2 + O(x- 4 ) , 

F2(x ~ 1) = --tx- 2 +O(x- 4 ), 

Fl(x ~ 1) = -in- t yx3 +O(x5), 

F2(x ~ 1) =n- t {yx-CY+i)x3 } +O(XS). 

We note that Fl(x) is related to May's (1969) quantity L12(X) through the relation 

Fl(x) = !'l'(x){L1zCx) +ln2 + I}. (31) 

If the energy loss to plasma electrons alone is considered and the terms of order 
mel M are neglected, the rate (28) reduces to the corresponding result obtained by 
Hamada (1978, equation 28 thereof; note that kQ in the present paper is ../2 times the 
one used there). 

Adding the results (21) and (28) we find that the energy loss rate in the Born approx­
imation is given by 

(dE) (Ze)2" 2 {( mj .) (2kQj) mj } - dt I = -V ': Wpj 'l'(x) - M iP(x) In k;; +F1Cxj) + M FzCxj) +G/x) . 

(32) 

The functions Fl and F2 are universal functions but Gj has to be evaluated numerically 
for each of the given plasma parameters and test ions. 

(b) Correction to Born Approximation 

Our next task is to evaluate the correction (9) to the Born approximation (32). 
The integral proportional to Euler's constant can be easily evaluated by using the 
relations (27). In order to evaluate the remaining term we first define a nondimensional 
parameter v j by 

Vj = (Zel ej I/h) (m)2Ty:' (33) 

Then we have Ze I ej I/gh = v)s with s defined by equation (26). After some mani­
pulations we obtain 

(dE) (Ze)2 2 {( m j ) m j } -d =--LWpj 'l'(x)--iP(Xj) y-Hl(Xj,Vj)--H2(Xj,Vj) , (34) 
t II V j M M 

where 

Hl(x,v) = _n- 3/2x f dsexp{-(x-s)2}(s.x/s3)Re!/J(iv/s) 

-!n- t fo<XJ ds s-2[(2sx+l)exp{ _(X+S)2} 

+(2sx-l)exp{ -(x-s?}]Re!/J(iv/s), (35) 

HzCx, v) = Hl(x, v) +n- 3/2x f ds s-lexp{ _(X-S)2} Re!/J(iv/s) 

= Hl(x, v) +n- t fo<XJ ds [exp{ _(x-s)2}-exp{ -(X +s)2}]Re !/JCiv/s) , (36) 
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which are further universal functions. We note that 

Ht(x, v) = P(X){A3(X, v) +y}, (37) 

where A3(X, v) is defined and tabulated in Paper 1. Thus the rate (34) reduces to the 
corresponding expression obtained in Paper I when the loss to electrons only is 
considered and me/Mis negligible compared with unity. 

As functions of x, the quantities Ht and Hz have the following limiting forms: 

where 

HI(x ~ I,v) = -4x3 Ao(v)/3Jn+O(x5), 

Hz(x ~ 1, v) = 2xAo(v)/Jn -2x3{5Ao(v) -2At(v)}/3Jn + O(X5) , 

Ht(x ~ 1, v) = -RetjJ(z) _!X- z Re{2ztjJ'(z) +!ZztjJ"(z)} + O(x- 4) , 

Hix ~ l,v) = -!x-ZRe{ztjJ'(z)} + O(x- 4 ) , 

AnCv) = LX! dttn exp( - t) Re tjJ(ivt -t) 

and tjJ'(z) = dtjJ(z)/dz etc., with z = iv/x. The function Ao(v) has been tabulated in 
Paper 1. Derivatives of digamma functions have simple series expansions (Abramowitz 
and Stegun 1972) which may be readily evaluated numerically. As functions of v, 
on the other hand, the limiting forms of HI and Hz are 

HI(x,v ~ s) = -P(x)lnv + FI(x) +O(sz/VZ), 

Hz(x, v ~ s) = I]>(x) In v + Fz(x) + O(SZ /VZ), 

HI (x, V ~ s) = y P(x) + O(VZ /sz), 

Hix, v ~ s) = -y c1>(x) + O(vz/SZ), 

where s is an appropriate average of the variable s defined by equation (26), namely 
s ~ 1 if x ;5 1 and s ~ x if x ~ 1. The functions FI and Fz are defined by equations 
(29) and (30) respectively. It is clear that (dE/dt)1I given by equation (34) vanishes in 
the quantum limit Vj ~ Sj (all I), as it should since then the Born approximation is 
valid. 

(c) Final Formula 

Combining equations (32) and (34) according to equation (2), we finally arrive at 
the complete formula for the energy loss rate: 

dE (Ze)z"\, z {(. mj ) (2kQj) mj -dt = --V--7 Wpj P(x)- Mc1>(xj) In rk
D 

+Ft(x) + MFzCx) 

m· } + GiXj)+H1(xj,v j) + AiHz(xj,vj) , (38) 

where r· = exp y = 1· 78107.... Since equations (32) and (34) reduce to corresponding 
formulae given in Paper I, our result (38) clearly reduces to the loss rate obtained in 
Paper I when plasma ions are altogether discarded and terms of order me/Mare 
neglected. 
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The energy loss rate (38) is formally written as the sum of contributions from 
individual plasma species. The contribution from electrons, however, is not equal to 
the loss rate in a one-component electron plasma since kD in the Coulomb logarithm 
and Ge(xe) both contain effects of ambient ion species. Similarly, the contribution 
of ions of species j is affected by electrons and other ion species. We also note that 
all terms proportional to mel M in equation (38) vary as Xe = (me/2Teyt V while those 
independent of mel M vary as x; for sufficiently small values of Xe' Corrections of 
order melM are thus important only for Xe ;5 (mel M)t. These points will be discussed 
more quantitatively in Section 4 below. 
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Figs 1a and lb. Showing for a 3·5 MeY IX particle injected into a DT plasma 
characterized by the parameters (41) of the text: (a) the energy loss rate of the 
IX particle as a function of its energy Ea , for the four indicated plasma electron 
temperatures Te , given in terms of the quantity PIT: defined by equation (40); 
and (b) the relative fractions (left scale) and absolute values (right scale) of the 
energy deposited onto electrons and ions of the plasma, as a function of Te. In 
(a) the full and dashed curves for Te = 10 keY reach 0·0449 and 0·0431 key-t 
respectively at Ea = 3·5 Me Y. 

3. Comparison with Calculation by Sigmar and Joyce 

Sigmar and Joyce (1971; subsequently referred to as SJ in this section) based their 
calculation on the Balescu-Lenard kinetic equation which contains a divergent term 
arising from close Coulomb collisions. They avoided the divergence by assigning 
appropriate values to the Coulomb logarithms (either classical or quantum theoretical) 
depending on the plasma parameters and test ions. Our formula (38) requires no 
such procedures. In the present section we examine the accuracy of the approximate 
SJ calculation. 
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Following SJ we define a nondimensional quantity P by 

P = -(dEldt)(nekDe3ITeOJpe) ' (39) 

so that, from the definitions (6) and (10) of kDe and OJpe ' with an electron temperature 
Te (keV) and density ne (cm- 3), 

-dEldt = (PITt) xne x4'342x 10-12 MeVs- l • (40) 

:;-
OJ 

o.7f- '\. .-----1 
6 

fron ~r"' ..... ; ... n 

~ 

..Q 
.9 

0·6 0 
;., ;: 
l'J> 0 
OJ -0 

" 2 OJ 0·5 .;;; 
'0 0 

Co 

" OJ 
0 -0 0-8 0'4 ;., 

.E ~ 
" OJ 

2 
" 5i 
~ 

0'1 

10 20 80 

Te (keV) 

Fig. Ib [see caption on facing page] 

We have evaluated the quantity PITt for an ()( particle released in a deuterium-tritium 
(DT) plasma characterized by 

ne = 2nD = 2nT = 1014 cm- 3 , TD = TT = 100keV, (41) 

for four electron temperatures Te = 10, 20, 40 and 80 keY. The results are shown 
in Fig. la. On comparison with the results obtained by SJ, we see that their overall 
accuracy is remarkably good. For Ea > 0·5 MeV, SJ underestimate the loss rate 
very slightly (by < 5 %). For Ea < O· 5 MeV, however, there are significant discrepan­
cies. At Ea = O' 2 MeV and Te = 80 keY, for example, the loss rate calculated from 
equation (38) exceeds the corresponding SJ value by a factor of 2. The simplified 
version of the SJ calculation made by Kammash and Galbraith (1973) definitely over­
estimates the loss rate. 

Again following SJ we call an injected ion thermalized when it is slowed down to 
the energy 2Tth where Tth is the highest of the temperatures of all species. Suppose 
that a 3· 5 MeV ()( particle is released into a DT plasma characterized by the parameters 
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(41). When it becomes thermalized at Ea = 2To = 2TT = 200 keY, an energy of 
3·3 MeY has been absorbed by electrons and ions. In Fig. lb we show the fractions 
of the energy lost to electrons and to ions as functions of electron temperature. 
Absolute values of energy deposited onto ions are also shown. Comparing with 
corresponding values of SJ, we see that they overestimate the electron fraction and 
hence underestimate the ion fraction slightly for Te > 30 keY. The difference is less 
than 0·02. The break-even point between electron and ion fractions is at Te = 41 
keY, as compared with 44 keY found by SJ. 

0·8 

30~ 
(a) ~ (b) -Electron fraction > 

" ..., 
0·61- ~ 

'-" 

l!l 
'" 

.2 

T 
.£ 0 

>- ;: 
~ 

0 - -C '" a " .~ '-" " 20 
'0 0 .:; Po 

" " 0 -c 
0-8 >-

J: ~ 
" " 0·2 10 i --- Present results --- Present results 

..c 
----5J ---- 5J <I: 

0 
80 20 40 60 80 

Ep (keV) 

Fig. 2. Comparison of the present calculated results with those of SJ (Sigmar and Joyce 1971) for 
a proton injected into a hydrogen plasma characterized by the parameters (42) of the text: (a) the 
thermalization time fth of the proton as a function of the proton energy E p , where fth is defined as 
the time taken for the proton to slow down to an energy of 2T. = 2 keY; and (b) the relative fractions 
(left scale) and absolute values (right scale) of the energy deposited onto electrons and ions of the 
plasma. 

We have next calculated the energy loss of a proton injected into a hydrogen 
plasma characterized by the parameters 

ne = nH = 5 x 1013 cm - 3 , Te = 2TH = I keY. (42) 

Fig. 2a shows the thermalization time fth as a function of proton energy Ep. As 
indicated, SJ slightly overestimate fth for Ep > 20 keY. In Fig. 2b we show the energy 
absorbed by plasma ions as well as the relative fractions of absorbed energy by 
electrons and ions. There are small discrepancies between the present results and those 
of SJ except at the break-even point at Ep = 44 keY. 

Finally, we have found that for a 3·5 MeY ex particle released in a DT plasma 
such that 

ne = 2no = 2nT = 1014 cm- 3 , Te = 6 keY, To = TT = 4keV, (43) 

it takes 238 ms to thermalize, i.e. to slow down to 2Te = 12 keY. SJ find a value of 
250 ms for the thermalization time. We have also found that during the thermalization 
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process 86·4 % of the energy goes into the electrons and 13·6 % into the ions. These 
fractions are in good agreement with the corresponding SJ values of 87 % and 13 %. 

16 

....-, 
--;; 

>< -~ 12 

I 

:::. 
'" --;; 

"-a 
$8 --::::::-
~ 
~ 
.." 

J..- 4 

A Electrons (m elM neglected) 

B Electrons (me 1M included) 

c Electrons + ions 

0 1 ! ! "I , ,! I ! , "I , , 1.1 

0.1 10 100 

Xe 

Fig. 3. Energy loss rate dE/dt of a proton injected into a lithium plasma characterized by 
the parameters (44) of the text, as a function of the proton speed Xe = (m./2T.)iV. Curve 
A gives the loss to electrons with m./M neglected (as calculated in Paper I), curve B the 
loss to electrons with the m./M correction included and curve C the loss to electrons plus 
lithium ions. For X. ~ 0·5 all three curves are practically identical. 

4. Further Quantitative Results 

Let us first consider the example studied in Paper I: the energy loss rate of an 
injected proton in a lithium plasma such that 

ne 3nLi 1014 cm - 3 , Te = TLi = 2 eV. (44) 

Burke and Post (1974) measured the energy loss by protons of several keY (xe ~ 1) 
in such a plasma. The results of our calculations are shown in Fig. 3. As far as energy 
loss to electrons is concerned, the correction of order mel M is entirely negligible for 
Xe ~ 0·3 (Ep ~ 300 eV). 

The calculation presented in Paper I refers to the one-component electron plasma 
where ambient plasma ions are replaced by a smeared-out neutralizing background. 
In the present calculation, on the other hand, plasma ions do affect the energy loss 
to electrons through their contributions to the dielectric response function. Comparing 
the present results with those of Paper I, we have confirmed that the one-component 
approximation used in the calculation of energy loss to electrons is generally excellent. 
The error caused by this approximation is, in the example considered, of the order 
of -1 % at Xe = O· 05 and decreases rapidly in magnitude as x. increases, reaching 
-0,01 % already at x. = O· 5. 

Turning now to the question of the energy loss to ions, we see from Fig. 3 that 
this loss becomes appreciable at x. ;5 O· 5. Butler and Buckingham (1962) showed 
that the energy losses to electrons and ions should be equal at x. = 0·1 in the present 
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Figs 4a-4c. Showing for a 3·5 MeV 0( particle in a DT plasma characterized by 
the density (45) of the text: (a) the energy loss rate per traversed distance dE/dz 
of the 0( particle as a function of its energy E., for T. = 10 keVand TD = TT = 1, 
5 and 10 keY as indicated; (b) the fractional energy loss of the 0( particle as a 
function of the traversed distance z, for T. = 10 ke V and TD = TT = 1 ke V; and 
(c) the fractional energy loss to electrons (left scale) and the thermalization length 
r'h (right scale) of the 0( particle as a function of T., for TD = TT = 1 keY. The 
curves in (b) represent the calculated energy loss (A) to electrons and ions, (B) 
in a one-component electron plasma, neglecting terms of order m./M (taken from 
George and Hamada 1978), and (C) to electrons when the m./M correction is 
included. 

example. This feature is clearly seen in Fig. 3. The energy loss to ions rapidly decreases 
. as Xe increases and at Xe ::::::: 1 it is already only of the order of o· 1 % of the loss to 
electrons. Analysis of the experimental results of Burke and Post (1974) in terms of 
the one-component plasma approximation, neglecting terms of order me/M, is there­
fore amply justified. 

N ext we turn to the energy loss of an a particle in a plasma of high density character­
istic of an inertially confined plasma. Specifically we consider a 3·5 MeV a particle 
released in a DT plasma of solid state density: 

ne = 2nD = 2nT = 5· 8 X 1022 cm - 3 • (45) 

In Fig. 4a we show the energy loss rate per unit distance as function of energy Ea. 
For Ea < 0·2 MeV the energy loss to ions dominates. At Ea = 0·2 MeV, however, 
95 % of the initial energy is already lost so that this dominance is really immaterial. 
In fact, we have confirmed that for Te = 10 keV the fraction of energy deposited 
onto ions during the thermalization of a 3· 5 MeV a particle is 25 %, essentially inde­
pendent of ion temperature Tj at least for 1 keV ~ Tj ~ 10 keV. 
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Fig. 4b gives the fractional energy loss of a 3·5 MeV rx particle released in a DT 
plasma as a function of the distance traversed. Here Te = 10 keY, To = TT = 1 keY, 
and the density is given by equation (45). Curve B refers to the one-component 
electron plasma as evaluated by George and Hamada (1978), neglecting terms of 
order mel M. The mel M correction reduces the loss down to the curve C in Fig. 4b. 

Fig. 4c shows the thermalization length r lh of a fusion-produced 3·5 MeV rx 
particle in a plasma as a function of electron temperature. Here the densities are those 
of equation (45) and To = TT = 1 keY. The thermalization length is defined as the 
distance traversed before the rx particle slows down to 2Te • Over the covered range 
of Te, the thermalization length increases more or less linearly with Te, in contrast 
to the often quoted T 3 / 2 rule (Chou 1972). The fraction of the energy deposited 
onto the electrons is also shown. 

In connection with plasma heating by beam injection, we finally study the energy 
loss of deuterium ions injected at 200 ke V into a tritium plasma of solid state density: 

ne = nT = 4·5x 1022 cm- 3 , TT = 1 keY. (46) 

For Te = 1-10 keY, the therma1ization length r lh and the energy deposited onto the 
ions are shown in Fig. 5. The break-even point, at which equal fractions of energy 
go to electrons and ions, is at Te = 3·2 keY. 
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