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Abstract

The partition function and one- and two-particle distribution functions are calculated for a spherically
symmetric self-gravitating system using a method which is exact except for terms of relative order
N -1, The results are in agreement with those found in the continuum approximation. First approx-
imations to the correction terms are evaluated with particular emphasis on the form of the pair
distribution as compared with the product of two one-particle distributions.

1. Introduction

Because of the long range forces involved, the investigation of the exact statistical
mechanics of self-gravitating systems presents difficulties not normally encountered
when studying their laboratory counterparts. Nevertheless, considerable progress
has been made on the stability problem (e.g. Horwitz and Katz 1977, 1978; Cally
and Monaghan 1980; see Section 2 below).

In this paper we are interested in the equilibrium structure of a spherically confined
system consisting of a large number N of identical particles (cf. Horwitz and Katz
1977, 1978). (Some attention is also given to the analogous problems in one and two
dimensions.) Using the optimal independent-particle potential found by Cally and
Monaghan (1980), the canonical partition function Z and the one- and two-particle
distribution functions v;(r") and v,(r, ') may be evaluated exactly to O(1). In addition,
approximations to the O(N ~') correction terms may be found which suggest the
form of the necessary modifications to the mean field results.

The purpose here is twofold. Firstly, we wish to verify that in the large N limit
the thermodynamics and the distribution functions are as predicted by the continuum
theory. This is of special interest partly because there must be some doubt about the
applicability of the usual thermodynamic ideas to systems with long range forces.
In particular the zeroth law (or cycle property), which assumes only thermal contact
between neighbouring systems, is of dubious validity when gravitational interactions
are also present. However, this ‘law’ is an important foundation in the axiomatic
derivation of thermodynamics (Wilson 1960, p. 81). Therefore, to this approximation,
we merely wish to show that all is as it should be.

Secondly, it is of interest to estimate the degree of deviation from the predictions
of the mean field theory produced by finite N. This will be indicated not only by the
modifications to Z and v, but in particular by the accuracy of the Vlasov approximation

va(r, 1) = vi(r)vi(r), (1
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and the extent to which it must be modified to take account of interparticle separation
[r—r’]. (Rybicki (1971) and Monaghan (1978) have made some progress in this
area for the one-dimensional case.) Another related point requires consideration:
it is well known that self-gravitating systems of point masses have no true equilibrium
state since total collapse into a singularity is more energetically favourable than any
other configuration. However, the time scale of such an occurrence is far longer than
any other relevant time scale, and a ‘frozen equilibrium’ is postulated and achieved
mathematically, at least in principle, by modifying the interparticle potential at short
range (see the discussion by Ipser 1974). We shall find in fact that many important
features of our results do not depend on the nature of this modification, thereby
increasing our confidence in the validity of simple point mass models in general.

Although the stability of the microcanonical model obviously differs from that
of the canonical one, we might reasonably expect the broad features of the equilibrium
structures to be similar. In any case, the mathematical difficulties inherent in the
former appear prohibitive at present.

2. Preliminary Results

The stability of the system in question was investigated by Cally and Monaghan
(1980) using a variational technique. We shall summarize the relevant details.

Letting m represent the mass of each particle, k& Boltzmann’s constant and T
the temperature, the momentum part of the canonical partition function Z may be
integrated immediately to give

Z = 2mmkT)3N2Q, @)

where Q is the configurational integral

0 = (UNY) f exp(—BV) 2, . 3

Here = 1/kT, dQ, = dr;...dry and V is the potential energy made up of the sum
over all pairs of the two-particle interaction energies F(|r;—r;|), that is,

N N
V=3%3Y Y F(ri-rD. @

i=1j=1

In the following we retain the general F, though specific attention is given to the
three-dimensional self-gravitating system, for which

F(lr=r']) = —Gm?*/|r—r’]. (52)
However, we also refer to the one- and two-dimensional systems where, respectively,
F(|x—x'|) = 2nGm* | x—x'|, (5b)
F(lr—r']) = 2Gm*In|r—r']. (5¢)

The variational method is based on the introduction of a smooth (independent-
particle) reference potential energy

U= Y ¢@), ©)
j=1
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where ¢ is initially unspecified. This allows us to rewrite the configurational integral
in the form

Q@ =(/N) feXp(—BU)eXp{—ﬂ(V— U)} de; (7a)

= (IUNY) f exp(— BU) dQ, Cexp{ — H(V - U}y, (Tb)

where the angle brackets denote an averaging with respect to the probability density

exp(—/iU)/fexp(—ﬁU) dQ,.
Noting Jensen’s inequality for convex functions W (Hardy e al. 1959)

W =2 WKL), ®
we find that equation (7b) yields

0> K=(NY f exp(—BU) dQ, . exp(— BV~ UY). ©)

The value of U is to be chosen so as to maximize the right-hand side of equation (9),
i.e. so as to provide the best approximation to the configurational integral. To
this end we perturb U by U = X, 5¢(r)).

The condition that K be stationary decides the form of ¢; it is found that

#0) = (=112} [exp{—p o)} Fr—r' D v, (10)
where dt’ is the ordinary volume element and
¢ = [exs(—p) . oy
Alternatively, for the three-dimensional system, equation (10) may be replaced by
V2¢ = 4nGm*(N — Dexp(— po)/¢ . (12)
If we make the reasonable assumption that the mass density p is given by

p(r) = Nmexp(—pB¢)/( (13)

(see Section 3), equation (12) becomes ‘
(kT/m)V*(Inp) = {(N— lj/N }4rGp . (14

Apart from the unimportant factor {(N—1)/N}, this is just the equation of hydrostatic
support for an isothermal perfect gas, and ¢/m is the Emden potential for an iso-
thermal gas sphere (see Chandrasekhar 1939).

Taking the analysis to second order (i.e. requiring that K be a maximum) yields
the stability condition. This need not concern us here; it is sufficient to note that the
system becomes unstable when the density contrast between centre and edge exceeds
32-125. (For the microcanonical ensemble the corresponding value is 708-61; see
Horwitz and Katz 1978.)
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3. Partition Function Expansion

We set 4 = U—V in equation (7a) and rewrite Q as
Q = (1/N Dexp(B<4>) fexp(—ﬁU )exp{f(4—<4))} dQ;. €))

Anticipating that f(4—<{4)) is only O(1) (see equation (26) below and the following
discussion), we expand

exp{B(4—{A)} = 1 +B(4—<4Y) + (12DFHA—(A)? + ..., (16)

which, when inserted into equation (15), implies

Q = (1/N Dexp(B<4Y) {1 +(1/2DX(A~<4))*> +(13DBH(A~<{4))* + ..} . (1T)

Note that the linear term disappears under the averaging. Equation (9) shows that
the first term of (17) corresponds precisely to the stationary point found in the
variational method. The expansion is therefore about that point.

The various averages are easily calculated. Firstly

Wy = ¢ [exp(—pu) U d, = (I [exp(—pi) de = N>, (19
and secondly
s = 202 [[exvi—po—pi)p, drae,
where ¢’ = ¢(r') and F,,. = F(|r—r']). Hence, by equation (10),
7> = 1N, (19)
Ay = 3N 0)

To calculate the second order correction term it is necessary to evaluate (U2,
(UV) and (V*). Omitting the details, we find that these are given by

and consequently

(U = N + NON=1))?, e
UV = NC§? +IN(N-2)(? @)
and
(N 2) . N(N— 2)(N 3) 2

I = KA + @+, 23)

where
AG) = INV-D(E) [emp(—porF2 0. @

Noting that

BHA—LA))?y = PAAD ) = PUSH-KU V>+<V2> <A>2) 25
we see that equations (20)- (23) imply

PRU—P = P (1> + 5 = (0D) = BB say. 29
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It is important to note that, although the individual terms in equation (25) are
all of order N2,* these terms cancel not only to order N2 but also to order N, thus
reducing the first correction term (26) to O(1). Therefore, the ‘width’ of the distribution
B4 = B(U—V) in phase space is ~O(1), whilst the widths of U and V individually
are ~O(N). This is a verification that the chosen form of the approximating potential
energy function U mimics the behaviour of V very well.

We now rewrite equation (17), making use of the relations (20) and (26), as

Q = (/N Dexp(ENB($») ({1 +(1/2DB*E, +(1/3N°E5 + ...}, @7

where E; = {(4—{4>)’). Unfortunately, f*E, and the higher terms are also of
order unity, and so the series in equation (27) converges only slowly in general
(though, providing the partition function exists, (27) must exist also because the
series (16) is uniformly convergent over the entire phase space, and integrating term
by term is therefore always allowable).

However, the series term in equation (27) has little effect on the thermodynamics
provided that it remains O(1). For example, it only introduces an extra term of
relative order N ™! into the average total energy —d(InZ)/df. For most practical
purposes it is therefore acceptable to approximate

Q = (1/N Nexp(ENB{HH) ™. (28)
It may be easily demonstrated that this is in agreement with the usual thermodynamic
formulae. In particular, the Helmholtz free energy A = —k7 In Z is identical with

that calculated from the thermodynamic formulae for energy and entropy.

4. One-particle Distribution Function

The spatial one-particle distribution function (number density) v,(R) is déﬁned,
as a function of position R, by

N
W® = 3, 5= R) >, @9)

where the angle brackets now denote an averaging with respect to the probability
density

exp(— V) /fexp(—ﬁV) do,.

Without loss of generality we may consider only one term in the summation, j = 1 say.
Hence

Vi(R) = N<o(r,—R)) = (N/N!Q) fexp(—ﬂ V)o(ri—R) dQ;. (30)

It is convenient now to define a new average { »; by
1 = feXp(—ﬁU)f?(rl—R)g dQs/feXp(—ﬁU) o(ry— R) dQ;. @31

* Note that, typically, we have Bq& ~ O(1) since it is roughly the ratio of the gravitational to kinetic
energies of a single particle.
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Equation (30) may be treated in a manner similar to that used for Q in the previous
section; thus (defining J)

J= fexp(—ﬁV)é(rl—R) dQ,

= exp(B<A>) I{1 +(1/2DB* (4%, (D + .3, (32

where
I= f exp(—BU) (r; — B) 49, = ("1 exp{~ $(R)} . 33)

The averages (U, (¥, etc. may be evaluated as in Section 3. However, because of
the delta function 8(r; — R) and the consequent increase in combinational possibilities,
the details are quite complicated. Only the final results are therefore presented:

(U1 = ¢(B) +(N—-1){¢>, (34)

where

(p) =¢71 fexp(—-ﬁgb)q& dr etc.

is as before (see equation 18);
V1= ¢R)+HN-2)Ke) ; (35)
(U = ¢(R)* +2(N—1X¢> p(R) +(N—1){p*> +(N—(N—2){¢)>*; (36)
UV = $(R)? +3(N—-2K¢>) $(R) + 1(R) +H(N—2)(N—3K$D* +(N—2)K>>, (37)

where

KB = {(N=D[C} [ Frxexp(~B0)6 o 38)
and ‘
_ N=-2 , 2AN-=2) (N—=2)(N-3)
(V%1 = NTUAR) + 57— 9B + =5 1(R) + —— <> ¢(R)
N-=-2 (N=2)(N=-3) , » (N-2)(N-3}N—-4) 2
T L e aN=1) . (39
These results may be combined to give
{4y, = 1Ny (40)

again, and

BHKA*y (D) = ﬂz(———<¢ >+ (¢ +—-—<¢> (R

N—1 2(N 1)

2 N-=-2

- ﬁ__qs(R) - B+ 5 A(R) + —</1>) , (41)

which is once more ~ O(1).
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Note that equation (41) is analogous to the corresponding formula (26) of Section
3, to order unity. In fact

2 2 1 2N 2 3N 2 2N
=8} = B+ g~ = 9 e () + (8 6

N , 2N
- TR — R+ AR)
=E, +N 'a(R) say, (42)

where B%a is O(1). This near agreement is not surprising since the definitions of
the average in the two sections differ solely by the addition of the delta function
o(r; —R) in the present case, which reduces the dimensionality of the integral from
3N to 3(N—1) only.

In the stationary point approximation, the number density is obviously given by
(noting equations 28, 30, 32 and 33)

vi(R) = (N/Qexp{—B $(R)}, (43)

in complete agreement with the Emden form (13). If the quadratic correction terms
in both J and Q are included, we find instead
N 1B%a
R) = —exp{—B (R} 1+ — 2
(B = Zesp(=F (R} 1+ 5 aper)
N ' w(R
- Fexn(—pom)(1+ 52 say. (44)

Thus we obtain a correction term O(N ~!). Note also that, since by equations (10)
and (38)

D =<9, (45)

the correction a(R) has an average of zero. Thus, integrating equation (44) over the
configuration, we retain exactly the normalization

fvl(r) dt = N. (46)

The important point to note here is that, although the terms in the series in both
J and Q are O(l), and converge slowly, the quotient J/Q converges to that order
immediately. However, taking both J and Q to third order will produce another
term O(N ~') in J/Q, and therefore the form of the correction in equation (44) is
by no means final. (The convergence should be understood in the sense of the
convergence of the sequence {S,} = {J,/Q,}, that is,

J/Q = lim Sk’
k=

where the subscript & indicates that the respective series should be taken to the kth
order terms.)
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However, another difficulty arises. Terms of the form

Y0 f exp(—pd) Flyde, 033, @7

appear in J, whilst Q contains the double integrals

N 2) H exp(—Bp— P i dude’, 0> 3, (48)

in the cubic and later terms. These integrals diverge in the three-dimensional case,
for which equation (5a) holds, because the singularities in the integrands are too
severe. Thus, in this case, it is meaningless to proceed further than the quadratic
terms in the series without somehow modifying the potential at short range. It
should be noted, though, that terms of the form (47) and (48) present no difficulties
in one or two dimensions. Therefore, in theory, it is possible in these cases to extend
the series to any desired degree of approximation.

Table 1. First correction term w(¢&)
z is the Emden radius, p./ps the density contrast and ¢ the dimensionless Emden length scale

z PelPo 4 w z PelPo ¢ w
0-010 1-000017 0-000 —8-8x10°1 5-0 7-722 0-0 0-81
0-002 —7-1x10"1t 1-0 0-66
0-004 —2:-6x10"1! 2-0 0-36
0-006 2-6x10-1 3-0 0-058
0-008 4-0x10-11 4-0 —-0-22
0-010 14-4x 1011 5-0 —0-61
1-0 1-172 0-0 ~—0-0052 8-9931 32-125 0-000 2-4
0-2 —0-0039 1-799 1-4
0-4 —0-0006 3.597 0-25
0-6 0-0028 5-396 —-0-30
0-8 0-0028 7-194 —0-55
1-0 —0-0124 8-993 —0-90

Returning to equation (44), the correction w(R) may be evaluated numerically,
though the details of the calculation need not concern us. The results are most
conveniently expressed in terms of the dimensionless Emden length scale

¢ = (4nGmPp.)*R, (49)

where p, is the central density. The Emden radius corresponding to the radius of
the boundary R, shall be denoted by z. It should be noted that the equilibrium
isothermal gas spheres form a one-parameter family, that parameter being most
conveniently either z or the density contrast p./p, (z = 0 corresponds to p./p, = 1
and z = 8-9931 to p,/p, = 32125, the largest stable configuration). Table 1 gives
w(&) for various values of z. The very small corrections for z = 0-01 are expected;
for this configuration, gravity is practically absent and therefore, since no position
is distinguishable from any other, the Emden density v; = const. is exact.
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Conversely, we know from the stability analysis that Q ceases to exist for
z > 8-9931, but since w is well behaved for all z it appears that the instability must
manifest itself in the present analysis by the various series diverging. This conclusion
seems consistent, in a very crude way, with the apparently monotonic increase in
the magnitude of w with increasing z. We might therefore expect that w provides a
good estimate of the size of the error for z sufficiently far below the critical value.

5. Two-particle Distribution Function

The two-particle distribution function is defined by

N N
R R) = Y Y Me-R)G-R) > (# ], (50)

j=1i=

where the average is with respect to exp(— V) again. Choosing two representative
values of i and j, we may rewrite equation (50), as

V2(R, R') = N(N—1)<6(r; —R) 6(r, — R'))

_ N(N-1)
- N!'Q

f exp(— BV) 8(r, — R) 5(r, — R’) dQ, . (51)
Defining < ), according to
(s = f exp(—BU)g 5(ry — R) 8(r — R') 42, / f exp(—BU) 3(ry — B) 8(r, ~ R') 42,

(52)
and noting that

LR, R) = f exp(— V) 8(r,—R) 5(r,— R') dQ,

= exp(<4)>) feXP( —BU) 8(r—R) 6(r— R') exp{f(4 —<4),)} dQ;, (53)
we may expand as before to show that

L = exp(B{A),) I{1 +3B*({4%),—<{MDD) + ..}, (54
where now

I = feXp(—ﬁU)é(rl—R)fS("z—R') dQ, = (" *exp{—BH(R) —fH(R")}.

The relevant averages, although more complicated in form, may be calculated
as in Section 4. Firstly, it is seen that

(N=2)(N+1)

TR ORI CY)

W = ~FIR=R) + {60+ () +

Thus, in the stationary point approximation, the two-particle distribution function
is, by equations (28), (51), (54) and (55),
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NN =D (= B o(R) — B SR

v,(R,R’) = Z

xexp{—/i’F(lR—R' D+ Nli

e L RTC0) | D

Noting equation (43), this may be rewritten in terms of the one-particle distribution
function as

V(R R') = exp{—BF(|IR—R'|)} v (R) v(R), (57

except for terms, which depend on R and R’ but not on | R— R’ |, of relative order N ~*.
Equation (57) indicates the required modification to the Vlasov approximation.

Although BF is generally O(N '), in two and three dimensions it has a singularity

at R = R’ which, according to equation (57), enhances the probability of two given

particles being extremely close to each other. In one dimension, F has no such

singularity; we shall not consider this case further. It remains to be seen to what

extent the further terms in the series alter the picture presented by equation (57).
The quadratic term may be calculated. Defining

ASRR) = (NOV=DJE) [[expl— ) i, F, 4. (59)
we may show that, to order N %,
(A=A = Ey — N HI0CH? +6(85° +5((R)+ $(R))? +2(>
48> ($R)+$(R)) +4(x(R)+ 1(R))
—(A(R) +24,(R, R’) + A(R))}. (59)

The important point to note here is that F(| R— R’ |) does not appear in this expression.
Although it is present in (UV,, { V%>, and {4)3, when combined into {(4—<4%,)*>,
it cancels exactly. This is a general property for all terms in the series. To prove
this, note that we may write

4 =g(r) —Fi,, (60)

where g contains ¢(r,), ..., ¢(ry) and all the F’s, such as F,3, F,;, F3, etc., but not
F,,. By the definition (52), it may be seen that, for any function f of the coordinates,

<f‘(F12_FRR’)>2 =0. (61)
Noting that

A=Ay, = (9—<g>2)—(F1o—Fgrr), (62)
we may write, using the binomial expansion,

LA—=L4>)">, = k{; @ (= l)m—k«g —<g>2)k (Fiz "FRR')m_k>2
= (g—<92)"2> (63)

since, by equation (61), all terms containing F;, — Frg- have zero average.
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Thus, since we are looking for singular terms which depend on | R—R’|, it would
appear that no modification of equation (57) is required. However, this is not
necessarily true. Consider, for example, the following term which appears in

(A= (B35
D(R,R) = f exp(—B) FZ, Frsp dr. (64)

For R # R’ this integral converges; however, in three dimensions, if R = R’ then
the singularity in the integrand, which is of order 3, is too severe and the integral
diverges. Thus, the function D(R, R’) has a singularity at R = R’ (in fact, it behaves
as a simple pole).

Note, however, that D, and other terms like it, always converge in two dimensions.
Thus, the nature of the singularity suggested in equation (57) is exact in this case.

6. Discussion

It has been verified in Section 3, at least for the system in a heat bath, that the
thermodynamics derived from statistical mechanics is equivalent to classical thermo-
dynamics for the spherically symmetric self-gravitating system. This is important
in view of the possible objections to the foundations of the classical theory based on
the inapplicability of the cycle property (or zeroth law) to systems with long range
forces. In addition, the conjecture (13) concerning the form of the one-particle
distribution function has been shown to be justified. Thus the hydrostatic (Emden)
theory of the equilibrium structure, as well as the global thermodynamics, has been
demonstrated to be in accord with the statistical mechanics.

Furthermore, it was found in Section 4 that the deviation of v, from the Emden
density is of order N ~! (provided that, in three dimensions, the singularities are cut
out). A rough approximation to the constant of proportionality multiplying the
N~ in this correction term showed that, for N = 100 say, the error in adopting
the hydrostatic theory is unlikely to be greater than a few per cent, at least for z
not too close to the critical value. However, the more important consideration is
that the correction is of order N ~1, as distinct from N ~%. The particular significance
of this result is that, for reasonably large N, the errors in the underlying distribution
are small compared with the statistical fluctuations of particle number in a defined
region, which typically go as N "*. Thus, deviations from the Emden density will
generally be of little physical significance in the systems which we consider.

A significant advantage of the present method is that any difficulties with singular
potentials are not encountered until the cubic correction term, after most of the
interesting information has been obtained. Hard core potentials or the like need to
be invoked in principle only. This crystallizes, in a mathematical way, the idea that
the hydrostatic (continuum) method, in which the physics of close interactions is
neglected, provides an adequate description of a large system of particles.

Turning to the two-particle distribution function, we note that the error

v2(R, R)/vi(R)v{(R) —1

involved in adopting the Vlasov approximation is generally O(N ~1), in accordance
with analyses based on the Liouville equation (Gilbert 1971).
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In three dimensions it can be shown that the condition for the higher terms in
the series expansion of v, to be small compared with unity is that | BF | < 1. Equation
(57) indicates that this is also the condition for the Vlasov approximation to apply.
This is not surprising in view of the fact that SF is a measure of the ratio of the
gravitational energy of a pair interaction to the average kinetic energy of an individual
particle.

However, in two dimensions no short distance cutoff is required to limit the size
of the higher terms. Thus, in theory, the Vlasov approximation may break down,
according to equation (57), even though the Emden form for v, remains valid. In
practice, though, this is not important since (57) can be put in the form

v2(R,R)) = |R—R'| 7" Ny (R)v,(R),

N

b

and thus we see that only unrealistically small separations, of the order of e~
produce a significant effect.
In one dimension, no difficulties with singularities arise.
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