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Abstract 

We use an algebraic formulation of the electromagnetic field, in which various quantization procedures 
can be described, to discuss perturbation calculations. We show that the Feynman rules and the 
second order calculation of the self-energy of the electron can be developed on the basis of the 
Fermi method of quantization. The algebraic approach clarifies the problems in defining the vacuum 
and other states, which are associated with calculations in terms of field algebra operators. We 
demonstrate that the 'vacuum' state defined on the field algebra by Schwinger leads to incorrect 
results in the self-energy calculation. 

1. Introduction 

The quantization of the free electromagnetic field does not fit into the standard 
axiomatic descriptions of quantum field theory, such as the algebraic formulation 
given by Doplicher et al. (1969). While all the usual field theory properties cannot 
be satisfied simultaneously (Strocchi 1967), there is a certain amount of freedom in 
deciding which of them are to be violated. As a result, vastly different quantization 
procedures have been developed. Well-known examples are the Gupta-Bleuler 
method (Bogoliubov and Shirkov 1959) in which an indefinite metric is introduced, 
and the radiation gauge method (Bjorken and Drell1965) in which explicit covariance 
is given up. 

There is an algebraic description of the quantum theory of the electromagnetic 
field that provides a common framework in which the different procedures can be 
formulated (Carey et al. 1977). Starting from the field algebra ff' of the free electro­
magnetic field, a certain quotient algebra Illphys of a subalgebra of ff' is selected, 
which describes the physical degrees of freedom of the electromagnetic field. The 
various methods of quantization can be regarded as techniques for finding a repre­
sentation of this physical algebra. In particular it is possible to find representations 
that correspond to the Fermi method of quantization, used in early perturbation 
calculations (Fermi 1932; Belinfante 1949; Schwinger 1948, 1949; Coester and 
Jauch 1950). In its original form, this method had normalization difficulties that are 
not shared by the Gupta-Bleuler and radiation gauge methods. However, once the 
Fermi method is re-formulated as a representation of the physical quotient algebra, 
it provides a rigorous quantization procedure at least for the free electromagnetic 
field, which can be formulated as a Weyl system. This was established by Carey et al. 
(1977). We shall show that the usual level of rig our for the justification of perturbation 
calculations can be achieved using a similar algebraic description of the interacting 
electromagnetic field. For example, the calculations of Belinfante (1949) and Schwinger 
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(1948, 1949) can be given a sounder mathematical basis by using the revised version 
of the Fermi method. 

In Section 2, we summarize the formulation of the free electromagnetic field given 
by Carey et al. (1977) and discuss the algebraic description of the various quantization 
procedures, and of time evolution. We show that time evolution is an inner auto­
morphism of the quotient algebra 2rphys which represents physical quantities. In 
Sections 3 and 4, we consider how interactions can be dealt with in the algebraic 
framework. Again, time evolution is an inner automorphism of the physical algebra. 
We examine perturbation calculations in the radiation gauge and the Lorentz gauge. 
In the radiation gauge description of the electromagnetic field, physical and non­
physical components can be written separately. In the algebraic formulation, the 
advantages of this separation appear as follows. First, the physical algebra can be 
described in terms of physical components without reference to other field variables. 
Also the vacuum has a simple definition as the state which is annihilated by the 
positive frequency components of the physical variables. The definition of the 
vacuum does not make any reference to unphysical components of the field. It is 
completely defined without reference to these components because it is a vector in the 
representation space of 2rphys and not the field algebra. This is how the algebraic 
approach avoids the non-normalizable vacuum pointed out by Belinfante (1949). 

We demonstrate that the derivation of the Feynman rules by Coester and Jauch 
(1950) and the radiation gauge calculations of Schwinger and Belinfante are valid 
just as they are written if the physical field operators are reinterpreted as represen­
tatives of elements of the quotient algebra 2rphys , rather than elements of the field 
algebra :F. 

Finally, we shall discuss the Lorentz gauge formulation of perturbation calcula­
tions. This gauge is often chosen because it allows a unified treatment of all four 
components of the electromagnetic field. Thus the calculations are not only in 
a different gauge, but they are written in terms of elements of the field algebra rather 
than the physical algebra. One consequence is that four apparently independent 
components of the electromagnetic field are used, rather than the two components 
which would be available in 2rphys • The vacuum should refer only to these two com­
ponents, and hence there is no natural way of identifying a state on the field algebra 
which corresponds to the physical vacuum. More generally, states corresponding 
to the presence of a given number of physical particles can only be found in the 
representation space. of the quotient algebra. Hence the calculation of expectation 
values makes sense only in the physical algebra. 

Our main aim, then, is to use the Fermi quantization procedure to develop per­
turbation calculations. Certain aspects of any known mathematical basis for such 
calculations are ill-defined. For this reason, we are justified in ignoring various topo­
logical questions and concentrating on the algebraic structure. In particular, we shall, 
without further comment, refer to unbounded generators, such as the Hamiltonian, 
as belonging to the algebras appropriate to their commutation properties. 

2. Free Electromagnetic Field 

We write the classical equations of motion of the free electromagnetic field in 
terms of the 4-vector potential AI': 

DAI' = 0, (la) 
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where AI! is required to satisfy the supplementary condition 

(lb) 

which leaves the choice of AI! arbitrary up to a gauge transformation of the form 

(2) 

where 0..1. = 0. If the four components are quantized independently according to the 
canonical procedure, then the corresponding operators, again denoted by AI!, satisfy 

(3) 

The algebra of the electromagnetic potential which the AI! generate describes more 
degrees of freedom than are available physically: it is necessary to take account 
of the supplementary condition and gauge invariance. Since classically the supple­
mentary condition has a fixed value (zero) it follows that in the quantum theory all 
observables will be expected to commute with it. (Operators with this property 
are precisely the gauge invariant ones.) Also to account for the fact that adding 
multiples of al! AI! should not alter the physical meaning of an expression, operators 
which differ by a multiple of the supplementary condition should be identified. 
These considerations can be used to formulate a definition of the physical algebra 
of observables. We shall briefly describe this algebraic structure (omitting a number 
of technical details which can be found in Carey et al. 1977) and then consider the 
various quantization methods, which can be regarded as techniques for finding repre­
sentations of the physical algebra. 

The Weyl algebra of the electromagnetic potential may be constructed as a 
Manuceau C* algebra .de(M) over a complex Hilbert space M of solutions </> = (</>I!) 
of the wave equation 

O</>u = 0, f.1 = 0,1,2,3. 

The imaginary part of the inner product in M is given by 

Heuristically, this algebra may be thought of as being generated by operators 

HI(</» = exp{iA(</»}, for </> EM, 

where A(</» is an appropriate smearing of the vector potential, 

A(</» = J AI!(x) fix) dx, 

and where the convolution 

D * 1;, = J D(x-y)fiy) dy = </>I!' 

The multiplication law for the HI(</» is given by 

(5) 

(6) 

(7) 
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There are two Lorentz invariant subspaces of M: 

If S is defined by 

N = {¢ EM: 8¢llj8xll = O}, 

T= {8Aj8xIl EM: OA = o}. 

S = {¢ EM: ¢o = 0, 'V • <I> = o}, 

then N = S EE> T and the corresponding C* algebras satisfy 
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(8) 

(9) 

(10) 

(11) 

Here Llc(T) is the centre of Llc(N), and Llc(N) is the commutant of Llc(T). It can be 
checked that the transformation 

W(¢) --+ W(l/I) W(¢) W( -l/I) for l/Ill = 81lA E T (12) 

is equivalent under the heuristic correspondence (5) and (6) to the gauge transfor­
mation (2). Hence Llc(T) provides the Lorentz gauge transformations. It is also the 
algebra of the supplementary condition: if l/I 11 = 811 A E T, choose III and g such that 

(13a, b) 

Then A = D * g, and we have 

(14) 

From this interpretation of Llc(T), it follows that Llc(N) must contain the gauge 
invariant operators, and hence all quantities of physical interest. In fact, physical 
quantities are described by Llc(S), and equation (11) shows that Llc(N) also describes 
unphysical quantities associated with the supplementary condition. There is a 
natural homomorphism TC projecting Llc(N) onto Llc(S): since N = S EEl T, any ¢ 
in N can be written uniquely as ¢s + ¢t, where ¢s E Sand ¢t E T. The homomorphism 
is determined by 

TC(W(¢)) = W(¢s)' (15) 

It can be deduced that there is an isomorphism between Llc(S) and the quotient 
algebra Llc(N)jI, where I is the kernel of TC and is thus the ideal in LlcCN) generated by 
the supplementary condition operator. The quotient LlcCN)jI is the physical algebra 
of the electromagnetic field, for which representations are provided by the various 
quantization procedures. 

Let .:It' be a Hilbert space carrying the Fock representation TCp of the algebra of 
the electromagnetic potential Llc(M). A representation appropriate for quantization 
in the radiation gauge is obtained by restricting TCp to LlcCS). This provides a represen­
tation of Llc(N)jI through the isomorphism (15) between Llc(S) and Llc(N)jI. The 
definition (10) of S shows that it corresponds to the heuristic formulation in which 
Ao and 'V • A are set equal to zero. 
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In the Gupta-Bleuler method, an indefinite metric is defined on ff in such a way 
that the inequality 

(16) 

holds for exactly those states cP which satisfy 

(17) 

We denote the space of such states by $' and denote by $" the subspace of states 
of zero norm. 

Using the fact that physical states satisfy (17) and gauge invariance arguments, 
the following properties can be established (see e.g. Bogoliubov and Shirkov 1959, 
Sect. 13). The expectation value of a gauge invariant operator K (one which commutes 
with G/LAI') in a state cP E $' depends only on the transverse components of K (those 
corresponding to transverse photon operators in the Fock representation). Also, 
the expectation value of K will not be altered if an element of $" is added to CPo 
The space $' is invariant under K. Hence the quotient space 

$ phys = $' j $" (18) 

inherits a (non-faithful) representation of these operators from their representation 
on $. Its kernel is the ideal I. 

This means that a calculation in a representation of the physical algebra Ac(N)jI 
acting on $ phys can be written in terms of a calculation in the algebra of the electro­
magnetic potential acting on $, so long as the constraint (17) is borne in mind. 
Thus the indefinite metric is a mechanism for defining a representation of Ac(N)jI 
in such a way that explicitly covariant expressions involving the electromagnetic 
potential may be used to calculate physical quantities. 

The Fermi method can be formulated as a representation of Ac(N)jI in the follow­
ing way. Consider again the Fock representation 1iF of Ac(M) on $. A direct 
integral decomposition of $ with respect to Tl., the spectrum of the supplementary 
condition operator, will diagonalize any operator in Ac(N). We introduce the follow­
ing notation for this decomposition: 

(19) 

where p. is the measure on Tl. with characteristic function tjJ ~ exp{ -t(tjJ, JFtjJ)}, 
with JF an appropriate complex structure. For each, we denote the component 
representation of AcCN) acting on $r; by 1ir;: 

These representations are determined by their action on W(¢), ¢ EN: 

1io(W(¢)) = exp ( -t f ~I'(k)<pik) d3k/21 k I), 
1ir;(W(¢)) = exp{iB(', ¢)} 1io(W(¢)) , 

(20) 

(2la) 

(21b) 
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and the mapping from no to nr; is essentially a displacement: 

(22) 

In the representation no of Llc(N), the degrees of freedom are just the physical ones, 
since the supplementary condition operators vanish. In fact, the two-sided ideal I 
of the supplementary condition operators in Llc(N) is just ker no, so that no'determines 
a representation no of Llc(N)/I. • 

The representation no is distinguished from the other nr; by the fact that it is 
stable under Lorentz transformations. The corresponding cosets will be indicated 
by a superscript L: for C in Llc(N) we have 

C +kerno = C L • (23) 

Further, no acting on Yf 0 is a description of the free electromagnetic field in the 
Lorentz gauge. 

Given the above description of the physical algebra, it is surprising to find that 
the usual form of the Hamiltonian 

(24) 

(where a" and a: are photon annihilation and creation operators) does not commute 
with the supplementary condition operator. However, we can demonstrate that the 
time evolution automorphism it generates is an inner automorphism of Llc(N)/I so 
that the noncommuting part of H has no physical significance. This discussion is 
expounded at greater length by Carey and Hurst (1977). 

The time evolution of an operator C in Llc(N) is given by 

C(l) = exp(iHt)Cexp(-iHt), (25) 

and lies in LlcCN) for each I. Since also I is time-translation invariant, it follows that 
time evolution is an automorphism of Llc(N)/I. To demonstrate that the automorphism 
is inner, we shall find an operator Gin Llc(N) such that exp(i GLt) is a unitary operator 
in Llc(N)/I which implements 

(26) 

In order to do this, we introduce some notation from the heuristic formulation 
of the electromagnetic field. In the algebra of the vector potential, we denote the 
operators conjugate to A" by II ", and let their three-dimensional Fourier transforms 
be q" andp": 

. 1 J q"(k) = (2n)3 /2 d3kA"(x)exp(-ik.x), (27a) 

p"(k) = (2n~3/2J d3kII"(x)exp(ik.x), (27b) 

so that 

(28) 
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In terms of qll and pll, the Hamiltonian (24) for the free electromagnetic field may be 
written 

H = J d3k[lc2pll(-k)PIl(k) +lk2(b jl -kjk 1jk2)qj(k)ql(k) 

-i kjc{Po(k) q/k) +p/k)qo(k)}]. (29) 

Classically, the requirement that all All should vanish for all time is equivalent to the 
requirement that X and i, given by 

x(X) = IIo(x) , (30a, b) 

should vanish. We write the positive and negative frequency components of the 
operators corresponding to (30) in terms of momentum space operators: 

(3Ia, b) 

In order to obtain an operator G with the property that UL(t) == exp(i GLt) is the 
unitary in Ac(N)j I which implements time translations, we seek to write H in two parts: 

H= G+K, 

such that (a) [K, G] = 0, (b) [G, X±] = 0 and (c) [K, C] E I (i.e. is a multiple of, and 
commutes with, the supplementary condition operator) for all C in LUN). 

Suppose (a), (b) and (c) hold, then 

that is, we have 

C(t) = exp(i Kt){exp(i Gt) C exp( -i Gt) }exp( -i Kt) 

E {exp(i Gt) Cexp( -i Gt)}L, 

as required. We construct G and K as follows: H satisfies 

so that for (b) we require 

This will be satisfied if 

where 

[~l(k),X+(l)] = [~2(k),x-(l)J = hkcb(k-l), 

[~l(k),x-(l)] = [~zCk),X+(l)] = O. 

Then ( c) will be true if 

(32a) 

(32b) 
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This follows from (32) by an application of the Jacobi identity to X±, (i and C. 
Suitable choices for the (i are 

(l(k) = -(lj2k)kllqll(-k) , (2(k) = (lj2k)kllqik) , (33a, b) 

so that 

It follows that G = H - K is in the same equivalence class as the effective free 
Hamiltonian 

3. Interaction Picture and Derivation of Feynman Rules 

We consider the interaction between the electromagnetic field and the electron field 
described by a spin or variable t/J. The equations of motion for the interacting system 
are 

{yll(ajaxll-ieAIl)+m}t/J = 0, 

i/i{yll(ajaxll +ieAIl)-m} = 0, 

OAIl(x) = jIl(x) , 

(34a) 

(34b) 

(34c) 

where P'(x) = --ti ei/iyllt/J. These equations correspond to a Hamiltonian given by 

(35) 

where He and Hy are the Hamiltonians for the free electron and free photon fields 
respectively. The Lorentz gauge transformations are now 

All ~ All + all A, t/J ~ exp(i djhc)t/J , i/i ~ exp( - i djhc)i/i , (36a, b, c) 

where OA = 0, and in terms of momentum space operators, the supplementary 
condition operators are 

X+(-k) = ic{kllpi-k) -ic-2}o(-k)}, 

X-(k) = -ic{kllpik)+ic-2}o(-k)}. 

(37a) 

(37b) 

We write the field algebra of the interacting system as a product algebra llIy x llIe, 
where llIy is the algebra of the electromagnetic potential and llIe that of the electron 
field. In order to identify an algebra which describes physical quantities, it will be 
necessary to select those elements of llIy x llIe which commute with X±, and construct 
a quotient algebra of this commutant with respect to the ideal I generated by x+ 
and X -, involving both electromagnetic and electron field operators. On a purely 
algebraic level, it is possible to apply an automorphism to llIy x llIe which decouples 
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the supplementary condition from the electron field. Formally, this automorphism 
may be written as (Hurst 1961) 

a -t as = SaS, (38a) 

where 

S = exp(:cJ joe -kk:1ql(k) d3k) (38b) 

(cf. the operator G[a] in Schwinger 1948). Although this looks formally like a unitary 
operator, the exponent is unbounded, and (38a) is really a shorthand for an auto­
morphism which is not implemented in any representation: 

p7(k) = Pl(k) +i k1jo( _k)/c2k 2 , 1= 1,2,3, (39) 

t/!~(x) = exp(-ex)t/!,,(x) , n~(x) = exp(ex)n,,(x) , 

where 

ex = ~ J div A(x') d3x' . 
4nhc I x-x' I 

In terms of the transformed operators, x+ and x- are independent of the electron 
field: 

(40a, b) 

Let Ill~ and Ill~ be the algebras generated by the S-transformed electron and electro­
magnetic field operators respectively. Then the commutant of the supplementary 
condition algebra is most conveniently expressed in terms of S-transformed operators: 

ri = Ill~ x ,1c(N)S , 

where Ill~ is generated by t/!s and l/is, and ,1c(N)S is the set of elements commuting 
with x+ and x- in the algebra generated by S-transformed electromagnetic operators. 
This set is algebraically identical to ,1cCN). Clearly, there is an isomorphism: 

(41) 

and this is the physical algebra Illphys ' Its formulation in terms of S-transformed 
operators clarifies the correspondence with the radiation gauge formulation, since 
the second term in the product (41) is isomorphic to ,1c(S) (cf. equation 15). Finding 
a representation of the algebra (41) (by the Gupta-Bleuler method, by the Fermi 
method or by representing Ille x ,1c(S) on the Fock space of the electron field and 
electromagnetic potential) is equivalent to quantization in the radiation gauge. 

In order to show that time translation can be implemented in this algebra, we 
exhibit the Hamiltonian as a sum of commuting operators: 

H= G+K, 

where 

[G,x±] = 0, [K,G] = 0, 

[K, C] E I for all C E Ill~ x ,1c(N)S . 

(42a) 

(42b) 
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This decomposition of H can be achieved in the same way as for the free field. 
A suitable operator G is given by 

G = He +Gy + f d3k( -c- 1jm( _k)qmtr(k) + 2k~c2jO(k)jo( -k)f, (43) 

where q::'(k) = (15 1m -k l kmjk2)ql(k), and Gy is of the same form as the generator G 
found for the free case in Section 2. The coset it represents, GL say, is the generator 
of time translations for the quotient algebra. 

To set up the interaction picture, we divide up the Hamiltonian as follows: 

where Go = He+Gy, and then G t has the form of the usual interaction Hamiltonian 
in the radiation gauge. In terms of x-space operators, we have 

where sI' denotes the transverse part of the electromagnetic field (cf. Bjorken and 
Drell 1965). The Go and G1 separately commute with the supplementary condition 
operators. 

Because G is just the usual radiation gauge Hamiltonian, the derivation of the 
Feynman rules will be algebraically identical to the radiation gauge proof given by 
Bjorken abd Drell (1965). We need only add a few comments about the description 
in terms of the quotient algebra, and representation-dependent aspects. 

Consider the representation of the radiation gauge algebra (41) obtained by the 
Fermi method. The usual Fock representation of electron field operators is used, 
and the quotient algebra .tJc(N)jI is represented on the component Yf 0 of the direct 
integral decomposition of the Fock space Yf given in (18). In the interaction picture, 
operators in the field algebra vary with time according to 

A -+ A(t) = exp(i Gotjh) A exp(-i Gotjh) , (45) 

and since x± commute with Go, this determines a time evolution for elements of the 
physical algebra: if A commutes with x± then 

The S matrix is an element of the physical algebra, and may be written 

(46) 

The first step in evaluating S-matrix elements is to apply Wick's theorem. This 
involves the definition of normal ordering, the associated definition of the vacuum 
state Qo, and the commutation relations used in the definition of time-ordered 
vacuum expectation values. In order to give these definitions in the radiation gauge, 
we introduce notation which distinguishes the transverse, longitudinal and timelike 
components of the electromagnetic field. 
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In a frame where the timelike component is in the direction nil = (1,0, 0, 0), the 
potential All may be written 

(47a, b) 

with OA = OA' = O.s;ll = 0, where .s;I1 satisfies o.s;ll/OXI = 0, and denotes the 
transverse components, and -oA'/oxl is the longitudinal component (a particular 
case of the notation used by Schwinger). 

From (3) we deduce the commutation relations 

[.s;Ilx),.s;Im(x')] = -ilicg,mD(x-x') +ilic ~o I ~o m.@(x-x'),(48) 
ox uX 

where .@ is determined by 

D.@(x) = 0, 

which apply both to the operators and to the equivalence classes they represent. 
In addition, for the longitudinal and timelike components, we have 

[A(x),A(x')] = -[A'(x),A'(x')] = -ilic'@(x-x'), 

[A(x), A'(x')] = [A(x), .s;I1l(X')] = [A'(x), .s;I1l(X')] = 0, 

(49a) 

(49b) 

and this also holds for the S-transformed quantities. The vacuum vector Do is defined 
by 

i/iL(+)(x)Do = l/IL(+l(x)Do = 0, (50a, b) 

in the representation space of the quotient algebra (41) corresponding to the spectral 
value zero for the supplementary condition operator, which can be written 

{A(x)-A'(x)}S; (51) 

note that we have 

(52) 

The definition of the vacuum is relativistically invariant, since the operators 
.s;I~+)(x) corresponding to a different choice of timelike vector nil lie in the same 
equivalence class .s;I;( + lex). 

The vacuum vector Do is an element of the representation space of the quotient 
algebra ~phY" and normal ordering of operators in ~phYs is defined in accordance 
with this vacuum. It follows, for example, that 

with 

where 

T (.s;Ir(x) .s;I~(x'») - : .s;Ir(x) .s;I~(x'): = (T( .s;Ir(x) .s;I~(x'»)>, (53) 

DF(X) = D( + lex) O(Xo) - D( - lex) O( - Xo) , 

.@F(X) = .@(+)(x)O(Xo) -.@(-)(x)O( -xo). 
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The Wick expansion for the S matrix, and its evaluation, are now precisely as 
described in Bjorken and Drell (1965) for the standard radiation gauge formulation. 

The derivation of the Feynman rules on the basis of the Fermi method was dis­
cussed by Coester and Jauch (1950). They defined the vacuum in the radiation gauge 
as a state in the space :If e x :If y which carries a representation of the field algebra 
~e x ~y, with the electromagnetic component satisfying 

(55) 

(56) 

This is the same vacuum definition as used by Schwinger (1948, 1949) in the radiation 
gauge. As Coester and Jauch pointed out, it is equivalent to the state used by Belinfante 
(1949) which he showed to be non-normalizable. The condition (56) provides the 
troublesome combination of annihilation and creation operators which allows an 
indefinite number of unphysical pholons. In calculating the self-energy of the electron, 
Belinfante showed how this poorly defined vacuum led to ambiguous divergent 
summations, which yielded the correct answer as one alternative among many. 
One resolution is the introduction of the indefinite metric, so that cancellation of 
terms involving unphysical photons leads to a normalizable vacuum and eliminates 
the possibility of incorrect contributions to the self-energy. The indefinite metric 
does not have a physical interpretation, and from the algebraic viewpoint, it is a 
mechanism for obtaining a representation of the physical quotient algebra. 

As another mechanism for finding such a representation, the Fermi method provides 
an alternative resolution of these difficulties. The quotient algebra is represented 
on :If e x :If 0 and the vacuum (50) is a well-defined element of this space. 

It is now possible to see, at least for their radiation gauge calculations, why 
Schwinger (1948, 1949) and Coester and Jauch (1950) obtained the correct results. 
Since the interaction Hamiltonian (44) commutes with the supplementary condition 
operators, so does the S matrix and its components of any order. It follows that all 
operators used in perturbation calculations may be replaced by the equivalence 
classes to which they belong in the quotient algebra (41). If we do this, and also 
replace the Coester-Jauch definition of the vacuum (55) and (56) by (50), then all 
their calculations may be interpreted as taking place in the representation of the 
quotient algebra specified by the Fermi method. In other words, the condition (56) 
is not necessary in order to obtain the correct Feynman rules, and its imposition 
only leads to needless ambiguities. 

We have chosen to use an interaction Hamiltonian formally the same as that in 
the radiation gauge quantization method, by writing all physical quantities in terms 
of S-transformed field operators. But we describe the interacting system as a repre­
sentation of the algebra (41), and hence the electromagnetic degrees of freedom are 
described in terms of a quotient algebra rather than .::1c(S), The radiation gauge 
description is obtained by picking a representative of each element of the quotient 
algebra; we have not made such a choice of gauge. This leads to a difference in the 
description of the Lorentz transformations, which are inner automorphisms of 
.::1iN)/I, whereas .::1c(S) is not stable under these transformations. Thus, calculations 
using the radiation gauge method can be re-interpreted as taking place in a covariant 
representation of .::1 c(N)/I, and this explains why they lead to covariant results. 
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4. Self-energy of Electron 

We wish to show how calculations involving states at finite times can be described 
in the algebraic picture. We consider a second order calculation of the self-energy 
of the electron in a radiation gauge formulation. This can be completely described 
in a representation of the physical quotient algebra ~phys' We shall then look into 
the meaning of the Lorentz gauge formulation. 

In the radiation gauge, the interaction Hamiltonian is given by 

(57) 

where the Coulomb term J(t) is given by 

J(t) = -c-1f d3x f d3x' 1(of!fi(x-x')/oxO)jO(x)jO(x'). (58) 

Here G1(t) is a representative of the equivalence class Gi(t) in ~Phys' The interaction 
picture Schrodinger equation describes the time evolution of a vector P in the 
representation space of ~phys: 

ih oP(t)/ot = Gi(t) P(t). (59) 

First order processes do not contribute to observable quantities directly, and we 
make a transformation to eliminate first order terms: 

pet) -+ exp( -i T) P(t) , (60) 

where 

T(t) = - 2L2 f d4x' e(x-x')j~(x')dlL(x'); (61) 

e(x-x') = I, XO > XO', 

-I, XO < XO'. 

The Schrodinger equation becomes 

ih a~;t) = J(t)L - 8L3 f d 3x f d4x' e(x-x')({Hx),r(x')} 

x [dm(x'), d1(x)] + [r(x'),jz(x)]{dm(x'),d1(x)})Lp(t). (62) 

We wish to determine the contribution to the Hamiltonian from processes whose 
initial and final states contain one electron and no photons. 

The vacuum Do is defined by 

t/I< + )L(X) Do = i/I< + )L(X) Do = d( + )L(X) Do = 0, (63) 

and the vacuum expectation value of electromagnetic factors in the Hamiltonian 
density is given by 

<[d~(x'), d1L(X)])0 = [d~(x'), d1L(X)] 

= ihco1 D(x-x') -ihc~.!....f!fi(x-x') (64) 
m ax,oxm ' 
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where D(l)(X) = i{D(+)(x)-D(-)(x)}, and similarly for ,@(1). Equation (65) depends 
on the definition of the vacuum, but (64) does not. 

The electron field terms all consist of products of pairs of currents: 

jll(x)j.(x') = :ifilZ(x)y~t/lp(x): :ifiy(x')y~~t/l6(X'): 

= y~ y~~ {<ifi",(x) t/l6(X'» : t/I p(x) ifi y(x'): + < t/I p(x) ifi y(x'» :ifi",(x) t/I ix') : 

+ : ifiix) t/I p(x) t/I y(x') t/lix'): + <ifiix) t/I~(x'»<t/I p(x) ifi y(x'»} . (66) 

Only the first two terms contribute in a one-electron state; we denote these by 
Uix)jv(X'») l' Substituting expressions of this form for all quadratic current terms 
in the Hamiltonian (62), and also using (64) and (65), we find that the Coulomb 
term combines with the terms involving electromagnetic operators to yield the second 
order self-energy term: 

- 8:c3 I d3x I d4x' e(x-x')y~y~~{(:t/lP(x)ifiy(x'):<ifiix),t/lix'» 

+ : ifi",(x) "'6(X'): < {t/I p(x), t/I y(X')}) )i hgllV D(x-x') 

+ (: t/I p(X) ifi y(x'): <[ifi",(x), t/I~(x')]) + : ifiix) t/lix'): <[t/I p(x), ifi y(X')]) ) 

x (-hc)gIlVD(1)(x-x')}. (67) 

After some further rearrangement, this term may be interpreted as contributing the 
usual logarithmically divergent addition (jm to the mass of the electron. 

The Lorentz gauge is often preferred for perturbation calculations because it 
allows explicit covariance to be maintained. In this gauge, many steps of the self­
energy calculation can be carried through in terms of apparently unconstrained 
4-vector potentials. We attempt to explain the success of this procedure in terms of 
the algebraic formulation. 

In the Lorentz gauge, the usual interaction Hamiltonian has the form 

(68) 

and this does not commute with the supplementary condition operators (37). Thus 
it cannot be regarded directly as a representative of an element of the Lorentz gauge 
physical algebra IHphys ' (However, as discussed in Section 3, the total Hamiltonian 
H = Ho+Hl is known to generate the same time evolution as an operator G, which 
does correspond to an element of the physical algebra.) 

A transformation to eliminate first order terms is now generated by the operator 

1 f . - 2hc2 d4x' iix') AIl(x')e(x-x') , (69) 
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and leads to the new Hamiltonian 

f d4x 8~2{j,.(X),j"(x')}D(X-X')e(X-X') 

-f d4x 8hiC3U,.(X),ilX')]{AP(x),AV(X')}e(X-X')' (70) 

We also note that the supplementary condition is transformed to 

In terms of A and A' this can be written 

A(x)-A'(x) - ~J d3x' f d4x" .@(x-x')U,.(x'),ilx")]AV(x")e(x-x").(72) 
4hc xO'=xO 

We wish to evaluate the electromagnetic term {AP(x),AV(x')} in the photon 
vacuum, and the current terms in the one-electron state. The photon vacuum is 
known to be the state in the representation space of ~phYS which is annihilated by 
positive frequency components of the transverse electromagnetic field. We cannot 
require that it should also be a vacuum for timelike and longitudinal photons, as this 
would be incompatible with the supplementary condition, and hence with its definition 
as a state on ~PhYS' Thus it appears that, before evaluating operators in a given state, 
it will be necessary to adopt gauge invariant expressions and interpret them as el~ments 
of the physical algebra. This transformation to the physical algebra can be done at 
any stage before expectation values are calCulated. Expectation value calculations 
could only be done in terms of the field algebra if an appropriate vacuum state could 
be defined on the field algebra in such a way that evaluation of operators gave the same 
answer as the corresponding calculation in the physical algebra. There has been a 
certain amount of confusion on this point. Schwinger's (1949, p. 669) calculation 
appears to suggest that the state defined on the field algebra Fock space by 

A~+)(x)Qo = 0 (73) 

has the required properties. It is the state satisfying the physical requirement of no 
transverse photons, 

(74) 

and in addition 

(75) 

In fact his calculation uses this definition, without recourse to the supplementary 
condition in any form. As previously noted, the only place where the electromagnetic 
vacuum is used is in finding the expectation value of the anticommutator: 

({AP(x), AV(x') }>o = -i[Ap(l)(x), AV(x')] + 2(AP(-)(x) Aix') +Aix')A~+)(x»o 

= hcgPVD(l)(X-X') +2(AP(-)(x) Av(x') +Aix')A~+)(x»o, (76) 

where 

(77) 
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(d l (1), A(l) and A,(l) can be defined analogously). With the definition of the vacuum 
(73), the expectation value on the right-hand side vanishes. If we do not assume 
the unphysical conditions (75), we still find that some terms vanish by (74), and others 
vanish to second order by the supplementary condition. In order to identify these 
terms, we rewrite the separation of All into longitudinal, timelike and transverse 
components given in (47): 

Using (74) we find 

AO(x) = - (8j8xo){A(x)- A'(x)} - (8j8xo)A'(x), 

AI(X) = d l(x)-(8j8x l)A'(x). 

Equation (74) provides no information about 

«8j8xo){ A( - lex) - A'( - lex) }(8j8x~){ A(x') - A'(x')} 

+(8j8x~){A(x') - A'(x') }(8j8xo){A(+)(x)- A'(+)(x) })o, 

(7Sa) 

(7Sb) 

(79) 

(SO) 

but this is the expectation value of a gauge invariant operator which may be replaced 
by another representative of its coset in the physical algebra. By equation (72), 
A - A' is thereby replaced by a second order current term. The whole expression 
is to be multiplied by further current factors, and therefore (SO) does not contribute 
to second order. 

However, we are still left with terms of the form 

«8j8xll)A'(-)(x)(8j8x~){A(x') - A'(x')} 

+(8j8x~){A(x')- A'(x') }(8j8xll){A'(+)(x) })o, 

«8j8xll)A'(-)(x)(8/8x~)A'(x') 

+ (8j8x~)A'(x')(8j8xll)A'( +)(x»o, 

which are not gauge invariant and cannot be proved to vanish on physical grounds. 
Therefore we cannot reproduce all the consequences of the vacuum definition (73). 

We now examine the consequences of using the field algebra state (73) in the self­
energy calculation, and compare the results obtained with those in the radiation 
gauge calculation. The contribution to the self-energy term from the two terms in 
(70) can be compared with the terms of similar form in (62). The contribution from 

differs from the corresponding radiation gauge term by 

(S1a) 

(S1b) 
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The first term (8la) just balances the contribution from the Coulomb term. Applica­
tion of integration by parts to (8lb) yields nonzero boundary terms, since the 
boundary is at finite time. 

The contribution 

(using the vacuum defined in equation 73) differs from 

(using the vacuum definition 63) by 

~Jd3xJd4x' e(X-X')([UX),jm(X')]l ~~!ZP\x-x') 
8c Ox,OXm . 

+ [/(X),jo(X')] 1 D(l\X-X'») . (82) 

This difference between the two calculations of the self-energy occurs after the 
electromagnetic operators have been evaluated in a state, hence it cannot be eliminated 
by any kind of transformation of the operators. 

This implies that Schwinger's vacuum definition (73) was not correct. As a result, 
terms were obtained corresponding to (81) and (82) (see Schwinger (1949), equations 
(3.29) and (3.44») which, contrary to his assertion, cannot be gauged away. We 
conclude that there is no simple definition of the field algebra vacuum. Hence, the 
method of calculation that involves converting to a formulation in the physical 
algebra before calculating expectation values is no more complicated (or less covariant) 
than any other. 

In the indefinite metric formalism, Bleuler (1950) introduced a field algebra 
vacuum definition appropriate for calculations at finite time: 

(83a) 

(83b) 

and showed that it yielded the same results as the radiation gauge scheme in which 
longitudinal and timelike photons are eliminated. Clearly, calculations of expectation 
values in this state will not treat all four components of the electromagnetic field 
covariantly, any more than radiation gauge calculations do. Furthermore, it is not 
clear whether an indefinite metric operator exists for the interacting case, and this 
would be needed in order to complete the justification of the expectation value 
evaluations described by Bleuler. 

In summary, calculations involving states at finite time can be done in the radiation 
gauge, whose covariance is understood through the algebraic approach. The formal 
field algebra calculations in Lorentz gauge with vacuum state (83) are justified by the 
fact that they give the same results as the radiation gauge calculations. 
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5. Conclusions 

In the algebraic picture, all quantization schemes are interpreted as providing 
representations of the physical algebra Illphys ' It is then reasonable to expect that they 
should all lead to the same calculational results. We have demonstrated that Fermi 
method calculations can be justified by appealing to the algebraic description of this 
quantization method, and in particular, the Feynman rules can be established in this 
way. 

Also using the algebraic picture, we have seen that the physical content of the 
field algebra description of time evolution can be understood in terms of the inner 
automorphism of the observable algebra Illphys which it generates. It is in this context 
that equations written in terms of the field algebra can be understood. However, 
physical states are defined as states on the quotient algebra IllphyS' and there are no 
physical grounds for defining a state on the field algebra corresponding to a given 
physical situation. Thus to evaluate expectation values, it is necessary to make use 
of the mechanism provided by the quantization scheme for finding a representation 
of Illphys, and then use states defined on the physical algebra. Covarient field algebra 
calculation schemes are justified by demonstrating that they agree with calculations 
in the physical algebra. In the Gupta-Bleuler approach, this is precisely the demon­
stration that the indefinite metric does not affect the calculation of physical quantities. 
Alternatively, the cancellation of non-covariant terms may be demonstrated more 
directly. 
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