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Abstract 

Tensor operator methods have been developed for calculating the matrix elements of the two-particle 
colour-spin operator that arises in the calculation of the quark-gluon interaction in the MIT bag 
model treatment of the S-wave colour singlet states of multiquark hadrons. A group classification 
scheme for multi quark states which distinguishes the nonstrange and strange quarks, and thus 
avoids the occurrence of hidden strangeness ss pairs, is constructed. This scheme has the added 
advantage of avoiding any need to approximate the strangeness dependence of the relevant inter­
action integrals. The colour-spin matrix elements for all the q4 if colour singlet states and for the 
strangeness - 2 states of q6 are given by way of examples. A number of checking procedures have 
been developed to ensure the correctness of the calculated matrix elements. 

Introduction 

The MIT bag model of hadrons (Chodos et al. 1974a, 1974b; De Grand et al. 
1975; De Grand and Jaffe 1976) provides a practical method for obtaining a phe­
nomenological description of hadrons within the framework of quantum chromo­
dynamics (QeD). It is generally believed, but by no means proven, that the only 
observable states are those corresponding to colour singlets under the colour group 
SU~. Following upon the original work of Jaffe (1977a, 1977b, 1977c) there has 
been great interest in calculating the masses and decay channels for multi quark 
hadrons such as qN (N = 0 (mod3)) (Jaffe 1977c; Aerts et al. 1978; Wybourne 
1978), q2q2 (Jaffe 1978) and q4q (Strottman 1978, 1979). 

An essential part of all these calculations has been the evaluation of the matrix 
elements of the two-particle colour-spin operator representing the colour-magnetic 
interaction energy associated with the exchange of coloured gluons, namely 

Hg = -(Cl.c/R) L CJj.CJ/Aj.AjM(mjR,mjR), 
j<j 

(1) 

where R is the bag radius, Cl.c the quark-gluon coupling constant, M(mi' R, mj R) a 
radial integral defined in terms of the quark masses and bag radius (Jaffe 1977b), and 
Ai the colour of the ith quark with CJ j its spin. In this paper we limit our attention 
to the case of two ordinary quark flavours (0 == u, d) and one strange flavour (s) and 
assume u and d have the same mass. For reasons of brevity it is convenient to make 
the replacement 

ab == M(maR,mbR) (2) 
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and to introduce the colour-spin operator 

a,b 

A:b = - L crj.cr/Aj.Aj , (3) 
j<j 

where we understand the summation over i and j is restricted to quarks of flavour 
a and b only. Equation (1) now becomes 

Hg = (rxc/R) L A:b ab, (4) 

where the summation is over all pairs of flavoured quarks q" that arise in a given 
multiquark configuration, say q; qp. .. zg qj .... Our primary object now becomes to 
classify the states of a given multiquark configuration and then to evaluate all the 
matrix elements of all the relevant A:b operators. 

If we choose our classification of the multiquark configurations appropriately 
then we can avoid the need to make the Jaffe (l977a) approximation of replacing the 
integrals M (m j R, m j R) for an N-particle state having ns strange quarks by 
M(ns/N)msR,(ns/N)msR) and also avoid the difficulties of hidden strangeness S8 
pairs. 

In this paper we shall first discuss the classification of the multiquark states and 
then represent the colour-spin operator in terms of the generators of various 
SU6 :::> SU2 ®SU3 group structures. The relevant 3jm and 6j symbols can then be 
constructed and the Wigner-Eckart theorem used to evaluate the matrix elements 
of the group generators and hence those of the colour-spin operators. Explicit 
colour-spin matrices are constructed for the colour singlet states of q4q and the 
strangeness - 2 states of q6. Finally, we establish a number of checking procedures 
for verifying the correctness of the matrix elements. These matrices are currently 
being used to make mass calculations for q4q and q6 avoiding the usual Jaffe (1977a) 
approximation. 

Classification of Multiquark States 

The complete set of states formed from x quarks coming in three flavours (u, d, s) 
and three colours will span the IX irreducible representation (irrep) of U18 • This 
irrep may be decomposed into those of the direct product group SU 12 ® U 6 with the 
nonstrange quarks (u, d) transforming under SU12 and the strange quarks (s) under 
U6 • The states formed by the u, d quarks may be further described by the subgroup 
chain 

SU12 -+ SU~ ®(SU~S :::> SU~ ®SU~), (5) 

while the states formed by the strange quarks can be associated with the subgroup 
chain 

U 6 -+ Ur®(SU~S :::> SU~®SU~). (6) 

In the decomposition (5) the group SU~ is the isospin group and in (6) Ur generates 
the strangeness quantum number f/'. The group SU~s is the usual colour-spin group 
with SU~ being the spin group and SU~ the group of colour. The states for a system 
of x anti quarks may be described by an equivalent group-subgroup structure except 
that each irrep is replaced by its conjugate irrep. Thus the set of antiquark states 
belong to the IX' irrep of U18. 
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Table 1. Colour-Spin states for q4ij and q: q; quark configurations 

See the text for an explanation of the symbolism used 

(a) Generic configurations of q4ij 

State Quantum numbers State Quantum numbers 

Configuration q: ijb 

a, 1 2P 31, J521'; 20) d 223 1, J5 2J2; 20) 
a2 12P'I, J52J2; 20) e 223 1, 152P; 40) 
b, 1 2P 31, 1'2p; 40) f 1431, J5 2p; 20) 
b2 1 2P 51, J52p; 40> g 1431, 152P; 40> 
c I 2P 51, 152 P; 60> 

Configuration q; qb ijc 

a, 1 (21 421, 1 21)31, J5 2p; 20> c 1 (21 421, 1 21)51, J52p; 60) 
a2 1 (21 221, 1 21)31, J5 2[2; 20> d, (P 40, 121)31, J52p; 20> 
a3 1 (2P21, Pl)'I, l' 2[2; 20> d2 (P 221, 121)31, J5 2J2; 20> 
a4 1 (21 20, 1 21)31, J52p; 20> d3 (P 221,1 21)'I, J5 2p; 20) 
a5 1 (21 20, Pl)'I, l' 2p; 20> e, (P 40, 1 21)51, 152P; 40> 
b, 1 (21 421, 1 21)31, 152 P; 40) e2 (1 340,1 21)31, J52p; 40> 
b2 1 (21 421, 1 21)51, J52p; 40> e3 (P 221, 1 21)31, J5 2p; 40> 
b3 1 (21 221, 1 21n, J5 2p; 40> f I (P 40, 1 21)51, 1'2p; 60> 
b4 1 (21 20, 1 21)31, J52p; 40> 

Configuration q; q; ijc 

g, 1(2 32, P3P)31, J52p; 20> k, 1 (P 3P, P 3P)31, J5 2p; 20> 
g2 1 (2 32, P 3P)'I, J52p; 20> k2 I(P3P, P3P)'I, J52p; 20> 
g3 1(2'P,P3P)31, J52p; 20> k3 I (P 3P, P '2)31, J52p; 20> 
g4 1 (2'P, P ' 2)'I, 1'2p; 20) k4 1 (1212, P 3J2)31, 1'2p; 20> 
h, 1 (2 32, F 3P)31, J5 2p; 40> I, 1(123F, F 3F)31, J5 2F; 40> 
h2 1 (2 32, P 3P)51, 1'2p; 40> 12 I (P 3P, J2 3P)51, l' 2p; 40> 
h3 1(2'J2,F3F)31, J52F; 40> 13 I (F 3F, P I 2)31, 15212; 40> 

1(2 32,I 23 P)51, J52p; 60> 14 I (P'2, F 3P)31, J5 2J2; 40> 
m 1(123P,I 23 J2),I, J52J2; 60> 

(b) Generic configurations of q: q; 

State Quantum numbers State Quantum numbers 

a, 1 2P 51, J23p; 30> f 2231, J2 3p; 30> 
a2 1 2P 31, J23p; 30> g, 2231, P 3p; 50> 
a3 1 2P'I, P 3J2; 30> g2 22522, J2'2; 50> 
a4 1 2P 322, J2'2; 30> h, 1431, p3p; '0> 
b 1 2J2 31, P 3p; '0> h2 14 '22, P'2; '0> 
c, 1 2P 51, 123P; 50> 1431, P 3p; 30> 
C2 1 2P 31, p3p; 50> j 1431, p3J2; 50> 
d 1 2P 51, P 3p; 70) k, 1431, 2'P; 30> 
e, 1 2231, p3p; '0> k2 14 '22, 2 32; 30) 
e2 1 22122, P'2; '0> 

The multiquark states formed from x quarks may be designated by the typical 
ket vectors 

I q: I A;s So /l;q:-ky A;sSs/lsc; Sos /l~s i), (7) 

where the nonstrange (0 == u, d) and strange (s) quarks are clearly distinguished and 
i stands for all other quantum numbers required such as, for example, isospin com-
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ponents Iz • Each set of kets for a given (k, x) will be associated with a particular 
quark configuration q! q:-k. 

The states formed from a set of y antiquarks may be designated by a set of kets . 
analogous to those given in (7). In the case of a configuration of the type 
q! q:-k q~ q:-l the multi quark states may be formed by coupling the quark and anti­
quark kets together to yield colour singlet states. In this case the irreps fl~. and 
flgs must be conjugate irreps in order to yield a colour singlet. If we are concerned 
with just quarks then fl~ and fl~ must be conjugate irreps with fl~. the identity irrep. 

Tables of the possible states of multiquark systems can become very voluminous. 
For example in q4q we must consider the states associated with the 10 distinct con­
figurations (q! qo' q! q., q; qo' q; q.), (q; q. qo' q; q. q., q; qo qo, q; qo q.) and (q; q; qo, 
q;q; q.). It is useful to represent each set of configurations by a generic configuration. 
Thus for q4q it suffices to consider the three generic configurations q: qb' q; qb qc and 
q; qf qc and to list just the colour-spin quantum numbers, omitting the specification 
of the quark and anti quark flavour quantum numbers, such as I and /7, which can 
be easily determined for each specific configuration. 

Table 2. Isospin and colour-spin content of SUl2 irreps 

SU12 I A SU12 I A SUI2 I A 

o 0 0 p t 21 l' t 221 
3 P t 2P ,-

t l- IS 
14 0 22 

}2 0 2 1 21' 16 0 23 

1 l' 2 14 1 221' 
2 214 
3 0 

The colour-spin quantum numbers associated with the generic configurations 
arising in q4 q and for q: qf are given in Tables 1a and 1b respectively. Note that the 
spin multiplicity 2S + 1 is given as a left superscript attached to its associated SU~ 
irrep label. The coupling of the colour-spin quantum numbers to produce colour 
singlets is given in an obvious way: thus the ket 1212 31, 15 212; 20) of q: qb corresponds 
to the coupling IA~S2Sa+ifl~, A~S2Sb+ifl~; 2Sab+1fl~b)' where A~s == 21 2 , 2Sa+ifl~ == 31 
etc. 

To assist in the determination of the isospin I and strangeness /7 to be associated 
with a specific configuration we note that under UiS ~ SU12 ®U6 we have 

In~ LIn-xxIx, 
x=o 

(8) 

where x ranges from ° to the lesser of nand 6. The isospin and colour-spin represen­
tations that arise in the reduction of the 1 k irrep of SU12 into those of SU~ ®SU~s 
are given by (see Wybourne 1970, 1978) 

Ik ~ L e~, (9) 
~ 

where ~ is an irrep of SU~s involving a partition of k into not more than six parts and 
! is an irrep of SU~ involving not more than two parts (~i' ~2) and conjugate to 
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~ with 

I = -H~1-~2)' (10) 

The isospin and colour-spin content of the anti symmetric irreps of SU12 are given 
in Table 2. The decomposition of the irrep IX of U 6 into irreps of U r Q9SU~s is 
simply IX -+ x.lx with [f' = -x. 

Generators of SU~s ;:) SU~®SU~ and Colour-Spin Operator 

The generators of SU~s belong to the 35-dimensional irrep 214 of SU6 • Under 
SU~s -+ SU~ Q9SU~ we have (Wybourne 1970) 

214-+ 321 +30+ 121. (11) 

The three spin generators (f transform as 30 and generate the Lie algebra associated 
with the spin group SU~, while the eight colour generators J., transform as 121 and 
generate SU~. 

The colour-spin operator involves the scalar product of the 24 operators (fA 
which collectively transform under SU~s ;:) SU~ Q9SU~ as the 214321 irrep. Since 
the colour-spin interaction can be expressed entirely in terms of the generators of 
SU~s it must be diagonal in SU~s irreps though not necessarily in those of suI 
or SU~. 

The two-particle colour-spin operator must transform under SU~ Q9SU~ as a 10 
state. This suggests that we construct a two-particle tensor operator out of scalar 
coupled products of single-particle tensor operators 

xf =-= (214 32l)f , (12) 

where a designates the species of quark upon which the single-particle operator Xi 

acts. We note that any two-particle operator may be rewitten as 

L xi.x~ = t((2-0ab)Xa.Xb- £ (Xn20ab), 
i<j i=l 

(13) 

where 
N 

X a = L xf· (14) 
i=l 

The last operator in equation (13) is simply related to the number operator. 
We now try to represent the colour-spin operator Ll:b of equation (3) in terms of 

a coupled scalar product of SU6 ;:) SU2 Q9SU3 symmetrized tensor operators. Con­
sider the operator 

x ab =-= [21:321, 2lt321)'g. (15) 

Use of the Wigner-Eckart theorem followed by explicit evaluation of the colour-spin 
matrix elements for the nucleon N or Ll isospin multiplets shows that the desired 
relationship is 

Ll :b= [l40J 6 (2 - 0 ab)Xab + 8N b ab] , (16) 

where N is the number of q" quarks. Use of charge conjugation leads to the 
equivalences 

Aab = Aa5 = _ Aa5 = _ A,ab 
L1g - L1g - L1g _ L1 g • (17) 
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We must now work towards the evaluation of the matrix elements of the colour­
spin operator j:b as expressed in equation (16). To do this we firstly compute the 
reduced matrix elements of our tensor operators. 

Calculation of Reduced Matrix Elements 

Any implementation of the Wigner-Eckart theorem in calculating matrix elements 
requires a knowledge of the 6j and 3jm symbols associated with the group-subgroup 
chain of interest, in our case the SU6 ~ SU2 ®SU3 chain. Methods of computing 
such symbols have been outlined elsewhere (Butler 1975, 1981; Butler and Wybourne 
1976; Butler et al. 1979). In our particular approach the 3jm symbols for 
SU 6 ~ SU 2 ®SU 3 arise only in the calculation of reduced matrix elements; after 
that only SU2 and SU3 6j symbols are needed and then only a very few. As such, it 
is more profitable to list the reduced matrix elements alone. 

Table 3. Reduced matrix elements for SU6 and SU6 :::J SUz ®SU3 
In (b) for brevity T == 21 4321; also a superscript plus or minus indicates whether or not the matrix 

element changes sign under permutation 

< 
< 
< 
< 
< 

Matrix element 

(2 

P 
14 

2 

1121411 

1121411 

1121411 

1121411 

1121411 

(2 

P 
14 

2 

> 
> 
> 
> 
> 

< 1 21 II Till 21 >+ 
< F 3(2 II T II (2 3(2)+ 

< (2 3(2 II Til (2 12 >+ 

< 2 32 II T II 2 32 >+ 

< 2 32 II Til 2 1(2)+ 

< p 221 II T II P 221 >t 
< P 221 II T II P 221 >1 

< P 40 II T II P 221 >­

<21 421 II T 1121 421 >0 

<21 421 II T 1121 421 >i 

<21 421 II T 1121 221 >0 

<21 421 II T 1121 221 >1 

<21 421 II T 1121 20 >-

Value Matrix element 

2 

-v'6 
2 

-2v'2 

(a) SU6 

< 2(2 

< 2(2 

< 21 
< 21 
< 22 

(b) SV6 :::J SU2 ®SU3 

1121411 

1121411 

1121411 

1121411 

1121411 

212 >0 

2(2 >1 
21 >0 
21 >1 

22 > 

325v'210 <21 221 II T 1121 20 >+ 

--.7.v'210 (21 221 II T 1121 221 >0 

:5v'35 <21 221 II T 1121 221 >i 
fv'42 < 22 31 II T II 22 31 > + 

- :5v'35 < 22 31 II T II 22 122>+ 

-4v'7 < 22 31 II T II 22 522>+ 

o (2F 51 II T 112F 51 >+ 

- 345v'70 <2(2 51 II T 112(2 31 >-
o <2(23111 T1I2(2 31>+ 

4iv'14 <2(2 31 II T 112(2 11 >-

-4v'7 <2(2 51 II T 112(2 322>+ 

-,\-iv'35 (2(2 322 11 T 112(2 1( >+ 

- 345v'35 <2F 322 11 T 112F 31 >-

Value 

5 

-3iv'3 
- 133 

-tiv'2 
-8 

- 345v'35 
o 

345iv'35 

/4v'210 

;5v'70 

-tJ7 

+v'42 
-tv'7 

-/0v'210 

-1.v'35 
-+v'42 

- 325v'210 

- ;5v'35 

The SU6 reduced matrix elements <AcS 1121411 ACS) may be calculated by noting 
that the operator Sz must transform as a 214300000 tensor operator component and 
hence (cf. Butler et al. 1979) 

<AcS S J-lc SzIc yC Ie; 1214 300000 1 ACS S J-lc SzIc yC Ie;) = kSz , (18) 

where k is a proportionality constant associated with the normalization of our 
reduced matrix elements. Explicit use of the Wigner-Eckart theorem then leads 
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to the result 

(
)..CS' 214 )..CS)' 

L (Acs 1121411 )"cs)r = k.JIIF I S(S + 1)(2S + 1), 
r SJ.lCo 30 SJ.lC 

(19) 

where r is a product multiplicity index and I J.lc I is the dimension of the J.lc irrep of 
SU~. Use of the known values of the SU6 ::> SUzQ9SU3 3jm symbols leads to 
equations in the reduced matrix elements. Choosing <111214 111) = 1 requires that 
we take k = .J(21O)/105, which leads to the results given in Table 3a. 

The SUzQ9SU3 dependence of the matrix elements may be obtained by noting 
that 

(
)..CS. 214 )..CS )' 

<)..cs S /lc 1121432111 )..CS S' /lC') = '" a a <)..CS 1121411 )..CS) 
a ara a ara. L... S c. 321 S' C' a a " 

r a J.la a J.la • 
(20) 

where s is an SU 3 product multiplicity index. The necessary reduced matrix elements 
are given in Table 3b. In this table we have written for brevity T == 214321. Also, 
a plus or minus sign is given as a superscript to indicate whether or not the matrix 
element changes sign under permutation. (Note that the reduced matrix elements in 
Table 3 depend on phase choices and mUltiplicity resolutions for the SU 6 ::> SU z Q9SU 3 

3jm factors.) 

Calculation of Colour-Spin Matrix Elements 

We now direct our attention to the evaluation of the matrix elements of the 
colour-spin operator LI:b• Firstly we note that for a group of N quarks of the same 
flavour (q:) we have the known result (Jaffe 1977b) 

<q:)..CS S J.lc i I LI:a I q: )..CS' S' J.lc' i') 

= (8N -tc6()..CS) +4S(S + 1) +t C3(J.lC»)6()..cs, )..cs') 6(S, S') 6(J.lc, J.lc')(5(i, i'), (21) 

where for printing convenience we have put 6(X, x') == 6xx '. Here the eigenvalues 
of the Casimir invariants are given by 

n 

3C6()"cS) ,= 12 L )..l)..i + 7 - 2i) - 2mz , 
i=l 

where n is the number of parts of )..CS and m is the weight of )..CS, and 

3C3(J.lC) = 4(J.lI + J.l~ - J.ll J.lz + 3J.ll) . 

(22) 

(23) 

The results for other matrix elements of LI:b are rather more complicated and 
require full use of the Racah-Wigner calculus (see Butler 1981). Let us firstly recall 
some properties of scalar coupled products of tensor operators which are generali­
zations of the familiar SUz angular momentum tensor operator results (Judd 1963) 
to arbitrary compact groups. One property is 

<xl)..lil l[P"Q"*]8Ixz )..ziz) = 6iliz6AIA21)..11-1IKI-t 

x L {Al}{)..f K)..3 s}(xl)..d P" II X3 )..3).<X3 )..311 Q'" II X2 )..2)., (24) 
'X3A3 
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where as usual we let I ro I stand for the dimension of the irrep ro, while s is a product 
multiplicity, {Ad is a 2i phase and {Ai K A3 s} is a 3i phase (Butler 1975, 1981; 
Butler and Wybourne 1976). (Use of equation (24) to evaluate the matrix elements 
of X ab defined by equation (15) led directly to the result (16).) 

A further useful result for computing with coupled scalar product operators 
acting on coupled kets is given by 

«Al A2)rl A i I [P"Q"*]g I (/11 /12)r2 /1i) 

= OjjOAI'IKrt L {A2}{A2K/1~S2}{A1A2A*rl}{/1: /12 A*} 
S,S2 A2 Al K S,S2,,'2 

X (Al II P" 11/11)., <A211 Q"*II /12>'2' (25) 

The enumeration of essential results is completed by considering the reduced matrix 
elements for operators that act on only one part of a coupled keto Thus if P'" acts 
only on part 1 of a system then 

«Al A2)rl A II P'" II (/11 /12)r2 /1)s 

{
A* 

= OA2I'21 Alt 1/1lt L {Ad{Al A2A* rl }{Ai Kl/11 Sl} 
" /11 

Kl /1 } 

A~ Al ""Y2' 

X (Al II P'" II /11)., , (26) 

while if Q"2 acts only on part 2 of a system then 

«Al A2)rl A II Q"211 (/11 /12)r2 /1). 

= 0 A'/ll I A It I /1 It L {/12}{/11 /12/1* r2}{ A~ K2 /12 S2} {A * ;: : } 
'2 /12 1 2 "'2Y2' 

X (A211 Q"2 ~ /12)'2' (27) 

(Note that equations (24)-(27) use Butler's (1981) canonical phases.) 
Let us illustrate the use of the above results to derive a formula for the colour-spin 

operator Ll~c acting on the colour singlet states of a configuration q: qr, q~. A typical 
matrix element will be of the form 

« ,CSS C 'CSS c) S C 'CSS C. SOc '1 Aac I Aa a/1a Ab b/1b rab ab/1ab Ac c/1c' l LJ g 

x (A;S S~/1aC'A fS Si/1f)r~b S~b/1;~ A~S S~/1~'; SOC i). (28) 

Noting the result (16) and then using equation (25) we find that the expression (28) 
becomes 

-280J6J z14 L (-1)2Sc{/1;}(-1)Sc+l+s~{/1;21C/1~"s2} 
81S2 

x(-l)Sab+ Sc+ S{/1;b/1;OC} {/1;; /1;' OC } {S~b S~ S} 
/1C' C 21C c /1ab "'200 Sc Sab 1 

x «A;s Sa /1; Afs Sb /1f)rab Sab /1;b 1121! 321C II (A;S S~ /1;' A~S S~ /1f)r~b S~b/1;~)., 

x <ACS S IIC 11214321 C II ACS s' IIC') cere c cere 82 ' (29) 
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where we have made use of the fact that for SU~ we have for the 2j and 3j phases 
respectively 

{S} = (_1)2S and {SI S2 S3} = (- )S, +S2+83 • (30) 

The SU2 6j symbol may be evaluated from the tables of Rotenberg et al. (1959). 
The factor 24 in the expression (29) is just the dimension of the 321 C irrep of 
SU~ ®SU~. The remaining 2j and 3j phases and the 6j symbols all pertain to SU3 • 

The SU3 2j phases may all be taken as unity while the 3j phases have been specified 
by Butler et al. (1979). 

The appearance of the identity irrep in the 6j symbol leads to considerable simpli­
fication in the expression (29), to give 

{
S' S' S} 140 <5(Jl~, Jl~;) <5(Jl~', Jl~~*) ( _l)Sab+Sc'+s I Jl~ I- t I Jl~'1 -t S ab SC 1 

c ab 

,,«,CSS C'CSS C) S C*II 214321c II ( lCS S' c' lCS S' C')' S' e'*) x L. Aa aJla Ab bJlb rab abJlc a Aa aJla Ab bJlb rab ab Jlc s 
s 

x (A~S ScJl~ 1121~ 321 C II A~s S~Jl~'>s' (31) 

The second reduced matrix element may be lifted from the results given in Table 3b. 
The first reduced matrix element may be further evaluated by use of equation (26) 
to give 

« leSS e lCSS C) S C*11214 321c II ( lCS S' C' -csS' C')' S' c'*) Aa a Jla Ab b Jlb rab ab Jlc ' a Aa a Jla Ab b Jlb rab ab Jlc • 

= <5(Sb' Sb) <5(Jlf, Jlf) I Jl~ I t I Jl~' It [(2Sab + 1)(2S~b + l)]t 
C C e'*} Sab 1 S~b Jlc 21 Jlc 

x I ( _1)Sb+ Sab+ 1 +Sa'{Jl~ Jlf Jl~ rab}{Jl~' 21 C Jl;' SI} {S~ Sb sJ{Jl;' Jlf Jl; rabS,rab" 
" 

x (ACS S IIC 1121432111 ACS s' IIC') a a ra a a r'a SI· (32) 

This completes the desired formula. Proceeding in this manner it is a simple matter 
to derive all the relevant formulae and then to compute all the colour-spin matrix 
elements for the generic configurations associated with q4q and q4q2. The results 
are given in Tables 4a and 4b respectively. It is important to note that all these 
matrix elements have been multiplied by a common factor of 3 to eliminate 
denominators. 

Checking of Colour-Spin Matrices 

It is essential to be able to verify that the colour-spin matrices are correct and 
to this end a checking procedure must be devised. To make such a check we try to 
choose relationships between the various radial integrals that force the colour-spin 
matrices to have simple predictable eigenvalues. 

In the case of q: qf, making all the integrals aa, bb and ab equal to unity must 
yield a set of states that can be mapped onto those of q~. Consider for example the 
states of q: qf with A;S = 212 and A~S = 12 that couple together to produce 30 states 
under SU~ ®SU~. There are just four such states (aI' a2 , a3' a4)' We note that 

21 2 x 12 -~ 321 +31 3 +23 +2212 +214" 
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Table 4. Colour-spin matrix elements for q4 iI and q: q; configurations 

Note that all matrix elements here (but not their checking eigenvalues) have been multiplied by 3 
to eliminate denominators 

State 

Configuration q: iIb 

(al) 

20 a1 [S(aa+a5) 
a2 -24a5 

(b l ) 

40 bl [4(2aa-a5)_ 
b2 -12.J1O ab 

(c) 
60 c [S(3aa+2a5) 

(d) 
20 d [-S(2aa+5a5)] 

(e) 
40 e [-4(4aa-5a5)] 

(I) 
20 1 [S(7aa+4a5) 

(g) 
40 g [S(7aa-2a5) 

Configuration q; qb iIc 

(al) 
20 al r 6aa- 30ab 

-2bc-30ac 

liz I SCab + 2ac) 

a31-16J3ac 
a4 S(2ab + ac) 
as -S.J3ac 

(b l ) 

40 b l r 6aa- 30ab 
+bc+ 15ac 

(a) Generic configurations 01 q4 iI 

Matrix elements 

(a2) 
-24a5 

o ] 
(b 2 ) 

-12.Jloa5] 
24(aa-a5) 

(a2) 
S(ab+2ac) 

(a3) 
-16.J3ac 

(a4) 
S(2ab+ac) 

-6aa+6ab -2.J3(bc+3ac) S(ab+2ac) 
+4bc-12ac 

-2.J3(bc+3ac) -6(aa+3ab) S.J3ac 

(as) 

-S.J3acl 
S.J3 ac 

-24ab 
S(ab + 2ac) S.J3ac -24aa-32bc 16.J3bc 
S.J3 ac -24ab 16.J3 bc -24aa 

(b2) (b3) (b4 ) 

-.J15 (bc+3ac) S(ab-ac) 4(4ab-ac) 1 
b2 1 -.J15(bc+3ac) 6aa+1Sab - S.J15 ac -4.J15ac 

+3bc-27ac 
b3 1 S(ab-ac) -S.J15ac -6(aa-ab) S(ab-ac) 

-2bc+6ac 

b4 L 4(4ab-ac) -4.J15 ac S(ab-ac) - S(3aa - 2bc) 

(c) 
60 c [6aa+ ISab-2bc+ ISac] 

Checking 
eigenvalues 

(S, -S) 

(24, -4) 

(t) 

(S) 

(-12) 

(S) 

(24) 

(-24, -S, 
S, S, S) 

(24, -20, 
-12, -4) 

(t) 
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State 

(dl ) 

20 d1 [S(3aa+2bC) 
d2 S~2(2ab+ac) 

d3 -S~6ac 

(el) 
40 el [24(aa-bC) 

e2 S~ISbc 
. e3 -4~30ac 

(I) 
60 f [S(3aa+2bc)] 

Configuration q; q; ifc 

Table 4 (Continued) 

Matrix elements 

(d2 ) 

S~2(2ab+ac) 

30aa+ 10ab 
+4bc+20ac 
- 2~3 (bc - Sac) 

(e2) 
S~ISbc 
S(3aa-bc) 
4~2(4ab-ac) 

(d3 ) 

-S~6ac ] 
- 2~3 (bc-Sac) 

30(aa-ab) 

(e3) 

-4~30ac ] 
4~2(4ab-ac) 

30aa+ 10ab-2bc 
-lOac 

(gl) (g2) (g3) (g4) 

20 gl r-4aa+Sbb-20ab -4~2(Sac+bc) -24(ab + ac) 0 J 
-20ac+4bc 

g2 -4~2(Sac+bc) -4aa+Sbb-40ab -12~2ac -12~3ab 
g3 -24(ab+ac) -12~2ac -24aa+Sbb-16bc -12~6bC 
g4 0 -12~3ab -12~6bc -24aa+12bb 

(h1) (h2) (h3) 

40 hl r -4aa+Sbb-20ab -2~S (bc+Sac) -24ab+ 12ac l 
+lOac-2bc 

h2 -2~S(bc+Sac) -4aa+Sbb+20ab 12~Sac 
+6bc-30ac 

h3 -24ab+12ac 12~Sac -24aa+Sbb+Sbc 

(i) 
60 i [-4aa+Sbb+20ab+20ac-4bc] 

(kl) (k2) (k3) (k4) 

'0 k, r8(~+bb-ah) -8';2(aC-b~ -24(ab+bc) 
-24(ab+aE) J -S(be+ac) 

k2 -S~2(ac-bC) S(aa+bb-2ab) 12~2bc -12~2ac 
k3 -24(ab + bc) 12~2bc Saa+12bb+Sac 12ab 
k4 -24(ab+ac) -12~2ac 12ab 12aa+ Sbb+ Sbc 

(11) (/2) (13) (/4) 
40 11 rS(aa+bb-ab) -4~S (ac-·bC) -12(2ab-bc) -12(2ab - ac) 1 + 4(bc+ac) 

121 -4~S(ac-bc) S(aa+bb+ab) -12~Sbc 12~Sac 
-12(ac+bc) 

13l-12(2ab-bC) -12~Sbc Saa+12bb-4ac 12ab 
14 -12(2ab-ac) 12~Sac 12ab 12aa+ Sbb-4bc 

(m) 
60 m [S(aa+bb+ab+ae+bC)] 

961 

Checking 
eigenvalues 

(S, S, -S) 

(24,24, -4) 

(~.) 

(S,S, -S, 
-24) 

(-4, -20, 
24) 

(t) 

(S,S, -S, 
S) 

(24,24, 
-12, -4) 

(t) 
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Table 4 (Continued) 

(b) Generic configurations of q: q; 

State Matrix elements Checking 
eigenvalues 

(al) (a2) (a3) (a4) 

'0 a'[24aa+8bb-24ab -4v'30ab 0 -Sv'15ab ] (~,t,-¥, 
a2 -4v'30ab Saa+Sbb+4ab -Sv'6ab 12v'2ab -.;-!-) 
a3 0 -Sv'6ab Sbb -16v'3ab 
a4 -Sv'15ab 12v'2ab -16v'3ab 20aa+12bb 

(b) 
10 b [Saa+Sbb+Sab] (S) 

(Cl) (C2) 

50 Cl [ 24aa+ Sbb - Sab 
C2 -12v'6ab 

-12v'6ab ] 
8aa+Sbb-4ab 

(16,-4) 

(d) 
70 d[24aa+Sbb+16ab] (16) 

(el) (e2) 

10 el [ -16aa+ 8bb- 40ab 24v'3 ab ] 
e2 24v'3ab -12(aa-bb) 

(S, -24) 

(f) 
30 f [-16aa+ Sbb- 20ab] ( -.;-!-) 

(gl) (g2) 

50 gl[ -16aa+Sbb+20ab -12v'6ab 
g2 -12v'6ab 12(aa+bb) ] (16, -4) 

(hl ) (h2) 

10 hl [56aa+Sbb+32ab 24v'6ab ] (S,4S) 
h2 24v'6ab 60aa+ 12bb 

(i) 
30 i [56aa+ Sbb+ 16ab] (83°) 

(j) 
50 j [56aa+ Sbb-16ab] (16) 

(k l) (k2) 

30 k l [56aa-24bb -24v'2ab ] (830,t) 
k2 -24v'2ab 60aa-4bb 

However, only 321, 313, 23 and 214 will yield a 30 state under SU~s -4 SU~ ®SU~ 
and hence the four states ai of q: q; must go into the four states of q: associated 
with the 321, 31 3, 23 and 214 irreps ofSU~s. It follows from equation (21) (Wybourne 
1978) that the four states of q: will have colour-spin matrix elements of 

321( - 28/3), 31 3(8/3) , 23(8/3) , 214(80/3) . (33) 
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Thus if the colour spin matrix for q: q; is correctly calculated then placing all the 
radial integrals equal to unity and diagonalizing the 4 x 4 matrix must yield the four 
eigenvalues (33), as is indeed the case. The checking eigenvalues for the other matrices 
of q: q; are given in the last column of Table 4b. 

A similar check can be devised for the matrices associated with the generic con­
figurations of q4 q. In this case we make all the radial integrals involving a pair of 
quarks equal to + 1 and those involving a quark with an antiquark equal to - 1. 

Table 5. Colour·-spin matrix elements of q3 configurations 

Quantum State Matrix Checking 
numbers element eigenvalue 

Configuration q; 

(0:) 
0:121 20) 20 0: [- 8aa] ( -8) 

(P) 
PI P 4O) 40 P [8aa] (8) 

Configuration q; qb 

(y) 
yIF3PPl;20) 20 y [t(aa-4ab)] (-8) 

(J) 
Jj21P1 21; 20) 20 J [- 8aa] (-8) 

(e) 
eIP3FJ21;40) 40 e [t(aa + 2ab)] (8) 

Table 6. Colour--spin matrices in baryon octet and decuplet 
Here 0 denotes the nonstrange u and d quarks and s denotes the strange 

s quark 

State Matrices 

(N) (L) (A) (8) 
20 N[-800] L [t(00-40s)] A [-800] 8 [t(ss-40s)] 

(A) (L*) (8*) (n) 
40 A [800] L* [t(00+2os)] 8* [tCss+20s)] n [8ss] 

In this case the states of q4 q map onto those of q9, since the transformation properties 
of an antiquark under SU~s are those of a five-quark system. We can then use 
equation (21) (but with N = 5 and not N = 9) to predict the eigenvalues that should 
arise in diagonalizing the colour-spin matrices. Similar checks can be devised for 
other quark-antiquark configurations such as for example q3 q3. 

Example of q3 

As an illustration of the construction of colour-spin matrices from those for 
generic configurations, let us consider the familiar case of the baryon octet and 



964 R. P. Bickerstaff and B. G. Wybourne 

decuplet states in q3. The colour-spin matrix elements for q; and q; qb are given in 
Table 5. Neglecting the mass difference between the u and d quarks, which amounts 
to ignoring mass splittings within an isospin multiplet, we may make the associations 

3 qo ~ N,Ll, 2 qo qs ~ L,A,L*, q q2 ~ Q Q* os ....... ,...... , q: ~ Q. 

We may now make the appropriate identification of the radial integrals and extract 
the relevant matrix elements from Table 5 to yield the results of Table 6. Note that, 
had we used the Jaffe (1977a) approximation, states of the same strangeness and spin 
would be degenerate, e.g. A and L. 

Conclusions 

The colour-spin matrices for q4 q and q: q; have been constructed and verified 
by making use of the full Racah-Wigner calculus. These results now make it possible 
to perform bag model calculations giving an adequate treatment of the colour-spin 
interaction. The methods used are quite general and can be easily extended to other 
interesting quark configurations such as q3 q3. Explicit calculations using the colour­
spin matrices presented here are currently being completed. 
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