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Abstract

Where the number density of a species becomes very small, inertial development of vorticity occurs;
so a magnetospheric zone in which a species is contained must be enclosed by a vortical boundary
layer. Where zones of corotating electrons and ions abut, there exists a large local non-corotational
electric field, directed so as to force a merging of the electron and ion boundary layers. The poloidal
accelerations and azimuthal drift velocities generated in these layers are estimated here. Ions are
accelerated to nonrelativistic or mildly relativistic poloidal speeds, then penetrate into the electron
corotation zones where they are centrifugally decelerated as they travel approximately along magnetic
field lines. They mirror between points above the stellar surface and the boundary layer, presumably
moving to lower magnetic field lines until they reach the star. Electrons are accelerated to poloidal
speeds that are relativistic for distances from the axis of rotation exceeding about 1/30 of the radius
of the light cylinder. They enter the ion corotation zone where they are further accelerated as they
travel approximately along outgoing portions of the closed magnetic field lines, and are then
decelerated on ingoing portions. They mirror between the northern and southern boundary layers,
presumably moving to lower magnetic field lines until they reach the star. The electrons in the outer
parts of the ion zone are very highly relativistic and emit gamma radiation which, in the case of the
Crab pulsar, might create electron—positron pairs.

1. Introduction

This paper is one in a series following up a paper (Burman 1980) in which I gave
a careful analysis of flow dynamics in steadily rotating neutron star magnetospheres,
using the exact dynamical equations expressing balance between the Lorentz force
and relativistic inertia. The purpose of this series is to deduce the implications for
model building of the results of that analysis.

In my previous paper (Burman 1981a), I concentrated on magnetospheric regions
in which the particles have azimuthal speeds that are close to the local speed of coro-
tation. Ishowed that, in order to understand the flow dynamics and avoid absurdities,
it is essential to use the correct functional form for the non-corotational electric
potential @ everywhere outside the star—including zones of corotation in which @
had invariably been neglected. The implications include a potential difference between
zones of corotating electrons and ions, resulting in a large local V @ field in vortical
boundary layers separating those zones, directed so as to force a mixing of electrons
and ions there. This contrasts sharply with the well-known work of Holloway (1973),
based on use of the zero-inertia approximation with ¢ piecewise constant on magnetic
field lines: He argued that the electron and ion zones are separated by evacuated
regions, but I have contended (Burman 1981«) that this conclusion was reached by
an unjustifiable extrapolation of the results of a thought experiment. A further
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consequence of my analysis is a mirroring of electrons between the northern and
southern boundary layers.

The purpose of this paper is to initiate study of the physics of the boundary layers
separating the electron and ion corotation zones, and to consider the consequences
of that physics. The poloidal accelerations and azimuthal drift velocities generated
in those layers will be estimated for both ions and electrons. The behaviour of the
accelerated ions and electrons as they subsequently penetrate into the electron and
ion zones, respectively, will be deduced. Implications of the results for model building
will be discussed. ’

2. Basic Formalism

Let @, ¢ and z be cylindrical polar coordinates with the z axis as the rotation axis
of the star. The system is steadily rotating at angular frequency Q. The electric
field is the sum of a part originating in the rotation of the magnetic field structure and
a non-corotational part —V @ (Mestel 1971); the potential @ is defined in terms of
the familiar scalar and vector potentials as ¢ —(Qw/c)4,, where ¢ is the vacuum
speed of light (Endean 1972a); & is gauge invariant.

The magnetospheric plasma is taken to be cold and non-dissipative: the equation
of motion of each species expresses balance of the Lorentz force by relativistic inertia.
Let v, and 7y, denote the flow velocity and corresponding Lorentz factor of species k,
and let ¢, and m, denote the charge and rest mass of its particles. Also, u, will denote
the flow velocity of species k reduced by the local speed of corotation with the star:
u, = v,—Quwt, where ¢ is the unit toroidal vector.

By using the Endean (19724, 1972b) integral of the motion—which follows from
the steady rotation constraint—together with a fluxoid conservation theorem (Buck-
ingham et al. 1972, 1973), Burman and Mestel (1978) reduced the equation of motion
to a simple form. They went on to point out that, if all particles of species k are
nonrelativistic when arbitrarily near the star, then the Endean integral of the motion
becomes

e P Qw vk¢)
1-— = - — ), 1
mkc2 ))k( ¢ ¢ ( )

and the equation of motion reduces to a very simple form, which is just a generalized
isorotation law; this law, which is a differential equation relating the flow velocity
to the magnetic field B, states that the reduced flow velocity #, is along the magnet-
oidal field B +(cm/e,)V x (y,v,). For these two results to be valid, the particles
concerned must, if leaving the star, be emitted with nonrelativistic speeds; if returning
to the star, or accreted by it, they must be decelerated so as to be nonrelativistic on
impact; in any case it is necessary for the particles to be nonrelativistic in only an
arbitrarily thin neighbourhood of the stellar surface.

I have shown (Burman 198150) that, when the number density of a species becomes
sufficiently small, a process of ‘inertial development of vorticity’ occurs. For example,
if a species is contained within a zone, then that zone must be surrounded by a skin
or boundary layer of vortical flow in which the ‘inertial drift’ term in the generalized
isorotation law is important.

Let —e denote the electronic charge while m, and m, are the electron and proton
rest masses. Let ®(e) and @(i) represent @ in a zone of corotating electrons and in a
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zone of corotating ions of atomic number Z and mass number 4. Combining the
corotational Lorentz factor with the integral (1) of the motion gives (Burman 1980)

_eds(e)/rnec2 = 1_(1_x2)%, (2)
Ze ®(i)Am, c* = 1—(1—x?)?*, (3)

where x is the dimensionless cylindrical polar radial coordinate Qw/c. These equations
demonstrate the existence of a strong local gradient of @ across the boundary layers
separating zones of electron and ion corotation, directed from the electron zones to
the ion zone (Burman 1981a). The force it exerts on positive ions is towards the
electron zones, while that on electrons is towards the ion zone: the zones must
merge to form a boundary layer of mixed plasma. The effects of these forces will
now be estimated.

3. Poloidal Acceleration of Ions

Consider a positive ion, of atomic number Z and mass number 4, with negligible
poloidal speed, entering a boundary layer between zones of corotating electrons and
ions. For simplicity, in this first approach to the calculation of boundary-layer
acceleration, it will be assumed that the azimuthal speed of the ion remains about
Qwm; this assumption will be checked in Section 7 below.

The integral (1) of the motion becomes, dropping the subscript &,

1 —Zed|Am,c?
- 1—x? ’

@

while the definition of the Lorentz factor becomes y~2 ~ 1 —x* —v2/c?, where v,
denotes the poloidal speed of the ion. Eliminating y between these two equations
gives

vp

) 1—x2
2~ (1=x )(1 (1 —Ze®[Am, cz)z)- ©)

4

In the ion zone, @ is @(i), as given by equation (3); hence the integral (4) reduces
to the equation y &~ (1—x2)"* for the corotational Lorentz factor, while (5) reduces
to v, = 0, both as specified. But, so long as v, remains about Qw, equations (4) and
(5) for y and v, remain true as the ion traverses the boundary layer, where @ decreases
from &(i) to P(e); they continue to hold, with &(e) for ®, as the ion subsequently
penetrates into the electron corotation zone.

When the ion has crossed the layer, we have @ = &(e) so equation (5) gives

v, & Qu(l—x?)*. (6)

Thus, the local non-corotational electric field in the boundary layer accelerates ions
to poloidal speeds that, near the star, are similar to their (original) azimuthal speeds
Qw, but that are rather less than Qw further from the star, becoming small near the
light cylinder. According to equation (6), the generated poloidal speed is greatest
at x = \/%, where it is about Z¢; of course, the position and value of this maximum
may well be significantly affected by departure of the azimuthal speed from its
corotational value, '
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With equation (6) for v, and Q@ for v, the definition of the Lorentz factor gives

y~ (1—x?)7L. 0]

Equations (6) and (7) for v, and y remain valid as the accelerated ions penetrate into
the electron zone.

Equation (7) shows that the accelerated ions will be no more than mildly relativistic,
except very close to the light cylinder. In the axisymmetric case, the corotating ion
zone terminates where the corotational Lorentz factor (1—x?)"* is approximately
equal to (—ZeB,/Am, cQ)"”*, as shown by Wang (1978). The magnetic field near the
light cylinder might be 10°G (= 10>T) for the Crab pulsar and 1 G for a three-
second pulsar (Ruderman 1972, see p. 444), so the maximum corotational Lorentz
factor in the ion zone is perhaps of order 10>%%, Equation (7) indicates that, in this
vicinity, the boundary-layer acceleration mechanism will increase the Lorentz factor
of the ions to perhaps 10*%1, »

In the boundary layer, the process of inertial development of vorticity occurs
(Burman 19815): the poloidal motions of the particles cannot be along, or nearly
along, the poloidal magnetic field lines. But once the ions have entered the electron
zone, their reduced flow will lie approximately along magnetic field lines. In the
electron zone they will be acted on by the centrifugal effect and the non-corotational
electric force —Ze V ®(e). The force e V ®(e) on the corotating electrons acts inwards
balancing the centrifugal effect. Since the centrifugal effect is much greater for the
ions than for the electrons—their azimuthal speeds being similar—the net unbalanced
force on the ions as they sweep through the electron zone is close to the centrifugal
‘force’. That is, the ions are centrifugally decelerated as they travel approximately
along magnetic field lines toward the star. This is represented by equations (6) and
(7) for v, and 7, which remain valid as the ions propagate through the electron zone.

Equation (6) would indicate that the centrifugal deceleration is insufficient to
stop the poloidal motion of the ions, suggesting that they hit the star as slow non-
relativistic particles with v, ~ Qw. But when the additional azimuthal speed given
to the ions in the boundary layer (see Section 7) is taken into account, together with
the dissipation that undoubtedly occurs there, it is clear that the acceleration developed
in the layer is rather less than has been calculated here. Consequently, the centrifugal
deceleration will stop the poloidal motion of the ions above the stellar surface and
return them to the boundary layer. They will mirror between the boundary layer
and points above the stellar surface. It is likely that energy losses will cause the ions
to move gradually to lower magnetic field lines until they eventually reach the star,
but this remains to be checked in a more complete study.

4. Poloidal Acceleration of Electrons

Consider an electron, with negligible poloidal speed, entering a boundary layer
between zones of corotating electrons and ions. As with the ions, it will be assumed
for the present that the azimuthal speed of the electron remains about Qw, an assump-
tion which will be checked in Section 7. The integral (1) of the motion becomes,
dropping the subscript &,

_1+ed/m,c?
To1=xr

©)
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while the definition of the Lorentz factor becomes 7y~ 2

y between these two equations gives

~ 1 —x? —v2/c?. Eliminating

GIQ
[NJICHN)

1-x?
~ 0~ ) ®

In the electron zone, @ is ®(e), as given by equation (2); hence the integral (8)
gives the corotational value for y while (9) reduces to v, = 0, both as specified. But,
so long as v, remains about Qw, equations (8) and (9) for y and v, remain true as
the electron traverses the boundary layer, where @ increases from @(e) to ®(i); they
continue to hold, with &(i) for @, as the electron subsequently penetrates into the
ion corotation zone.

When the electron has crossed the layer, @ = @(i) so the integral (8) becomes

—(1—=x%?*
'}’z1+(Amp/ZTf_)ilz ¢! x)}, (10)

while (9) gives

2
»x (1—x2)(1
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1—x2
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Since these expressions are a little complicated, it is illuminating to break them
down into simpler ones valid in particular ranges of x.
For x* < 1, equations (10) and (11) show that

Am x*
with
2 A 2\ -2
1 —gl’ ~ (1 + an: %) x? 13)

In particular, for x < (2Zm,./Am,)* ~ 1/30, the electrons in the ion zone are non-
relativistic with

vy & (Am,|Zm)*Qw ~ 40 Qw ; (14)

that is, the boundary layers accelerate electrons to poloidal speeds of about 40
times their (initial) azimuthal speeds. For x = 1/30, the boundary layers cause
the electrons to become mildly relativistic, with y of order 1 and v, close to c. For
x 2 1/30 but x* < 1, equations (12) and (13) show that the accelerated electrons
are mildly to moderately relativistic:

Am, x* 3 2
~ —_— 15
7Rt A 1x10°, (15)
with
v? Am, x*\ ~2
1-2x~ P ) +x? &~ (1x10°x*) "2 +x2, (16)
c? Zm, 2
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In the region 1/30 < x < 1, the boundary layers produce only relativistic electrons:

Amy1—(1—x%)*

¥ Zm,  1-x (17)
with
v? Zm 1—x2 \2
1—-Lx (-——-f -—) 2, 18
& \dm, 1-(1—x** X 18

which reduce to equations (15) and (16) for x> < 1 but x 2 1/30. Close to the
light cylinder, or more precisely for (1—x?)* < 1, equations (17) and (18) simplify to
_ AmylZm, 1x10°
To1-x2 T 1-x’

(19a,b)

vic? ~ 1—-x2. (20)

According to (18), the greatest value of v, is achieved for x ~ 2*(Zm./Am,)'* ~ 1/10,
where 1 —v,/c ~ 1x1072. The location and value of this maximum may well be
significantly affected by departure of the azimuthal speed from Q.

All of the equations (10)~(20) remain valid as the electrons sweep through the
ion zone.

The above analysis shows that the accelerated electrons will be highly relativistic
for x > 1/30. In the axisymmetric case, the corotating electron zone terminates
where the corotational Lorentz factor is approximately equal to (eB,/m,cQ)'/?
(Wang 1978); near the light cylinder this is perhaps of order 103**. But the boundary
layer with the ion zone will terminate where the ion zone terminates, at perhaps
(1—x3"%* ~ 10**%, Equations (19) indicate that, in this vicinity, the boundary-layer
acceleration mechanism will increase the Lorentz factor of the electrons to perhaps
1071 or so.

In the boundary layers, the poloidal motions of the particles must depart from
the poloidal magnetic field lines. But once the electrons have entered the ion zone
proper (excluding its outer boundary layer), the inertia of even the most highly
accelerated ones is insufficient to cause the reduced flow velocity to depart significantly
from magnetic field lines, as will now be shown.

The relative importance of the inertial and magnetic effects in the fluxoid law for
species k is estimated by the magnetic Rossby number ¢, introduced by Wright
(1978): ¢, = 7, v, /wp, Ly, where wpg, is the magnitude of the nonrelativistic angular
gyrofrequency of species k and L, is a length scale over which the macroscopic
properties of species k vary significantly. For corotating particles, v, ~ Qw and L,
is typically of order @, so

& ~ P Qlwpy . (21

This estimate shows that the ratio of inertial to magnetic effects is of the order of
the ratio of a macroscopic rotational frequency to a microscopic gyrofrequency, as
Mestel (1971) showed by considering the corresponding energy densities.

For relativistic particles traversing the outer parts of a corotating zone, v, = ¢
and L, ~ ¢/Q so the estimate (21) again applies. It will not apply to particles in the
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thin outer boundary layer of a corotating zone, since L, there will be very much
smaller than ¢/Q. Since (1—x*)"* ~ (wp,/Q)"* where the ion zone terminates
near the light cylinder, with wp, denoting the nonrelativistic proton angular gyro-
frequency, equation (19a) indicates that the maximum Lorentz factor for the acceler-
ated electrons as they traverse the ion zone is about (m,/m.)(wg,/2)*">. So, from
(21), the magnetic Rossby number for these maximally accelerated electrons is of
order (Q/wpg,)'/?, which is perhaps of order 1072*%. Thus, even for these electrons,
the magnetic effects outweigh the inertial effects in the fluxoid law: their inertia is
insufficient to bring about any significant departure of their reduced flow from the
magnetic field lines. (This will not be the case for electrons in the outer boundary
layer of the ion zone.)

In the ion zone, the accelerated electrons will be acted on by the centrifugal effect
and the non-corotational electric force eV @(i). The force —ZeV &(i) on the coro-
tating ions acts inwards balancing the centrifugal effect. The force eV @(i) on the
electrons acts outwards, supporting the centrifugal effect. For x? < 1, the centrifugal
‘force’ on the electrons is much less than that on the ions. So then the centrifugal
force on the electrons is small compared with the non-corotational electric force on
them, provided Z is small. For (1 —x%)* < 1, equation (19a) shows that the accelerated
electrons are just so much more highly relativistic than the corotating ions that their
relativistic masses, and hence the centrifugal forces on them, are approximately
equal. So then the centrifugal force on the electrons is approximately Z times the
non-corotational electric force on them.

As each electron traverses the ion zone, it will experience a total force directed
outwards, perpendicularly to the stellar rotation axis. The component of this force
parallel to the magnetic field will act to accelerate the electron further as it travels
approximately along outgoing portions of the closed magnetic field lines and to
decelerate it as it travels along ingoing portions. This is represented by equations
(10)~(20) for v, and 7y, which remain valid as the electrons propagate through the
ion zone. The electrons will be rapidly decelerated on reaching the boundary layer
in the opposite hemisphere. In the second boundary layer, their poloidal motion will
be essentially stopped and they will be accelerated again back into the ion zone:
the electrons will mirror between the northern and southern boundary layers. Dis-
sipation will occur both in the boundary layers and as the electrons traverse the ion
zone. This will presumably cause the electrons to move to lower magnetic field lines
until they reach the star.

5. Boundary-layer Thickness

In my note (Burman 19815) demonstrating the existence of vortical boundary
layers in pulsar magnetospheres, I made some rough estimates of the thicknesses of
the boundary layers separating the electron and ion corotation zones. The informa-
tion obtained in the last two sections on particle speeds and Lorentz factors in those
layers now enables me to make improved estimates.

As I pointed out (Burman 19815), the inertial and magnetic contributions to the
magnetoidal field of a species must cancel where its number density becomes very
small; this means that the magnetic Rossby number ¢, is of order one there. So a
boundary layer between two species has a thickness which can be estimated to be of
the order of the greater of the quantities y,v,/wg, for the two species. These two
quantities will be called L; and L, for the ions and electrons respectively.
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It was seen above that the ions in the boundary layers have speeds of about Qm
and Lorentz factors reaching about (1—x*)"!. For x < 1/30, the electrons in the
boundary layers are nonrelativistic with speeds reaching about 40Qw. For
1/30 < x < 1, they are relativistic with Lorentz factors reaching that given by
equation (17). Hence we have

LJL, ~ 50 for  x < 1/30, (22a)
LiJ/L, ~ x/{1—(1-x**} for 1/30 S x <. (22b)

In particular, for x 2 1/30 but x> < 1, the expression (22b) shows that L;/L, ~ 2/x,
which drops from about 50 to a few as x increases in this range. For (1 -x?)* < 1,
(22b) shows that L; ~ L.. So, for all x, L; 2 L., the two quantities being similar
near the light cylinder. :

Hence, the thickness L of the boundary layers between the electron and ion
corotation zones can be taken to be L;. Thus we have

L Qjwg,

. 23
w 1-x? (23)

Near the star, the thickness is microscopically small, indicating that fluid dynamics
will not provide there an adequate description of behaviour in the boundary layer
(Burman 19815). Because of the w factor and the rapid decline of magnetic field
strength, the boundary layer increases rapidly in thickness away from the star,
roughly as w* until near the light cylinder where it flares out because of the (1 —x?)~*
factor. With the boundary layer terminating near the light cylinder where (1 —x*)"* ~
(wp,/)'73, it follows from the estimate (23) that L/w varies from being of order
QJwg, near the star to being of order (2/wp,)'/* near the light cylinder. Near the
light cylinder of the Crab pulsar, L is perhaps a few kilometres. Near the light
cylinder of a three-second pulsar, L is perhaps 10* km—about one-tenth of the radius
of the light cylinder.

6. Electric Fields

The non-corotational electric fields —V &(e) and —V &(i) in the electron and
ion corotation zones follow from equations (2) and (3) of Section 2. The non-
corotational electric field in the boundary layers between those zones can be estimated
by using (2) and (3) together with the layer thickness just calculated. In this section,
these fields will be obtained and their magnitudes compared with each other and
with the magnitude E_, of the corotational electric field —x¢ x B.

Equations (2) and (3) give

—e Q x
Tl V)~ i 24
m, 2V~ A—xDi" @4

Ze Q x
—— V(i) x ——=1, 25
Am,c? ® ¢ (l—x2)F (2)

where i is the cylindrical polar unit radial vector. The corotational and non-corota-
tional electric fields are both poloidal, with the latter in the +i or —i direction
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according to whether the corotating particles are negatively or positively charged.
The non-corotational electric forces eV @(e) and — Ze V &(i) act inwards, balancing
the centrifugal effect on the corotating particles.

From equations (24) and (25) we have

|V @@)|/Er ~ (Q)wp)/(1—x7)* ~ &, (26)
|V oW /Ee ~ (Qlog)/(1-xH)* ~ &, @7

where ¢, and ¢; are the magnetic Rossby numbers of the corotating electrons and ions,
for which the estimate (21) has been invoked. Thus, the ratio of non-corotational to
corotational electric field strengths in a zone of corotation is of the order of the
magnetic Rossby number of the corotating species, which measures the relative
importance of the inertial and magnetic contributions to the magnetoidal field of
that species; it is the predominance of the magnetic field that enforces corotation,
so the magnetic Rossby number is small. With corotation terminating near the light
cylinder where (1 —x?)"% ~ (wg/Q)'/3, it follows that g, and hence |V &(k)|/E,,,
vary from being of order Q/wg, near the star to being of order (Q/wg)*> near the
light cylinder, remaining small throughout.

Because their function is to provide forces to balance the centrifugal effects on
the corotating particles, the potentials ®(e) and ®(i) are proportional to the mass
to charge ratios of those particles. They have the sign of the corresponding particles,
and, for similar values of x, ®(i) is larger than | d(e)| by a factor of (2-4)x 10°—
hence the occurrence of a strong non-corotational electric field across the boundary
layers separating electron and ion zones. Its magnitude will now be estimated.

From equations (2) and (3), at a given value of x, we have

() — P(e) ~ (Am, c*/Ze){1—(1—x?)*}. (28)
So, the estimate (23) for the layer thickness implies that
|V®|E, ~ {(1-x})/x*}{1-(1—-x*)*}. - ®

This function is 4 for x> < 1; it falls as x increases but declines slowly at first reaching
1 slightly beyond x = ; it falls rapidly for x* very close to one, dropping to about
(Q/wg,)** where the boundary layer terminates.

The boundary layer V @ is always very large compared with nearby values of
V @(e), and is large compared with nearby values of V @(i) except near the light
cylinder where these two become the same order of magnitude.

In the boundary layer, inertial and magnetic effects are of similar importance.
Therefore it is no surprise to have found the non-corotational electric field to be,
except near the light cylinder, close to the corotational electric field in magnitude.

7. Toroidal Drifts

An unbalanced poloidal force acting on a particle—unbalanced relative to that
required to maintain corotation—will produce two effects: It will, except where it
happens to be perpendicular to the particle’s trajectory, cause poloidal acceleration;
its other effect is a toroidal drift. In this first approach to the study of the physics of
pulsar magnetospheric boundary layers, I am proceeding on the assumption that the
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two effects can be estimated separately. The order-of-magnitude calculation of the
boundary-layer V @ field in the last section enables the toroidal drifts it generates
to be estimated. For the procedure to be valid, it is necessary that these drifts are
not so large as to upset seriously the poloidal accelerations previously calculated.
I shall show in this section that the drifts are indeed not too large. But first the
toroidal drifts of the accelerated particles as they travel through the corotation zones
will be calculated and shown to be small.

The approximation (1—x?)"! for the Lorentz factor of the accelerated ions in an
electron zone implies that the centrifugal effect on each ion is greater than that on a
corotating electron at the same value of x by a factor of (Am,/m,)(1 —x¥)~* The
centrifugal effect on a corotating electron is balanced by the non-corotational electric
force eV &(e). So the centrifugal force on an accelerated ion greatly exceeds the
non-corotational electric force —ZeV &(e): the unbalanced force on an ion is
F;, where

F; ~ y,Am,Q*wi. (30)

The toroidal drift velocity produced by a poloidal force F acting on a particle
of charge q is ¢ F x B,/qB*, where B, is the poloidal part of the magnetic field. Thus
F; given by equation (30) generates a toroidal drift of the ions, relative to the motion
of corotation, with velocity w;, where

w; Q ixB,
it PR ) 31
20~ Vor B (31

The accelerated ions have speeds close to Qw. (For x* < 1 they have velocity com-
ponents v, & Qw ~ v,; for larger x? they have v, € Qwand v, ~ Qw.) Taking their
macroscopic properties to vary on a length scale of order @ shows that the estimate
(21) for the magnetic Rossby number is in fact valid for all the accelerated ions, not
just those traversing the outer parts of the electron corotation zones. Hence equation
(31) implies that

wi/Qw < y; Qwg; ~ &, (32

where ¢; denotes the magnetic Rossby number of the accelerated ions. Taking
7 S (wg;/Q)* implies that &; and w;/Qw are less than about (Q/wg;)*/?, and so are
both small. Since ¢; is small, the ions travel through the electron corotation zones
with a reduced flow velocity that is essentially along the magnetic field lines.

The centrifugal effect on an accelerated electron in the ion zone will, depending
on x, be more or less than that on a corotating ion at the same value of x: the ratio
of the effects is (1—x*)*y, m./Am,, and, for sufficiently large x, the electrons are so
much more relativistic than the ions that this ratio exceeds one. The centrifugal
effect on a corotating ion is balanced by the non-corotational electric force —Ze V &(i).
So the centrifugal force on an accelerated electron may be more or less than the
non-corotational electric force eV @(i): the unbalanced force is F,, where

Am |Z .
F, = ((1_#)12_ +7, me)szt; (33)
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equation (25) has been used for V @(i). In 1/30 < x < 1, the accelerated electrons
are relativistic with Lorentz factors given by equation (17); hence

A Q%

Fe ~ Zmp__l—xz

i, (34)
with the centrifugal effect predominating in F, when x 2 4./3. For x < 1/30, the
electrons are nonrelativistic, the centrifugal contribution to F, is negligible and
equation (33) reduces to (34) with x> < 1. So (34) can be taken to be applicable
for all accelerated electrons.

The force F, given by equation (34) produces a toroidal drift of the electrons,
relative to the motion of corotation, with velocity w,, where

w 1 QB xi
e , 35
Qw 1-x>wy B (33)

Hence, with (1—=x%)"% < (wp,/Q)/3 in the ion zone, we have
Bi

1/3
Ve < 1 .ﬁ_s(_{z_) X (36)

Qm ~ 1_x2 wBi a)Bi

Thus, the toroidal drift speeds of the electrons in the ion zone, like those of the ions
in the electron zones, are less than the local speed of corotation by factors which are
less than about (Q/wg;)'/3, which is small.

For x < 1/30, the accelerated electrons are nonrelativistic with speeds of about
40 Qw. In 1/30 < x < 1, they are relativistic with Lorentz factors given by equation
(17). So, taking their macroscopic properties to vary on a length scale w implies
that the magnetic Rossby number ¢, of the accelerated electrons is given by

10

& ~ %w—m for x < 1/30, (373)
11-(1—x%* Q

oo SLIZAZX) @ B0 <1. (37b)

Cx 1-x? oy

Thus e, varies from about (1/50)(Q/wg;) for x < 1/30, through about 1x(Q/wy;) for
x % 1/30 with x> < 1, to about (Q/wg;)'/? near the light cylinder: it is always small.
So, as mentioned before, these particles—even the most highly relativistic of them—
do not have sufficient inertia to untie themselves from the magnetic field lines. For
the most energetic of them, the radiation reaction force might be strong enough to
make them cross magnetic field lines. But most of the electrons travel through the
ion corotation zone with a reduced flow velocity that is essentially along the magnetic
field.
The toroidal drift velocity w, relative to the motion of corotation, in a poloidal
V @ field is given by
wlc = {B, x (V®)}/B>. (38)

This velocity, being an electric field drift, is independent of the charge on the drifting
particles. From equation (38) we get

w3 (VP|E)Qw. (39)
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In a boundary layer between electron and ion corotation zones, V @ is directed
from the electron zone to the ion zone. So, in the axisymmetric case, the drift velocity
w there always adds to the corotation velocity Qwt to produce an increased azimuthal
speed; this is true in both the northern and southern boundary layers and, of course,
is true for particles when being decelerated as well as when being accelerated.

From the expressions (39) and (29), the drift speed in the boundary layers is limited
by -

uy/Qo S {(1—x»)/x*H{I—-(1-x*)*}. (40)

Thus, u, varies from less than roughly ;Qw for x% < 1 to less than roughly 1Qw at
x = 2, dropping far below the local corotational speed where the boundary layer ends
near the light cylinder.

With v, approximated by Q@ in the integral (1) of the motion, the resulting
expression for p, diverges as x — 1 from below, since e, ®/m,c* <1 for x <1
(Burman 1980). This divergence just corresponds, of course, to the impossibility of
having v,, = Q@ on the light cylinder. Because of it, Lorentz factors calculated
from (1) will be particularly sensitive to departures of vy, from Q@ near the light
cylinder. The above estimates show that, for both ions and electrons, the relative
departure of v, from Qw in the boundary layers is greatest near the star, becoming
very small beyond x =  and approaching zero as x — 1. It is indeed helpful that
the ratio of u,, to Q@ becomes small just where it would cause most trouble in the
calculation of y,.

These figures, though only order of magnitude estimates, indicate that neglect of
the toroidal V @ drifts in the boundary layers when calculating the accelerations
produced there is justified in a first approximation. Certainly, a more accurate
analysis of the boundary-layer dynamics is warranted—indeed required—but the
calculations presented in this paper are quite adequate for a first approach. Refinement
of the calculations will probably not change the essential features found here, though
inclusion of more physics could do so.

When the reduced flow velocity of species k lies approximately along the magnetic
field, it follows that

Uy R Uy Byl By 41
Hence, for the ions streaming through the electron corotation zomes, the result
v, & Qu(1—x?)* implies that

1,/Q@ & 1+(1—x*)*B,/B,. (42)

So the calculations of the behaviour of these particles appear to be at least roughly
self-consistent provided

(1-x**By/B, S 1, (43)

which is likely to be satisfied.
For the electrons streaming through the ion corotation zone, the results v, & 40 Qw
for x < 1/30 and v, ~ ¢ for 1/30 < x < 1 imply that

vy/Qw ~ 1 +40B,/B, for x < 1/30, (44a)
15/Qw ~ 1 +By/xB, for 1/30 S x<1, (44b)
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except perhaps for the most energetic electrons. Hence, the calculations of the
behaviour of these particles appear to be at least roughly self-consistent provided

B,/B, < 1/40 for x < 1/30, By/B, < x forl/30 S x<1. (45a,b)

Near the light cylinder, where the calculations are most sensitive to departure of
v, from Qw, the condition (45b) is likely to be satisfied. Near the star, (45a) might
be satisfied for models that are close to axisymmetry, but will fail for others.

8. Implications for Model Building

Two realizations have led me to the picture of the pulsar magnetosphere that I
am developing in this series of papers. One was the recognition of the existence of
boundary layers in which the inertial generation of vorticity occurs (Burman 19815),
together with the expectation that they would be likely to be key features of magneto-
spheric physics (Burman 1981c) rather than merely local perturbations. The other
was the recognition (Burman 1980, 1981a) that it is essential to use the correct
functional form for the non-corotational electric potential @ everywhere outside
the star—including zones containing corotating particles, where @ had invariably
been neglected. ’

There are at least three reasons why it is necessary to account properly for @ in
zones of corotation (Burman 1981a): to avoid obtaining absurd results for the azi-
muthal velocities; to be able to calculate the net force on a species flowing through
a zone where another is corotating; and to demonstrate the existence and evaluate
the amount of the jump in @ between zones of corotation, which corresponds to a
powerful local V @ field. Even where @ is small, in the sense that e, ®/m, c? < 1
for the species present, neglect of @ leads, locally, to absurdities and, globally, to
the misunderstanding and even omission of essential physics.

The result of these realizations is a drastic revision of the conventional Goldreich—
Julian (1969) picture of the pulsar magnetosphere. Of course, the magnetospheric
existence theorem, or Goldreich-Julian mechanism (Goldreich 1969; Goldreich and
Julian 1969; Michel 1969) for the extraction of charged particles from the star,
remains. But I have shown that their system, with a corotating positively charged
zone, possibly containing positive ions only, and corotating negatively charged
zones, possibly containing electrons only, is violently unstable. The zones must, in
fact, be separated by boundary layers, across which there exist large non-corotational
electric fields. These fields are comparable in magnitude, over most of each layer,
with the electric field generated by corotation of the magnetic field structure, and are
directed so as to accelerate the ions into the electron zones and the electrons into the
ion zones. My considerations have thus invalidated Holloway’s (1973) idea that the
Goldreich—Julian corotation zones are separated by vacuum gaps.

My calculations have indicated that the accelerated electrons will cross the zone
of ion corotation. All except perhaps the most highly relativistic of them will travel
essentially along the magnetic field lines in the ion zone, and mirror between the
northern and southern boundary layers. It is likely that they will gradually lose
energy, move to lower magnetic field lines and eventually return to the star. The
ions penetrate well into the electron zones, where they travel essentially along
magnetic field lines; they are centrifugally decelerated and then centrifugally acceler-
ated outwards, mirroring between the boundary layer and points above the stellar
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surface. Presumably they, too, will move to lower magnetic field lines as they lose
energy and gradually find their way to the star.

Thus, the ion, or ion-dominated, corotation zone of Goldreich and Julian (1969)
must be replaced by a zone containing ions that are essentially corotating, having
small poloidal speeds, together with poloidally flowing and mirroring electrons.
Their electron, or electron-dominated, corotation zones, must be replaced by zones
containing electrons that are essentially corotating, having small poloidal speeds,
together with poloidally flowing and mirroring ions. The relative numbers of
poloidally flowing and corotating particles remain to be determined. The physics
of the various boundary layers must be properly included. A first approach to the
analysis of the layers between the zones containing corotating particles has been
developed in this paper. A more accurate treatment will be given later. Other
layers will be reported in future papers in this series.

The electrons entering the zone of ion corotation are further accelerated there as
they travel along outgoing sections of magnetic field lines, and are then decelerated
as they travel along ingoing sections. For most of them, this acceleration and decelera-
tion is essentially electrical, arising from the V @ field; but for the most highly
relativistic electrons, the centrifugal effect predominates.

The most energetic of these electrons are those traversing the outer parts of the
zone of ion corotation. The calculations indicate that their Lorentz factors reach
perhaps 10° for a three-second pulsar and perhaps 108 for the Crab pulsar. They
will emit gamma radiation, so it is to be expected that pulsars, including non-pulsing
axisymmetric objects, will emit gamma radiation from the outer parts of the zone
of ion corotation. The effect of radiation reaction on the motions of these very
high-energy electrons remains to be investigated.

In the case of the Crab pulsar, there is a possibility that the gamma rays will
produce electron—positron pairs by the mechanism introduced into pulsar theory by
Sturrock (1971), in whose picture the pair production occurs above the ‘polar caps’.
Thus, the Crab pulsar’s zone of ion corotation might terminate near the light cylinder
in a highly relativistic ternary ion—electron—positron plasma.

9. Concluding Remarks

In my approach, I am retaining, at least for the present, the idea of having zones
in which there are particles that are close to being in corotation with the star, but I
regard them as having small, nonzero, poloidal velocities, and to be not the exclusive
occupants of those zones: certainly the oft-used assumption of essentially complete
charge separation has failed to survive the introduction of inertial effects. In fact,
Goldreich and Julian (1969) found positive ions to stream out through their corotating
electron zones—this has always been considered to be an unsatisfactory feature, but
I have shown that properly accounting for inertial effects implies that the zones of
corotation are permeated by fast poloidally streaming and accelerating particles of
the opposite sign to those that are close to corotation.

Beyond a few qualitative considerations, I have not considered dissipative effects.
These will undoubtedly be important, particularly in the interaction of the species
in the boundary layers, but also in the interaction of the streaming and non-streaming
species in the zones of near-corotation. It will be interesting to see how many of the
proposed magnetospheric features survive the introduction of dissipative forces. But
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first it is certainly worthwhile obtaining a fair understanding of the implications of
the dissipation-free equations.

Many of the ideas being developed appear to be transferable, with ions replaced
by positrons, to possible black hole magnetospheres.
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