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Abstract 

A theoretical study of the effects of a distribution of ordering temperatures Tc on the high temperature 
critical susceptibility exponent y is described. Analytical and numerical solutions for yare derived 
for the fitting of broadened susceptibility data to the critical equation X = Xo{(T- Tc)/Tc}-'. Both 
least squares fitting and Kouvel-Fisher analyses are considered. Using a simple model for magneti
cally inhomogeneous material it is shown that the inclusion of the internal demagnetizing fields 
greatly reduces the effect of the broadening upon the deduced critical exponent. Theory is compared 
with experiment for the critical susceptibility of gadolinium. 

Introduction 

The effects of a spread in ordering temperatures is a recurring problem in experi
mental studies of critical phenomena. Esipov and Mikulinski (1970) determined a 
simple analytical solution for the paramagnetic susceptibility X broadened by a 
distribution of ordering temperatures Te, but only for a Curie-Weiss relationship 
X = Cj(T- Te). Later Hohenberg and Barmatz (1972), using numerical techniques, 
examined the broadening effects due to gravity on the specific heat exponent ()( for a 
liquid-gas transition. We examine here the effects of a distribution of Te values by 
considering the susceptibility of a real sample to be the sum of contributions from 
small regions, each with a particular ordering temperature Te and a susceptibility 
given by the simple critical paramagnetic equation (Stanley 1971) 

(1) 

where 8 = (T:- Te)JTe and Yo is the paramagnetic critical exponent. The aim is to 
determine the extent to which the susceptibility of the whole sample deviates from a 
simple critical equation with Te replaced by the mean ordering temperature T~ and 
hence to determine the effect of this upon deduced values of y. 

This study is particularly relevant to recent experimental measurements of y for 
polycrystalline gadolinium which have been undertaken in this laboratory (Wantenaar 
et al. 1980), as it assists in assessing the validity of y values determined from 
broadened experimental data. As well as being useful for analyses of y, the'general 
principles of the present study are applicable to the measurement of any critical 
exponent. 

In the next section the effects of the broadening upon the paramagnetic susceptibility 
are studied both with and without allowance for the effects of internal demagnetizing 
fields. In later sections the effects of the broadened susceptibility functions upon the 
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values of T~ and y deduced by least squares fitting (LSF) and by Kouvel-Fisher 
(1964) analysis are determined. The calculations for Kouvel-Fisher analysis are 
compared with experimental results (Wantenaar et al. 1980) for gadolinium. 

Effects of Broadening on Paramagnetic Susceptibility 

Distribution of Te Values 

Neglecting the effects of internal demagnetizing fields, and assuming that each 
homogeneous region of the sample contributes a paramagnetic susceptibility of the 
form of equation (1), we have for the total susceptibility for a distribution P(Te) of 
Curie temperatures 

(2) 

This assumes that the data are taken over a range of temperatures T in which no 
region of the sample becomes ferromagnetic. The experimental technique of transient 
enhancement (Wantenaar et al. 1976) enables one to determine precisely the tempera
ture at which thermal nucleation of ferromagnetic domains begins and hence to avoid 
the inclusion of data from below this temperature in the analysis. 

We define t = T - T~ and te = Te - T~ as the deviations in turn between the 
temperature T and Curie temperature Te of a region and the mean Curie temperature 
T~. Hence we have 

fro (t - t ) -yo 
<x(T) = XO . -_co P(tJ dte . 

-00 te+ Te 
(3) 

Assuming that the spread in Curie temperatures is small and that the measurements 
are made at temperatures well above the Curie temperatures (i.e. t ~ te), one may 
apply a binomial expansion leading to 

(4) 

where now XO=Xo{(T-T~)JT~}-YO, 1l=(T-T~)/T~ and (1'=(1/T~, with the 
variance of P(tJ given by 

(12 = f~ 00 t; Pete) dte · 

In deriving equation (4) it is assumed that P(te) is an even function so that all odd 
terms in the expansion are zero. 

Equation (4) indicates that <X> equals the un broadened susceptibility XO plus a 
correction term dependent upon the ratio of the reduced variance (1' to the deviation 
t of the sample temperature from the mean Curie temperature. As expected this 
expression reduces to that obtained by Esipov and Mikulinski (1970) for a Curie
Weiss law (Yo = 1). 

Internal Demagnetizing Fields 

The range of (1' values (1 x 10 - 5 to 3 x 10 - 3) to be considered in this paper is 
typical for ferromagnetic samples used in critical studies and, for the case of gadolinium 
with Te ~ 290 K, represents a width of Te values ranging from a few mK (high purity 
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single crystal) to '" 1 K (impure polycrystal). In such real samples the broadening of 
the Curie temperatures due to impurities must be associated with variations of com
position on a macroscopic rather than an atomic scale and the spatial variation of 
susceptibility through the sample will result in local demagnetizing fields. 

In attempting to describe the effects of internal demagnetizing fields we adopt a 
simplified approach to what is a complex many-body problem in micromagnetics 
(cf. e.g. Brown 1963); the sample is considered to be comprised of many small 
regions each of which can be described by an average demagnetizing factor Dr and 
experiencing a demagnetizing field given by DlM-<M»)/l1o, where M is the field 
induced magnetization for the region and <M) the average magnetization of the 
sample, with 110 the permeability of free space. Hence, for each region with a given 
Tc' the internal field Hi for an ellipsoid can be represented as 

(5) 

where Ha is the applied magnetic field and Db is the bulk demagnetizing factor for 
the sample. For non-ellipsoidal samples there will, of course, be no unique Db; an 
important case in AC studies of ferromagnetic critical phenomena is that of toroidal 
samples where Db is zero. The magnetization for each region is given by M = 110 XHi, 
where X is the relative susceptibility, so that for a toroidal sample 

(6) 

(this may be compared with the usual expression for a regular body of unique D and 
M of Hi = Ha/O + DX)). Taking <M) = 110<XH) we obtain 

(7) 

where 

Xd = X/(l +DrX)· (8) 

For simplicity we now assume that the distribution of the demagnetizing factors may 
be accommodated by assuming a single effective average value of <Dr) = D (this 
value is probably close to that for a sphere, D = t). The effective susceptibility which 
would then be observed is 

(9) 

It is not possible to expand Xd as a power series for all values of D and X but analytic 
solutions are possible at two limits: 

(i) For DX ~ 1, Xe approaches the result <X) given by equation (4) which, for 
each value of T, is greater than the unbroadened susceptibility Xo. 

(ii) For DX ~ 1, Xe approaches <X- 1) -1 and, as Yo ~ 1, this will lead to a 
decrease below XO for all s. 

To second order in (J'/s these two limiting cases therefore yield 

Xe = <X> ~ XO{1+tYo(Yo+1)«(J'je)2} DX ~ 1, 

= <x- 1> -1 ~ XO/{l +tYo(Yo-1)«(J'/s?} DX ~ l. 

(10) 

(II) 
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In experiments on critical behaviour the relative susceptibility X could vary between 
about O· 1 to several hundred in the critical region while D could be between 
O· 01 and 1. Hence it is possible for the values of DX to lie anywhere between the 
above two limiting cases. The reason why the effects of broadening are reduced when 
the internal demagnetizing fields are included is because they playa role similar to 
negative feedback, reducing the effects of those regions with the highest susceptibility 
(highest TJand vice versa via the term -Dr(M-<M»)/flo in equation (5). 

Determination of y for Fixed Tc 

A common approach in the analysis of critical data is to determine the critical 
temperature Tc independently either by experiment (for example, the peak in specific 
heat, Hohenberg and Barmatz 1972) or by an analytical technique (see e.g. Kouvel 
and Fisher 1964). This value Tc is then held constant in the LSF of the other critical 
parameters y and XO to the critical equation (1). 
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Fig. 1. Deviation oy between the deduced and unbroadened exponent (equation 
13) as a function of e for various fractional broadenings a' for fitting with fixed 
Te. A value Yo = 1· 23 and the broadening expression (4) taken to second order 
with D = 0 are assumed. 

Taking D = 0 we assume a fixed value of Tc = T~ and also hold XO constant at 
its unbroadened value. A fit of the broadened <X) of equation (3) to a simple critical 
equation will result in a deduced value y* for each narrow range of e, corresponding 
to a mean <X), such that 

y* = (log xo -log<X) )/log e . 

The deviation of y* from the unbroadened value is givt<n by 

by = Y*-Yo = -{log(1+ke- 2)}/loge, 

(12) 

(l3) 

where k = !Yo(Yo+ 1)0"2, taking equation (4) to second order in O"/e. Fig. 1 shows 
the variation of by with e for various 0" with Yo = I ,23. This Yo value is the 
theoretical prediction for a prolate anisotropic Heisenberg high spin system (Jasnow 
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and Wortis 1968) considered to be appropriate to gadolinium (Wantenaar et al. 
1980). Fig. 1 shows that for a small range of 6 values the deduced value y* will 
depend upon 6 and that {)y > 0 always. For 6 '" 50" a deviation {)y '" 1 % is expected. 
If a set of broadened data is fitted over an extended range 6min to 6max it is expected 
that the deviation of the fitted value y* from the unbroadened value would lie between 
()1'(6min) and ()Y(6max). 

The behaviour of {)y shown in Fig. 1 is similar to that observed by Hohenberg 
and Barmatz (1972) in the specific heat exponent IX for an LSF with fixed Te to artifici
ally generated gravity broadened data. This is expected because for D = 0 the behav
iour of {)y in equation (13) should be similar to that for any critical exponent. 

Fig. 2. Dependence of the deviation 15)1 upon 8 for Xo = 0·01 and various values 
of the fractional broadening u' and internal demagnetizing factor D, together 
with the result from <X-1)-1 expected for DX ~ 1. For u' ;S 10-4 the values of 
15)1 for D = 1 and DX ~ 1 are indistinguishable. 

Numerical Solution for D =1= 0 

For the case D =1= 0 a particular functional form for the distribution of Te values 
must be assumed because a numerical calculation of Xe from equation (9) is necessary. 
A simple rectangular distribution of width 2'0 was assumed to eliminate problems 
associated with components in the lower tail of a gaussian or Lorentzian distribution 
from becoming ferromagnetic (i.e. with negative 6). Using the rectangular distribution 
we rewrite equation (8) as 

1 Jt X 
Xd = 20'.j3 -t 1 + DX dte , 

(14) 

where 0' = 'r/J3 = O"T~. For each value of 6, Xe is calculated from equations (8), 
(9) and (14) by integration over the distribution. Replacing <X> by X. in equation 
(12) gives the deviation {)y as a function of 6. 
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Fig. 2 shows the dependence of c5y upon 8 for distributions with various widths 
(i.e. various values of 0") and for vatious internal demagnetizing factors D. A value 
Xo = 0·01 appropriate for gadolinium (Wantenaar .et al. 1980) has been assumed. 
Also shown is the dependence for the limiting result Xe = <x-1> -1 for DX ;$> 1. The 
deviations c5y indicate the increase and decrease consistent with the two extreme cases 
D= 0 and DX ;$> 1 given by equations (10) and (11) respectively. The large differences 
in magnitude of the deviations c5y between these two limits are due to the relative 

. factors Yo + 1 and Yo -1 in equations (10) and (11). For D = 0 these numerical 
results are similar to the second order results in Fig. 1; however at 8 = 30" the second 
order calculation is seen to underestimate c5y by about 20 %. This error is reduced 
to about 5 % when the fourth order terms in equation (4) are retained, indicating that 
the second order expansion should not be relied upon for values of 8 ~ 30". 

For 0' ;5 10-4, Fig. 2 shows that c5y is less than 0·01 for all realistic values of D 
(0·01 to 1) and of 8 (~0"/1O). In these ranges DX is large enough for Xe to approach 
<X- 1> -1 more closely than <X>. It can be concluded that in many experiments the 
internal demagnetizing fields will largely eliminate the effects of the broadening upon 
the paramagnetic susceptibility and LSF would then give the correct y over a wide 
range of 8 values. 

Determination of y and Te by Fitting 

Because of difficulties in defining Te independently to sufficient accuracy it is often 
necessary to analyse the data using LSF with both Te and y as floating parameters. 
In this section we consider the effect of allowing Te to vary on the results obtained 
above for fixed Te for DX ~ 1. We first present an analytical solution for the devia
tions c5y and c5Te from the unbroadened values yO and T~ for an LSF and then 
compare them with a numerical LSF to artificially broadened data. 

Analytical Least Squares Fit 

Fitting the broadened <X> data to an exponent law leads to the equations 

where ~ = y or Te , and the expression (4) for <X> taken to second order has been used. 
The integration is over the fitting range from Tmin to Tmax. To first order inc5y = y - Yo 
and c5Te = Te - T~ we have 

Differentiation with respect to y and Te leads to two linear equations in c5y and c5Te: 

A c5y - B c5Te = - C , -Dc5y +Ec5Te = F, (15a, b) 

where 
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C = k f8-(2Yo+2)ln8d8, 

E = Yo f 8-(2yo+2)(1+8)2/T~2 d8, 

and the limits of integration are 81 to 82 corresponding to the range T min to Tmax 

respectively. With the approximation 1 +8 ~ 1 in the equations for E, E and F the 
integrals are easily calculated analytically. The integration was with respect to In 8 
which is equivalent to LSF with data points evenly spaced in In 8. 
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Fig. 3. The deviations Jy and JT~/T~ predicted for a two-parameter LSF as a 
function of the lower range limit 810 keeping the upper limit fixed at 82 = 0,1 
for various a', 

The calculated dependences of by and bTc upon 81 for 82 = O· r and various cr' 
are shown in Fig. 3. Comparing these results with those of Fig. 1 for the deviation 
by with fixed Tc shows that, for DX ~ 1, the deviation by is almost halved in magnitude 
and has its si changed when Tc also is allowed to vary in the fitting; the deduced 
value of To wi be larger than the mean value T~. 

Numerical Lea t Squares Calculations 

To test the v lidity of the various approximations made above, and to determine also 
the effects of al owing XO to vary in the fitting, the broadening equation (4) was taken to 
second order a d used to generate broadened data at points equally spaced in In 8. 
An LSF comp ter program (Wantenaar 1978) was then used and involved searching 
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the chi-squared hypersurface for its minimum. Fig. 4 shows the results obtained for 
both fixed XO and when XO is also permitted to vary; it indicates that, if XO is determined 
as an adjustable fitting parameter, there can be quite significant effects upon the 
deduced values of y and Te. 
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Fig. 4. The deviations 0"/, oT~/T~ and 0Xo as a function of the lower range limit 
81 for D = 0 and 82 = 0·1. Squares are the LSF with XO held constant, triangles 
the LSF withxo allowed to vary, and circles are for the analytical treatment using 
a second order expression for the broadened susceptibility. 

In summary, both the above analytical and numerical LSF calculations show that 
fitting <X> (calculated to second order in a'/e from equation 4) to the simple critical 
equation (1) gives a decrease in the fitted y and an increase in Te as the minimum of 
the fitting range approaches T~. If XO is held constant we have by :$ 1 % fore> 3a', 
whereas if XO is allowed to vary by :$ 1 % for e > 6a'. 

Kouvel-Fisher Analysis 

A common approach in the analysis of critical susceptibility data is to eliminate 
XO by determining the temperature derivative and fitting to the straight line 

X/(dX/dT) = (T - Te)/y. (16) 

This approach was first used by Kouvel and Fisher (1964) with dX/dT values being 
obtained by differentiation of the susceptibility data. Wantenaar et al. (1980) recently 
extended this to include the determination of dX/dT experimentally using the tempera
ture modulation technique. 
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Kouvel-Fisher Analysis for Artificially Broadened Data 

For fixed values of (5' and D, sets of values of Xe were determined for a rectangular 
distribution of Tc values with a half-width of (5~3(equations 9 and 14). The derivative 
dXe/dT was calculated using the method of central differences. These data were then 
fitted to equation (16) using the LINFIT program (Bevington 1969) modified by 
Wantenaar et al. (unpublished) for analysing experimental susceptibility data. As in the 
previous section, data are evenly spaced in In 8 with a range maximum 82 = o· 1. 
Fig. 5 shows the parameters by and bT~ as functions of 81> the lower range limit, 
for (5' = lO-4 and lO-3, and XO = 0·01, with several values of D. As expected the 
behaviour of by and b T~ for D = 0 is very similar to that for the LSF of the previous 
section except that for 81 ~ 5(5' differences begin to appear because of the approxima
tion to second order in (5'/8 used previously. 
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Fig. 5. Plot of the calculated deviations 0)' andoT~/T~ versus 81 for Kouvel
Fisher analysis with 82 = 0·1, xo = 0·01 and for a' = 10-4, 10- 3 and several 
values of D. 

The most interesting behaviour occurs for D i= O. As in the LSF calculations the 
effect of including internal demagnetizing fields is to reduce the deviations by and 
bT~ and, for large enough DX, these deviations change sign. When (5' = lO-4, for 
all realistic values of D the variation in by for 81 > 2 X lO-4 is ;$0·005. Thus, even 
for such an 'intermediate purity' sample, the effects of the broadening have been 
greatly reduced by the demagnetizing fields, as occurred for by with fixed Tc (Fig. 2). 
For the 'impure sample' ((5' = lO-3) the effects of the demagnetizing fields are similar 
though somewhat reduced. 
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Comparison with Experiment 

The Kouvel-Fisher technique has recently been used in the analysis of the critical 
susceptibility for 96 at. % pure polycrystalline gadolinium with Tc ~ 291 K (Wantenaar 
et al. 1980). Transient enhancement measurements indicated a distribution in Tc 
values with (J ~ O' 5 K (i.e. (J' ~ 1·7 x 10- 3). Fig. 6 shows the values of l' and Tc 
deduced from a Kouvel-Fisher analysis as a function Of81 keeping 82 fixed at 4 x 10- 2. 
For 81 in the range (1-2) x 10 - 2, l' is constant to within ± 1 % and Tc is constant 
to within ±O'OJ %. The larger deviations for 81 ~ 2 X 10- 2 are simply due to inaccu
racies arising as the range 82 - 81 becomes too small. Comparison with Fig. 5 shows 
that the relative constancy of l' and Tc for 81 in the range (1- 2) x 10- 2 and the polarity 
of the small variations in this range cannot be explained in terms of the broadening 
alone (i.e. with D = 0); however the experimental results are quite consistent with 
the theoretical curves if internal demagnetizing fields with D ~ 0·2 are included. 
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Fig. 6. Dependence of the deduced values of), and Tc (in K) upon 01 

for Kouvel-Fisher analysis of experimental data for polycrystalline 
gadolinium. The upper range limit 02 was held constant at 4 x 10- 2. 

The theoretical analysis shows that, under these conditions, a l' value which is 
independent of 81 should be within ~0'005 of the true un broadened value Yo' There
fore these experiments (Wantenaar et al. 1980), for which studies of several samples 
yielded the value Yo = 1 ·24 ± O' 03, should yield the unbroadened susceptibility 
exponent for gadolinium. 

Conclusions 

The fitting of a simple critical equation (1) to susceptibility data broadened by a 
distribution of critical temperatures has been studied with and without allowance 
for the effects of internal demagnetizing fields. In each case studied the inclusion of 
internal demagnetizing fields reduces the deviations of the fitted parameters from 
their unbroadened values. The observed weak dependences of the fitted values of 
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y and Tc in a Kouvel-Fisher analysis of experimental data for polycrystaIIine gado
linium agree well with the theoretical results provided internal demagnetizing fields 
are included. In such cases it is possible to determine accurately the un broadened 
critical exponents in the presence of significant distributions of critical temperatures. 
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