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Abstract 

We present a deformation dipole model based on theoretical calculations of induced moments in 
ion pairs. The model is generally applicable and in this paper is applied to the calculation of the 
lattice dynamics of NaCI. Only a few parameters are required to give good agreement with experi
ment. Limitations of the approach are discussed. 

1. Introduction 

In this paper we present a study of interatomic interactions in solids based on 
the deformation dipole model. In particular, we give as an example of its application 
a potential for sodium chloride and the consequent lattice dynamics, although the 
approach has wide applicability to other insulators. Both the deformation dipole 
model (Hardy and Karo 1979) and the shell model (Dick and Overhauser 1958) have 
been used in such problems for many years. In the shell model each ion in the crystal 
is treated as having a massive charged core, and a massless charged shell linked to 
the core by a spring. A non-Coulomb interaction is taken between the shells on 
adjacent ions and the remaining interaction is Coulombic between the various charges. 
The shell-core spring constant is fixed from the value of the ionic polarizability. In 
the deformation dipole model, the ionic polarizability is not linked to deformations 
directly-the deformation dipole moment on each ion is treated explicitly. Unlike 
the shell model, the deformation dipole model does not modify the non-Coulomb 
interaction at all. Both models reduce to the rigid-ion model of Kellermann (1940) 
in the limit of no polarizability or deformation. 

Our model differs from that of Hardy and Karo (1979) in several respects. Firstly 
we have not made any changes to the non-Coulomb interaction to improve the 
rigid-ion model before introducing deformations. Hardy and Karo found it necessary 
to introduce angle-dependent forces. Our calculation uses strictly pairwise inter
actions. Finally, our choice of the parameters and functional forms for the deforma
tion dipole moments on the ions in the crystal is based on recent theoretical work 
on induced moments in ion pairs (Lacey and Byers Brown 1974; Mahanty and 
Majumdar 1982). As a result of these refinements, we apparently need fewer 
parameters to fit our model to phonon dispersion curves than were needed by Hardy 
and Karo. 
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2. Formulation of the Model 

If we assume that non-Coulombic force constants are described by a tensor R 
which is defined by 

(1) 

where cjJN(r) is a non-Coulomb pair potential (e.g. a Born-Mayer form), then we 
may write the equation of motion for our crystal as 

~mii = R.u -Z' .E. (2) 

In equation (2) u are the ion displacements, m are their masses, Z' are the effective 
ion charges of the system (including deformation effects) and E is the electric field 
at each ion site. 

Since the total dipole moment of the crystal is zero in equilibrium, we may expand 
the dipole moment for small ion displacements as 

(3) 

We now write the instantaneous dipole moment of an ion in the form 

p = (Z+£).u, (4) 

where Z~p = Z[)~p for free ion charge Z, and £ represents the change in effective 
ion charge due to the deformation of the ion associated with its displacement. In 
general £ is not diagonal, and is similar to S in equation (5.17) of Hardy and Karo 
(1979). 

There is also a dipole moment, due to electronic polarization effects, of the form 
a.. E, where a. is the polarizability tensor. Thus equation (4) becomes 

p = (Z+£).u + a..E. (5) 

Using the relation (Cochran 1971) 

E = -C.p, (6) 

where C is such that the rigid-ion Coulomb dynamical matrix is (Kellermann 1940) 

Z.C.Z, (7) 

we substitute into equation (5) to eliminate p, giving 

E = -C(Z+£).u -Ca..E, E = -(I+Ca.)-l C(Z+£).u, (8a, b) 

where I is the identity matrix. 
Since the effective charge is Z' = Z + £, our equation of motion (2) becomes 

(9) 

Thus in our deformation dipole model, the dynamical matrix is 

(10) 
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with the phonon frequencies w being given by the solutions of the determinantal 
equation 

(11) 

where D(q) is the Fourier transform of equation (10) and mij == m i bij . 

Cochran (1971) showed that the equivalent dynamical matrix for the shell model 
has the form 

(12) 

where Rsm differs from R by a 'deformation term' and f.s are Szigeti charges. The 
polarizabilities ex.sm are given in the shell model in terms of shell charges, spring 
constants and shell-shell terms. 

The analogy between equations (10) and (12) is clear. Our deformation charges 
correspond to the Szigeti charges. In our model, also, R and ex. are 'independent' 
of the deformation effects while they are all related in the shell model. 

Equation (II) is also identical to equation (5.20) of Hardy and Karo (1979), except 
for the appearance of an extra U matrix in their equation-this is probably an error. 
Note that when we take f. to be zero, equation (11) reduces to the point polarizable 
model, and when ex. are all zero we get Kellermann's rigid-ion model. 

We have obtained expressions for the deformation charge f. as follows: There 
are basically two types of deformations likely on each ion-that between like ions 
and that between unlike ions. Both arise from exchange effects in a region of small 
overlap in the ionic crystal. The analysis of Mahanty and Majumdar (1982) (referred 
to as MM hereafter) of simple like and unlike atom pairs (H-H and H-He) can be 
extended to pairs of many-electron atoms or ions. Qualitatively it would be reasonable 
to expect from their work that for the case of a pair of unlike ions, with one 
considerably larger than the other, the dipole moment of the ith ion due to its 
interaction with the jth ion separated by the distance rij will be of the form 

(13) 

where Gij depends on the pair of ions and the range Ai} 1 can be taken as the 
equivalent Born-Mayer range in R. This exponential dependence may also be 
expected from the work of Lacey and Byers Brown (1974), when adapted to this 
problem. 

For like ions a reasonable form would be 

(14) 

where S (r ij) is an overlap integral which varies from 1 to 0 monotonically as r ij 
goes from zero to infinity. Its dependence on rij would be similar to that for a 
pair of hydrogen atoms: 

Thus, we find the deformation charge from equation (3) as 

(15) 
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In our model then, we assume that A. in equation (13) is the same as that arising 
from a Born-Mayer type potential as used in R of equation (1). We have also assumed 
that we are free to vary the positive and negative ion polarizabilities 0(+ and 0(_, 

as well as the constants G + and G _ in equation (13). To account for the non
hydro genic nature of like-ion deformations, we have also introduced a simple scaling 
factor ao into equation (14). Thus we have at most five free parameters. 

3. Results 

Table 1. Calculated and experimental elastic constants for NaCI 
10 dyne cm- 2 = 1 Pa 

Elastic constant (10'2 dyne cm- 2 ) 

Calculated Experimental 
using CON potential results of Lewis et al. 

0·584 
0·137 
0·136 

0·573 
0·112 
0·133 

In doing our calculations we began by assuming that the rigid-ion calculation 
must be as accurate as possible to begin with. We tried to use the potential of 
Fumi and Tosi (1964) for NaCl, but found that it gave very poor results for both 
elastic constants (which are independent of I: and ex) and the phonon dispersion curves. 
Much better results were obtained by using the potential given in Table 2 of Catlow 
et af. (1977; CON hereafter), however, and this potential was subsequently used 
for all calculations. For this potential we derived the elastic constants given in Table 1, 
which show reasonable agreement with the experimental values of Lewis et af. (1967). 

The phonon results for the CON potential are similar to those given in Fig. 30a 
(curve RI)of Hardy and Karo (1979), although our CON results give slightly better 
values, particularly for the TO modes. We took as our standard for comparison with 
experiment the results of Schmunk and Winder (1970), which appear to be generally 
consistent with the earlier work of Raunio et af. (1969). 

The results of MM on H-H and H-He indicate that G increases with the ionic 
radius. Therefore, we have related G +, G _ of equation (13) to the ionic radii 
phenomenologically as 

(16) 

This reduces the number of parameters by one; G _ was chosen as the free parameter. 
Also, in view of the universal relation for polarizabilities being proportional to 

the cube of ionic radius, we considered 

(17) 

thereby further reducing the number of parameters to two- namely G _ and 0(_. 

In practice, it proved difficult to make a fit to experiment on the basis of varying 
G _ and 0(_ subject to equations (16) and (17), and these latter two relations were 
relaxed. We also found it necessary to reduce equation (14) to a very low value 
to get good fits. Therefore, like-ion deformations can probably be ignored. We 
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also had some success in fitting experimental results by using the assumption that 
Hardy and Karo (1979) and others have used of ignoring deformations on 
positive ions. 

Fits to the experimental data were made normally for the [100] phonon dispersion 
curves (note that elastic constants are independent of the deformation dipoles), and 
confirmation was obtained by calculations of the [110] and [111] phonon curves. 
Fitting was done by arbitrarily varying parameters and SUbjectively assessing the 
result. 

One of our best fits is that shown in Fig. 1. Worst agreement is for the LA 
mode near the zone boundary in [100] and the LO mode at q = O. Generally it was 
easier to get better fits in the [110] and [111] directions than in the [100] direction. 

For calculations in the [100] direction it was generally found that: 

(i) the LO mode at q = 0 was reduced (from its high rigid-ion value) by increasing 
both G _ and cx _. The effect of G + is opposite to that of G _ at q = 0; 

(ii) the TO modes at q = 0 were reduced by increasing cx_ and increased by 
increasing G _ ; 

(iii) the 'pinch' between longitudinal modes at about (0' 7,0,0) is moved inwards 
by increasing G _ ; 

(iv) the 'split' between longitudinal modes at (1,0,0) is decreased by increasing 
cx + relative to cx _, and is increased by decreasing G + relative to G _. 

It was found to be difficult to fix both the TO and LO modes near the experimental 
values at q = 0 as well as fitting accurately the 'pinch' area from (0' 7,0,0) to (1,0,0). 

Thus, using fewer parameters than are required for a comparable shell model fit, 
we are able to fit well with the experimental data for the optic modes, near the 
[100] zone boundary in particular; the fit with LA modes in the same region is not 
as good. This does not appear to be worse than the result in Fig. 30a (curve DD) of 
Hardy and Karo (1979). 

4. Discussion 

With no modifications to the non-Coulomb dynamical matrix we have been able 
to give a reasonable fit to experimental phonon dispersion curves with a deformation 
dipole model using just three parameters (G_,cx_,cx+). We have assumed that like-ion 
interaction deformations are negligible, and that positive-ion deformations are also 
negligible. 

Our results (Fig. 1) indicate the need for electronic polarizabilities somewhat larger 
than those given by Pauling (1927) of cx_ = 3·69 A3, cx+ = 0·81 A3; Mayer (1933) 
of cx_ = 3'I4A3, cx+ = 0'18A3; Tessman et al. (1953) of cx_ = 2'974A3, 
a+ = 0'255A3; or Boswarva and Murthy (1981) ofcx_ = 3'005A3,CX+ = 0·285A3. 
We are close to Pauling's value of cx_ but need to have cx+ much larger than any 
of the quoted values. 

We stress that the value of our approach lies in the theoretical justification for 
our treatment of deformation dipoles, and the small number of parameters we have 
used to get good agreement with experiment. 

As mentioned earlier, our model should also be applicable to other than ionic 
crystals, provided that pdef(r) for each pair of atoms is known. However, the pair 
approximation implicit in the above analysis will not be good for non-ionic crystals. 
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We have assumed that there is a large disparity in size between ions (permitting 
use of equation 13) and that deformation effects are due solely to the exchange 
interactions, which also generate the non-Coulomb interaction. We have ignored 
positive-ion deformations, and deformations due to interactions between like ions. 
The latter is justified to some extent by the larger separation between nearest like 
ions compared with nearest unlike ions in the crystal. 

We have ignored any relationship between electronic polarizabilities and defor
mation dipoles, and nor have we given any rigorous argument for the choice of the 
parameter G _. Clarification of these aspects is possible, at least in principle, through 
detailed quantum mechanical calculations of the sort hinted at for instance by MM, 
but we have not attempted it here. 
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