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Abstract 

Spin glasses have variously been described as apparently frozen but very slowly relaxing spin systems, 
and also as magnetic phases below a second order transition. The structural and dynamic properties 
of metallic spin glasses are surveyed with emphasis on neutron scattering and low field magnetic 
measurements. Spin glass regions in phases with magnetic long range order are included, and an 
attempt is made to assess spin glass theories with respect to the various transitions. 

1. Introduction 

Since the observation of a cusp in the low field a.c. susceptibility of metallic alloys 
containing dilute magnetic impurities (Canella and Mydosh 1972) (Fig. 1), there has 
been a suggestion that below a critical temperature there is a spin glass phase in 
which the impurity spins are aligned in fixed but random directions. This view was 
bolstered by the mean field theory of Edwards and Anderson (1975) which describes 
such a spin glass phase with a 'local order parameter' q, and which predicts a second 
order phase transition (see Section 5). 

This paper will review low field magnetic and neutron scattering measurements, 
on mainly metallic spin glasses, which elucidate some of the dynamic and structural 
properties of these materials. In fact much of the data presented will be for CuMn 
alloys in order to restrict the wealth of phenomena and expose some principles. In 
this spirit an attempt will also be made to assess the current status of the Edwards­
Anderson 'order parameter' in the theoretical modelling of spin glasses. The survey 
of spin glass phenomena will also include the more recently discovered spin glass 
phases in magnetically long range ordered alloys close to their critical concentration, 
and in which the 'glassiness' is thought to be in the transverse spin components. 

Therefore, even in this restricted survey, there is still a richness of phenomena 
associated with the structure, dynamics and transitions of spin glasses. 

2. Spatial Correlations in Spin Glasses 

In a pure magnetic system the approach to the critical point is characterized by 
the divergence of the correlation length. This can be illustrated quite simply by 
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Fig. 1. Low field a.c. susceptibility of AuFe spin glasses against 
temperature showing the curves for zero (solid curves) and other 
small fields (Cannella and Mydosh 1972). Squares refer to work 
by Lutes and Schmit (1962) for lat. % samples. 

T. J. Hicks 

considering the wavelength dependent susceptibility of a localized moment ferro­
magnet above its critical temperature in the mean field approximation. The 
susceptibility is 

X(K) = M(K)/H(K) = Xo/{l-A(K)Xo}, 

with M(K) the wavevector dependent magnetization induced by a spatially varying 
field H (K); the susceptibility in the absence of any interactions is 

and A(K) is the mean field parameter, which has a K dependence because the exchange 
coupling has a finite range. The critical temperature is when X(O) diverges, 

where kB is Boltzmann's constant. 
The behaviour of X(K) for small K can be obtained by considering that A(K) must 

be an even function of K with a maximum at " = O. So we have 

The function X(K) is a Lorentzian whose half-width 

goes to zero at the critical temperature. The real space correlation length is 
proportional to the reciprocal of "0' and thus diverges at the critical temperature. 
This behaviour is well documented in ferromagnets and antiferromagnets (see e.g. 
Spooner and A verbach 1966), but in antiferromagnets it is the correlation length 
of the staggered susceptibility which diverges. 
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Fig. 2. Neutron scattering cross sections for three CuMn spin glasses for K = (4n sin O)/A A. -'. The upper graphs show the nuclear scattering which indicates 
that Mn is randomly distributed for the 2 and 5 at. % alloys. The lower graphs show the wavevector and temperature dependence of the magnetic scattering. 
Also included at K = 0 are points corresponding to the bulk susceptibility at the various temperatures measured on the same samples. The glass temperatures 
for the 2, 5 and 10 at. % alloys are approximately 14, 29 and 43 K respectively. [Ahmed and Hicks (1974).] 
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Fig. 3. Variation of the magnetic 
neutron scattering cross section with 
temperature for 5 at. % Cu Mn at 
two scattering vectors. [Mezei 
and Murani (1979).) 

Fig. 5. Temperature variation 
of the features in the magnetic 
neutron scattering cross section 
for 15 at.% CuMn. [Werner 
and Cable (1981).) 
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The first measurement of X(K) for a spin glass was that of Ahmed and Hicks 
(1974) on CuMn alloys. Their results are shown in Fig. 2. The magnetic part of the 
neutron scattering cross section is directly proportional to X(K)T under the assumption 
that the scattering is quasi-elastic. For all three alloys examined there is a change 
in the K dependence of X(K) with temperature, but in a gradual and continuous 
manner. In particular, there is no large difference in X(K) above and below the spin 
glass temperature defined by the cusp in the low field a.c. susceptibility. 

Support for the above observation comes from the data of Mezei and Murani 
(1979) who monitored the temperature variation of X(K)T for two K values (Fig. 3). 
The variation is continuous through the spin glass temperature. Both experiments 
can be criticized for being too coarse either in K or in temperature, and indeed 
significant features in X(K)T were missed until the work of Werner and Cable (1981) 
was reported on CuMn single crystals. Fig. 4 shows the features observed by Werner 
and Cable and their positions in reciprocal space. It should be pointed out that 
these features are not Bragg-like and therefore only refer to correlations of the order 
30-40 A, even at a concentration of 25 at. % Mn. They also develop continuously 
as the temperature is decreased (Fig. 5). Recently, Harders and Wells (1983) have 
confirmed the existence of these features. 

To date, at least in 5 at. % CuMn, most of the first Brillouin zone has been scanned 
for X(K)T (Davis and Hicks 1979; Werner and Cable 1981) and its temperature 
dependence for all K appears to be continuous through the spin glass temperature. 

3. Dynamics of Spin Glasses 

If the spatial correlation of the spins in a spin glass shows no anomalous behaviour 
at the spin glass temperature why is there a cusp in the susceptibility? The beginning 
of a crude answer can be deduced from the experiment of Ahmed and Hicks (1974), 
who compared the extrapolation of X(K) (K ~ 0) obtained from the magnetic neutron 
scattering cross section with the bulk susceptibility measured on a magnetometer. 
At high temperatures the two susceptibilities agree very well, but below the spin 
glass temperature the bulk susceptibility is small compared with that extrapolated 
from the neutron scattering cross section. In Fig. 2, points for the bulk susceptibilities 
for the various temperatures are shown at K = O. 

The discrepancy between the bulk and neutron susceptibilities can be reconciled 
if the relaxation time of the magnetism is much longer than the time of the bulk 
susceptibility measurement. This means that on the time scale of a bulk susceptibility 
measurement most of the moments in the material appear frozen. Of course we 
cannot tell whether they are completely frozen because the experiment contains no 
information on the time dependence of the susceptibility at times longer than that 
of the bulk susceptibility measurement. If the moments are completely frozen, 
however, they will scatter the neutrons strictly elastically. Only that fraction not 
completely frozen, and scattering quasi-elastically, can then be interpreted as con­
tributing to X(K). 

Murani and Tholence (1977) analysed the energy of neutrons scattered from an 
8 at. % CuMn sample. In their analysis they only counted neutrons outside their 
energy resolution as contributing to X(K), and effectively treated the rest of the 
scattered intensity as strictly elastic. They compared X(K), obtained in this way, with 
the low field a.c. susceptibility measured on the same sample at 16 Hz, and Fig. 6 
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shows the results for several small values of K. The main feature is the cusp in 
X(K) obtained at a temperature very much higher than for the a.c. susceptibility. The 
invariance of temperature of the cusp in X(K) with K suggests that the unusually high 
temperature would probably be a property of X(O) derived in the same way. 
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Fig. 6. Variation with temperature of the susceptibility calculated 
from that part of the quasi-elastic neutron scattering lying outside 
the energy resolution of the experiment (corresponding to a time 
constant of 10- 11 s) for 8 at. % CuMn. The dashed curve and inset 
show for comparison the low frequency susceptibility measured 
on the same sample. [Murani and Tholence (1977).] (Note: 
1 Oe == 103 j4n A m- 2 .) 

The most probable explanation for the neutron derived susceptibilities having 
a cusp temperature of 52 K rather than 39 K is that the missing part of the 
susceptibility is included in that part of the scattering not resolvable from the strictly 
elastic scattering (or there may be no strictly elastic scattering). The energy resolution 
of this experiment is equivalent to being able to excite those parts of the susceptibility 
with relaxation times of less than 10- 11 s. This would indicate that at 52 K, parts 
of the system acquire relaxation times of longer than 10- 11 s and appear frozen on 
that time scale, whereas the same thing happens at 39 K on a time scale of seconds 
to minutes. 

This experiment then raises the possibility that the glass temperature is not an 
equilibrium phase transition but a non-equilibrium artifact of the time scale of the 
experiment, and suggests that a profitable line of investigation might be to monitor 
the susceptibility cusp as a function of frequency. Unfortunately, the cusp tempera­
ture is widely reported to be independent of frequency (Dahlberg et al. 1979; Gray 
1980) for metallic spin glasses. Tholence (1980), however, does report frequency 
dependent cusp temperatures for metallic spin glasses. His results are shown in Fig. 7 
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for 4· 6 at. % CuMn, but he makes the point that the relation between the glass 
temperature Tg and the measuring time" is not given by the Arrhenius law 

" = "0 exp(Ea/kB Tg), 

with Ea the activation energy. The change of Tg with " is so small that the 
characteristic time "0 would have to be an unphysical ~ 10- 37 s. Tholence rather 
fits his results to a Fulcher law" = "0 exp{Ea/kB(Tg- To)} with some success (Fig. 8), 
even including the result from neutron scattering. His survey of other spin glass 
systems (Fig. 9) shows that there is a complete spectrum from extreme Fulcher to 
simple Arrhenius behaviour. 

The Fulcher law suggests that at long measurement times there is a temperature 
To below which the glass temperature does not fall. Such measurement times and 
temperature precision are very hard to achieve and no data exist which would test 
the Fulcher law predictions at long times. 
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Fig. 10. Variation of the spin correlation function with temperature 
and time as measured by the neutron spin echo technique for 
5 at. % CuMn. The curve to the left corresponds to a simple 
exponential decay exp( - yt) (hy = 0·5 meV), and for different 
decay rates would simply move along the time axis with unaltered 
shape. The other curves merely connect points taken at the same 
temperature. [Mezei and Murani (1979).1 

Data on relaxation times, however, do exist for short times from Mezei and 
Murani (1979) using the neutron spin echo technique. This technique directly 
measures the spin correlation function 

1 -n I dt X(K, t)/X'(K, w=O), 

where X' is the real part of the frequency dependent susceptibility. The results for 
5 at. % CuMn are shown in Fig. 10. Over most of the temperature and time range 
the relaxation is nowhere near exponential, and is better described as being propor­
tional to In". If such a dependence continues to long times it is understandable 
that there is such a small change in the susceptibility over many frequency decades. 

4. The 'd.c.' Susceptibility 

With the advent of squid magnetometers and sensitive vibrating sample magne­
tometers, it is now possible to measure the 'd.c.' susceptibility of spin glasses in low 
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magnetic fields. The 'd.c.' susceptibility is written within quotation marks to 
emphasize that there is always a finite measuring time. 

An example of'd.c.' measurements is that of Nagata et al. (1979) taken with a 
squid magnetometer (Fig. 11). Two branches of the susceptibility can be seen for 
each sample below the glass temperature. The higher branches (A and c) are taken 
with the field always applied and cooling down through Tg• The lower branches 
(B and D) are taken by first cooling below Tg and then applying the field. The a.c. 
susceptibility more closely corresponds to the lower branches. In addition to the 
two susceptibilities, there is a remanent magnetization very closely equal to the 
difference between the upper and lower branches of the susceptibility at all tempera­
tures; this will be discussed below. 
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Fig. 12 shows an expanded view of the glass temperature region of Fig. 11 and 
the cusp is sharp enough to be able to identify Tg to much less than O· 1 K. At 
this level it is difficult to say whether any broadness observed in the cusp is due to 
slight inhomogeneities in the alloy or whether it is inherent. Nagata et al. (1979) 
also showed that the susceptibility above Tg is a very good Curie-Weiss law, even 
close to the glass temperature. This is surprising in view of the well-known 
deficiencies of the mean field theory. 

T (K) 

Fig. 13. The d.c. susceptibilities of 20 at. % AuMn measured in a field of 3 Oe. The FC (field 
cooling) branch is measured while cooling in the field. The TRM (thermo-remanent magnetization) 
branch is measured in zero field while warming after the sample has been cooled in the field. The 
ZFC (zero field cooling) branch is measured while warming in the field after the sample has been 
cooled in zero field. [Gray (1983).] 

Gray (1983) has recently measured the 'd.c.' susceptibilities of a more complicated 
spin glass, 20 at. % AuMn, which is a good illustration of the sum rule between the 
remanent magnetization and the magnetizations induced from the two susceptibilities 
(see Fig. 13). The susceptibility is large enough so that demagnetizing fields have to 
be taken into account, especially as the applied field was only 3 Oe. The strange dip 
in the remanent magnetization (TRM) at '" 120 K is explained as follows. The back 
field from the remanent magnetization acts on the reversible part of the susceptibility, 
so that the measured total magnetization is less than the remanent magnetization. 
When the reversible susceptibility has a peak, then the apparent remanent magnetiza­
tion has a minimum, whilst the variation of the actual remanent magnetization is 
monotonic with temperature. Analysed in this way (Gray 1983), the remanent 
magnetization (TRM) and induced reversible magnetization (ZFC) do indeed sum 
to the magnetization (FC) observed in the upper branch. Further, the volume fraction 
of irreversible material is a monotonically decreasing function of temperature, to 
the accuracy of the demagnetization corrections. 

The above analysis encourages one to think in terms of volumes of reversible 
and irreversible material. However, the diffraction evidence, at least for simple dilute 
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spin glasses (Ahmed and Hicks 1975), is that they are microscopically homogeneous 
and, apart from the complication of gross demagnetizing effects, show the same 
reversible and irreversible effects. If the time dependence of the relaxation, which 
is observed for short times by the neutron spin echo technique, extends to laboratory 
times, it is quite possible to observe this as reversible and irreversible parts~ In Fig. 14 
the function y ex In't" is plotted linearly with a constant of proportionality which 
would keep the relaxation going over many decades of't". As can be seen the curve 
can be easily decomposed into a fast relaxing part and a slow relaxing part. 
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Fig. 14. Linear plot of 
y=O·Ollnr+O·7. 
For this function 
y = 1 when r;::: 10- 13, 

y = 0 when r;::: 1030. 

There is a rough justification for expecting a In't" law for relaxation, due originally 
to Street and Woolley (1949). If we take an initial density of metastable states fo(E), 
then after time t, the density of states will be 

freE) = fo(E) exp( - At), with A = eexp(-ElkBT). 

As time proceeds the lower energy states will be activated first and the distribution 
will move to higher energies. Below a certain value of At the metastable states will 
be intact. Above this value they will have been activated. We choose this value so 
that exp( -At) is small, At = C say. Then this point is represented by 

etexp( -ElkB T) = C or In(et) -ElkB T = In C, 

where E = kB Tln(etIC). If the distribution of metastable energies is broad then 
fo(E) is almost a constant and the number of states activated in a time between 
tl and t2 is 

Thus, the logarithmic relaxation is characteristic of a broad distribution of activation 
energies. 

Time dependent effects have been seen in AuFe spin glasses by Tholence and 
Tournier (1974) and Guy (1978). Tholence and Salamon (1982) have recently followed 
the relaxation of the remanent magnetization in various fields and temperatures. They 
described the relaxation by a term S (H, T) In t for o· 24 at. % CuMn. Decay of the 
remanent moment has been observed by Maletta and Felsch (1979) in EUxSrl-xS 
spin glasses, but these compounds are not metallic and all observations are at 
relatively high fields. .,. 
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5. Theoretical Situation 

Edwards and Anderson (EA) (1975) were the first to attempt to put the theory 
of spin glasses on a spin by spin statistical mechanics footing. Previous models 
(see e.g. Tholence and Tournier 1974) considered the behaviour of correlated regions 
of the alloy frozen in the local anisotropy field. However, while models of this variety 
explain many of the properties of spin glasses, it is difficult to delineate the regions 
in view of the observed lack of magnetic short range order in dilute metallic spin 
glasses (Ahmed and Hicks 1975). Such models are still useful in explaining time 
dependent effects especially, but hopefully these dependences will eventually be 
explained by the more microscopic treatments. 
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Fig. 15. (a) Ground state energies for Monte Carlo simulations of Ising spin glasses with zero 
average interaction. Here N is the number of spins, J is the average exchange energy and the 
arrow indicates the value predicted for an infinite number of spins from replica theory. (b) Entropy 
against temperature for a 500 spin Ising spin glass with zero average interaction. The solid curve 
is the replica theory prediction. [Kirkpatrick and Sherrington (1978).] 

Edwards and Anderson derived a solution for a system of classical spins connected 
by first neighbour exchange interactions with a gaussian frequency distribution and 
a mean strength of zero. They found that at low temperatures each spin developed 
a correlation with itself in the thermodynamic limit and they defined an 'order 
parameter' 

q= lim ~I<S/t).S/tl». 
t-t'~OCJ j 

In the EA theory there is an ordering temperature (discontinuity in the specific 
heat/second order transition) at which there is a cusp in the susceptibility. There 
is no time dependence in the theory because only equilibrium properties can be 
calculated. 

One of the objections to the EA theory is that it is a mean field theory which 
can predict transitions where there are none, e.g. a ferromagnetic alloy system below 
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its percolation concentration. Sherrington and Kirkpatrick (SK) (1975) hoped to 
remedy this by treating a situation where mean field theory should be exact, for 
example an Ising spin system with infinite range interactions distributed as in the 
EA theory. They also allowed the mean interaction to be nonzero. The solution 
obtained was similar to the EA theory but, as it was supposed to be exact, the 
occurrence of a negative entropy at low temperatures showed that something had 
gone wrong. Kirkpatrick and Sherrington (1978) also performed Monte Carlo tests 
on systems of up to 800 spins to compare with the SK theory. The Monte Carlo 
simulations produced values for the ground state internal energy and entropy 
significantly different from the theory (see Fig. 15). The entropy at 0 K is predicted 
by the .simulation to be a satisfyingly physical iero. The tests could also simulate 
system dynamics, and in particular the time dependence of q, which was found to 
decay very slowly in the spin glass phase and not to have stabilized before effects 
due to the finite number spins became important. Binder (1977) also saw a slow 
decay of q in a similar Monte Carlo study of Ising spin glass systems. 

The problem with the EA and SK solutions was pointed out by de Almeida and 
Thouless (1978). To calculate the free energy of the system a 'replica trick' was 
used in which the average of the logarithm of the partition function over bond 
configurations was 

where zn is the product of partition functions of n identical replicas of the system 
and q = ~~o (q't> with qjP = s] s~ (IX =I: P are replica labels). The problem appears 
to be that for the method to be simply applied, all the (q't> should be identical, 
but for those below the SK critical temperature this is not so, and the effective field 
at each spin is no longer gaussian. 

The beginning of a solution to this 'replica symmetry breaking' has been found 
by Parisi (1980) who, by crudely approximating the variation in q, obtained values 
of the low temperature entropy and internal energy of the SK model predicted by 
Kirkpatrick and Sherrington's (1978) Monte Carlo simulation. 

Currently therefore it is not certain that even the highly simplified theoretical 
models undergo a phase transition, but the models are very useful in defining 'regions 
of behaviour'. For instance Gabay and Toulouse (1981) showed that for three­
dimensional spins the transition from ferromagnetism to a spin glass phase is due to 
the freezing of the transverse components of the spins, although Cragg et al. (1982) 
identified this transition with problems of replica 'symmetry breaking'. Cragg and 
Sherrington (1982) also explored the spin glass phases for three-dimensional spins 
in the presence of uniaxial anisotropy and identified regions of transverse, longitudinal 
and mixed spin glass behaviour. It is true, however, that there is no spin glass phase 
exhibiting a nonzero EA order parameter which is free from the problems of replica 
'symmetry breaking'. 

6. Spin Glass and Long Range Order 

Spin glass phases occur up to a composition corresponding to the establishment 
of long range magnetic order in many alloy systems. How the two phases join or 
merge is a very interesting problem. 
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Fig. 17. Magnetic phase diagram 
for AuFe alloys derived from 

susceptibility, neutron, 
specific heat and 

electron spin resonance 
measurements 

(f - ferromagnetic, 
p - paramagnetic, g 

sp - superparamagnetic, h 

sg - spin glass, 
cg - cluster glass). 

[Coles et al. (1978).] 
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variation of the a.c. 
susceptibility of AuFe 
alloys with different 
iron content. [Coles 
et al. (1978).] 
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The early solution of the SK model indeed predicted a transition from a spin 
glass phase to a ferromagnetic phase as the average interaction is increased from 
zero. It is interesting that a ferromagnetic to spin glass transition is expected as 
the temperature is lowered in a certain range of interaction. The de Almeida and 
Thouless (1978) correction to the SK solution shows that the ferromagnetic spin glass 
transition lies in the unstable region. Nevertheless, the question is raised whether 
one should expect the disappearance of spontaneous magnetization as the temperature 
is lowered in a composition range just inside the long range ordered phase. 

The most extensively studied spin glass-ferromagnetic critical region is that of the 
AuFe system (Coles et al. 1978). Fig. 16 shows low field a.c. susceptibility measure­
ments spanning the critical concentration region. The changed character of the 
temperature dependence is clearly seen between 13 and 16· 2 at. % AuFe. The lower 
anomaly is continuous with Tg and the upper anomaly marks the Curie temperature. 
Fig. 17 shows the phase diagram assembled by Coles et al. (1978) from anomalies 
in various quantities detailed in the caption. It clearly shows a spin glass phase 
extending under the ferromagnetic phase. 
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Fig. 18 Temperature variation 
of the (Ill) integrated magnetic 
Bragg intensity for two A u Fe 
alloys from neutron diffraction. 
[Murani (1980).] 

The neutron experiment of Murani (1980) on 17 and 19 at. % AuFe alloys identifies 
anomalies in the broad vicinity of the (111) Bragg peak with Tc and Tg. Fig. 18 
shows the integrated intensity as a function of T. The high and low temperature 
anomalies are coincident with Tc and Tg. It is interesting to note that below Tg 
the integrated intensity still rises. This means that either Bragg peaks (reflecting 
the spontaneous ferromagnetic moment) increase at Tg, or other long range correla­
tions (greater than '" 50 A from the resolution used) grow. Murani also showed 
small angle neutron scattering results indicating that, as the temperature is lowered 
from 50 K, through Tg for the 17 at. % alloy, to 5K, the correlations shorter than 
",400 A grow in preference to those which are longer. 
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Gabay and Toulouse (1981) claimed that Murani's results vindicate their phase 
diagram of the spin glass-ferromagnetic interface (Fig. 19). They solved the 
Heisenberg spin problem equivalent to the Ising system treated by Sherrington and 
Kirkpatrick (1975). The Ml phase has a spontaneous magnetization and freezing 
of the transverse components of the Heisenberg spins; M2 is in addition unstable 
in the manner of that reported by de Almeida and Thouless (1978). In Fig. 18, T2 is 
thought to mark the transition from the ferromagnetic to M 1 phase and Tg marks 
the transition from the Ml to M2 phase. However, it is not clear how any order 
parameters can be defined for the M2 region for the same reason that the status of q in 
the EA and SK models is unclear. In addition Ml has also been shown to suffer from 
replica symmetry breaking instabilities (Cragg et al. 1982). 
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JolJ 

Fig. 19. Magnetic phase diagram of a spin glass system with three­
dimensional spins as a function of average interaction Jo normalized with 
respect to the standard deviation J. The phase Ml is specified as having 
a nonzero EA order parameter in the transverse spin components, in the 
presence of a spontaneous moment. The phase M2 has the replica 
'symmetry breaking' instability (see Cragg et al. 1982) (p-paramagnetic, 
f-ferromagnetic, sg-spin glass). [Gabay and Toulouse (1981).] 

Because Murani's results have three anomalous temperatures, Gabay and Toulouse 
identified these with the boundaries between f, Ml and M z. In addition Murani's 
results are taken as confirming the existence of a spontaneous moment below the 
anomaly at the lowest temperature. As we have seen Murani's results do not 
necessarily show this. In fact at low temperatures there appears to be a redistribution 
away from long correlation lengths. 

A similar situation exists in the classic CuMn spin glass system. In this case 
the long range ordered phase is antiferromagnetic and does not occur until the 
manganese content is in excess of 70 %. At this composition it is certain that the 
manganese moments are not localized. But again there is good evidence (Gibbs 
and Smith 1980) for the existence of a low temperature spin glass-like phase within 
what normally would have been regarded as the antiferromagnetic phase. Fig. 20 
shows the susceptibility results for one of the alloys and Fig. 21 shows the phase 
diagram deduced. The reversible susceptibility has the same characteristics as for 
AuFe alloys except that it shows a break at the Neel temperature TN rather than 
a fall at Te. The remanent magnetization and higher branch of the susceptibility 
are both again characteristic of a spin glass. 
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Fig. 20. The 'd.c.' susceptibility of an anti ferromagnetic 83 at. % CuMn alloy 
showing the three branches typical of spin glass behaviour at low temperatures 
(see Fig. 13), where TN is the Neel temperature. [Gibbs and Smith (1980).] 
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Fig. 21. Phase diagram 
for CuMn alloys. 
The spin glass behaviour 
spans the whole concentration 
range and long range 
antiferromagnetic order 
is established above 
~70 at. % Mn. [Gibbs 
and Smith (1980).] 
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This paper has sought to bring together experimental and theoretical evidence 
for the nature of, and the nature of the transition to, the spin glass state. It has 
been restricted to looking at the low field susceptibility and magnetic neutron scattering 
cross section of metallic spin glasses. 

The critical property used for the classification of phase transitions is, however, 
the specific heat, and the subject should not be left without reference to measurements 
of this property. No discontinuity has been detected in the specific heat or its 
temperature derivative, and typical of the results are those of Wenger and Keesom 
(1976) which show a very broad maximum above the glass temperature, and the 
very precise results reported by Fogle et al. (1981) on CuMn spin glasses. As must be 
clear from this paper it is extremely unlikely that we are seeing equilibrium properties 
even at laboratory times. It is therefore possible that if the experiments could be 
done slowly enough some discontinuity in the specific heat or its slope might be seen. 
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Whether or not the spin glass transition is a phase change therefore rests on very 
long time experiments which have very little chance of being definitive unless there 
is some clear method of extrapolation to infinite time. It all depends on whether 
some order parameter like the EAq parameter is nonzero in this limit. 

Even if it were shown that a second order or higher transition is involved, the 
argument about whether it is a transition between two phases might not be over. 
As Pippard, writing in 'Elements of Classical Thermodynamics', puts it 'In a second 
order transition ... the two phases (and at this stage we may doubt the wisdom 
of using this terminology to describe the two states on either side of the transition 
line) are identical in constitution, energy, entropy and volume'. 
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