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Abstract 
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Sakata and Cooper have recently published a comparison between profile refinement (in which each 
ordinate of the diffraction pattern is included separately in the least squares analysis) and, what they 
term, integrated intensity refinement (in which the ordinates are first summed over each Bragg peak). 
They find different results for the two methods and conclude that the results obtained from profile 
analysis are wrong. We show analytically that the two methods give identical results, and that the 
Sakata and Cooper analysis is in error because of the method they used to estimate integrated inten
sity. It is verified, using simulated data, that profile analysis gives lower values for the standard 
deviations of crystallographic parameters than simple ordinate summation. 

1. Introduction 

The Rietveld (1969) profile refinement method has made possible the use of powder 
data to obtain accurate positional and thermal parameters for crystals of moderate 
complexity. Sakata and Cooper (1979) have published a comparison of the profile 
refinement method and, what they term, integrated intensity. We quote in full the 
statements made in that publication concerning the differences in the two methods 
of analysing diffraction data: 

'It is shown that the values obtained for the structural parameters are not exactly the same 
as those obtained from an integrated intensity refinement of the same data and that the 
standard deviations of the parameters are determined incorrectly.' 

'These conclusions are confirmed by refinement of a number of data sets using both 
methods and in most of these cases the standard deviations are found to be underestimated 
by the profile refinement method by a factor of at least two.' 

'These conclusions have serious implications. A large number of structural studies have 
been carried out during the past decade using the profile refinement method (see, for example, 
the references given in Table 1 of the review paper by Cheetham and Taylor 1977) and in 
many of these the authors have discussed the significance of positional parameters and bond 
lengths on the basis of the magnitude of the calculated standard deviations. Since the latter 
have been determined incorrectly these discussions will need to be reconsidered, as will the 
relative merits of powder and single-crystal techniques.' 

It is the assertion that profile refinement methods lead to incorrect values of the 
standard deviations of the values found for crystallographic parameters we wish to 
refute. 

The method Sakata and Cooper used to obtain integrated intensities, in which 
they discarded all information about the profile, will naturally lead to higher values 
for the standard deviations of crystallographic parameters. 
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Diamond (1969) showed that profile refinement was the best way to obtain inte
grated intensities from single crystal data. French (1978) extended the work of 
Diamond and showed that knowledge of the profile, even approximately, is an 
additional piece of statistical information leading to a more accurate estimate of 
crystallographic parameters. 

We will show analytically that profile analysis, either applied directly, as is done 
by Rietveld (1969), or by the intermediate step of extracting integrated intensities 
gives identical results for the crystallographic parameters. Our conclusions are con
firmed by a computer experiment. 

2. Theory 

A comparison of the two methods reduces to a comparison of the corresponding 
normal equations of the weighted least squares method for the determination of 
corrections Ap to an initial assumption of values for the crystallographic parameters. 
Parameters are labelled by the letter p. 

The normal equations are 

where b is the column vector of differences, W is the weight matrix and A is defined 
by the observational equation Ap = b. 

Profile Refinement 

The measured quantities are the profile ordinates yf:s, each with its variance, 
var(yir). For later comparison with the integrated intensity refinement, i is chosen to 
run over the ordinates in a Bragg peak, while k labels each Bragg peak. There is no 
intrinsic merit in sub-dividing the ordinates in this way. It is assumed that there is 
no overlap between peaks. 

The quantity minimized is 

M '" '" (obs cal)2 p = L... L... Wik Yik - Yik , 
i k 

where the yf:1 are values of the ordinate obtained from a theoretical model containing 
trial values of the structural and thermal parameters of the crystal, and parameters 
which describe the profile. The question of inadequacies of the model is not relevant 
to the present discussion. The weight of each observation Wik is var- 1(Yir). The 
components of the normal equations are 

(1) 

(2) 

For later comparison with the integrated intensity method it is necessary to separate 
the profile and crystallographic parameters. This can be done by writing 
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where Ik is the integrated intensity of each Bragg reflection and ~ i G ik = 1. Equations 
(I) and (2) then become 

(3) 

(4) 

Integrated Intensity Method 

In this method summation over i is carried out before entering the least squares 
procedure. The quantity obtained is the integrated intensity I kobs for each reflection k. 
This is refined against the calculated intensity 1'1: 1 by minimizing 

M -" W; (JObS _ Ical)2 
[-L.kk k' 

k 

where Wk = var- 1(lkbS). 
The components of the normal equations become 

T af~al affal 
[A WA]mn = L Wk -a --a-' 

k Pm Pn 
(5) 

(6) 

The results of the profile and integrated intensity methods will be identical if, and 
only if, the relationship 

Wk = L Glk wik 
i 

holds for the weights used in the two methods. 

3. Choice of Weights 

(7) 

At each point i, k the total count if" is measured. A background count y~ is found 
in some way and the quantity used in the refinement is given by 

var(Yf~S) = var(y~) + var(y~) . 

Rietveld (1969) made the assumption that y~ is determined by graphical averaging 
over all points of the pattern not included in the Bragg peaks. Because of the large 
number of such points, he set var(y~) = O. He also assumed a normal distribution 
of y~ and used 

var(Yf~S) = y~; 

hence W ik = (y~)-l. 
Sakata and Cooper (1979) used similar reasoning and set 



710 A. W. Hewat and T. M. Sabine 

where 

var(1;;bs) = II . 

They point out that, with this definition of integrated intensity, equation (7) will only 
hold if Y~ and hence I~ are zero. We assume that it was the existence of this result 
that led them to question the Rietveld procedure. To show the fallacy in their reason
ing we will discuss the determination of integrated intensities. 

4. Determination of Integrated Intensities 

There are two ways of measuring integrated intensities: 
(a) The diffractometer moves through the reflection either in steps or continuously. 

The number of counts received by the counter is printed out at the end of 
the scan. There is no record of the variation in count rate through the peak, 
hence all information about the peak shape is lost. 

(b) The diffractometer moves through the reflection in steps. The value of the 
ordinate at each point is recorded and later used to give an integrated intensity. 

In (a) the only numbers we have are II and I~ (found by a similar scan over a region 
outside the peak), so that 

when we set var(1~) = o. 
The fallacy of the Sakata-Cooper analysis is the use of a weighting scheme appro

priate to (a) when analysing data collected under (b). ~In (b) each profile point Yik 
gives a measure of the integrated intensity I~i) through the relation 

where (i) means evaluated at i, with the variance given by 

var(I1i») = Gil/ var(Yik)' 

It is well known (Aitken 1949) that the optimal least squares estimate of Ik is the 
weighted mean of Ifi) with weights equal to the reciprocal of the variances var(I~i»). 
The variance of the weighted mean is given by 

~ var - 2(11i») var( I1i») 

{~var 1(1~i»)}2 

1 

~ Gil var l(Yik)" 

Now, in the notation of Section 2, Wk = var- 1(Ik) and W ik = var- 1(Yik)' hence we 
have the general relation (7): 

Wk = L G;kWik' 
i 
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This shows that, when the data are handled correctly, the results of a direct profile 
refinement and those of a refinement in which integrated intensities are evaluated as 
an intermediate step are identical. 

5. Computer Verification 

By repeating the measurement of a single peak a large number of times we can 
approach the expected value of its integrated intensity with vanishing error. For 
each measurement we can estimate the integrated intensity either by summing the 
ordinates to give 

or by fitting a normalized profile function G ik to the equation 

where JO is the integrated intensity found by ordinate summation and Ie is the 
integrated intensity found by profile analysis. 

Table L Comparison of integrated intensities obtained by profile analysis and ordinate summation 

Here <1") is the average intensity by ordinate summation in 500 trials, <Ie)1 is the average value of 
intensity found by profile analysis with Wi. = l/yft l , <Ie)2 is the average value of intensity found by 
profile analysis with Wi. = I/Y~r, and <0'(/0», <a(/e) are average values of the standard deviations 

Peak Background True <1") <l e)1 <le)2 <0'(1") <a(JC) 
height P level B intensity I 

1000 0 8862 8843 8868 8848 93 94 
500 500 4431 4415 4431 4419 122 105 
100 900 886 883 885 875 141 109 
100 0 886 880 883 863 30 30 
50 50 443 444 445 432 39 34 
10 90 89 90 88 77 44 35 

It would be possible to perform an actual experiment by measuring a single peak 
a large number of times, however it is easier to use a random number generator on 
a computer to simulate such an experiment. 

We have carried out a simulation using a simple gaussian for the profile function 

The peak was sampled between x = ±2q in steps of Ax = 0'2q and at each step a 
random number generator was used to produce an ordinate ylic with variance equal 
to ylic. A least squares method was then used to determine II,. 

The results are given in Table 1. We have chosen six different cases for the peak 
height Pk = (qnt)-lIk and the background level B. For each peak and background 
level the experiment was repeated 500 times; i.e. generation of ylic, calculation of 
I~ and a(In by summing ordinates, and least squares refinement for I'k and a(Ik). 
The values of (JO) and (I") averaged over the 500 trials are shown in the table. 
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Different values <Ie)1 and <Ie)2 were obtained when calculated and observed 
ordinates respectively were used to obtain the weights. Here <Ie)1 is closer to the true 
value I than <l e)2 which is always an underestimate. This result follows from the work 
of Price (1979) who showed that the use of the reciprocal of the observed count gave 
an artificially high weight to accidentally low counts. His suggestion that use of the 
reciprocal of the calculated count is a closer approximation is confirmed, however, 
the systematic error introduced through the usual practice of putting Wik = IlyT" is 
small compared with the statistical precision with which we can measure the integrated 
intensity. 

These results verify our conclusion that, as the peak to background ratio decreases, 
profile analysis provides an increasingly better estimate of integrated intensity and 
hence crystal parameters. 

6. Conclusions 

(1) We have shown that the results of profile refinement and integrated intensity 
refinement using the same data are identical. 

(2) We have shown that summing the ordinates of a step scan and treating the 
resultant as a single independent observation is a non-optimal use of the data and is 
the reason why Sakata and Cooper (1979) obtained larger values of the standard 
deviations of the crystallographic parameters. Their remark about the ordinates 
Yik not being 'crystallographically independent' is not relevant, because this concept 
has no relevance to the statistical analysis. In fact, the integrated intensities of the 
Bragg reflections are not crystallographically independent. An extreme example is 
the use of data from orders of the same reflection. 

(3) The results of the Rietveld (1969) method are in no sense wrong. This method 
gives the best least squares estimate of the parameters with minimum variance. 

(4) As suggested by Diamond (1969) and French (1978), the technique of profile 
analysis should be used for single crystal data to permit the best possible definition 
of the crystallographic parameters. This is particularly important in cases where the 
peak to background ratio is high. 
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