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Abstract

This paper deals with dissipation-free toroidal flow in steadily-rotating axisymmetric pulsar magneto­
spheres; for each species, relativistic inertia is balanced by the Lorentz force. A complete integral
for such flows is obtained; precise corotation with the star corresponds to a singular solution.
Except for the case of corotation, all quantities follow from a single scalar quantity, which is deter­
mined by the Stokes stream function of the magnetic field. A fundamental differential equation for
the problem is obtained. Particular attention is paid to flows that tend toward corotation as the
symmetry axis is approached, and implications of the results for model building are discussed.

1. Introduction

It is very likely that pulsar magnetospheres contain zones dominated by particles
whose motion is close to one of corotation with the star-a flow enforced by rotation
of the strong magnetic field. At any position, species of only a single charge-to-mass
ratio can corotate (Burman 1981a; Holloway and Pryce 1981). If precise corotation
is assumed, then such zones are confined within the light cylinder, on which the speed
of corotation equals c, the vacuum speed of light. This assumption is usually made,
no doubt for simplicity in analysis, but is unjustified : there is no reason to believe
that zones dominated by toroidally flowing particles do not extend beyond the light
cylinder, or that precise corotation holds anywhere.

So an obvious and necessary step in pulsar magnetosphere theory is to achieve an
understanding of toroidal flows that are not corotating with the star. Remarkably
little work has been done on this problem. Jackson (1980, 1981) treated these flows,
but neglected inertia and all forces other than the Lorentz force, so that the equation
of motion of a species was reduced to the equating of the Lorentz force to zero. A
start on incorporating inertia has been attempted by Holloway and Pryce (1981), who
concentrated on trying to treat small departures from corotation. This has been
followed up by Mestel (1981), who suggested that a complete magnetosphere model
may have a sub-rotating ion domain that can extend beyond the light cylinder.

In this paper, I shall develop the theory of purely toroidal flows in axisymmetric
pulsar magnetospheres. The pulsar is taken to be steadily rotating and the flow is
dissipation free, with the relativistic inertia of a species balanced by the Lorentz force
on it. The analysis is exact within the steady-rotation and dissipation-free constraints.
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The result is, at least to me, quite unexpected: it is the full and exact solution for
these flows. The flows are described by a complete integral, together with a singular
integral representing corotation.

2. Basic Theory

Let W, ¢ and z be cylindrical polar coordinates, with the z-axis as the rotation
axis of the star. The system under consideration is steady in the rotating frame:
the changes in time at points fixed in the inertial frame of the star result from the
steady rotation of a structure at angular frequency Q. The dimensionless cylindrical
radial coordinate Qw/c is denoted by x and the unit toroidal vector by t.

It follows from Faraday's law and V . B = 0 that the electric and magnetic fields
are connected by Eu-xt x B = - VcP(MesteI1971; Westfold 1981) where the gauge­
invariant potential cP is defined in terms of the familiar scalar and vector potentials
¢ and A as ¢ -xAcJ> (Endean 1972a). Thus E is expressed as the sum of a part xB x t,
generated by the rotation of the magnetic field structure, and an irrotational part
- VcP.

Endean (1972a, 1972b) pointed out that, under the steady-rotation constraint, there
exists a constant of the motion Pk for particles of species k:

(1)

where Yb mi, ek and vkcJ> denote the Lorentz factor, rest 'mass, charge and ¢ component
of velocity of the particles of this species. If all particles of species k are nonrelativistic
in an arbitrarily thin neighbourhood of the stellar surface, then P k is constant through­
out all the space connected to the surface by flow lines of that species (Burman and
Mestel 1978).

For a species represented as a cold dissipation-free fluid, the equation of motion,
expressing the balance. of the Lorentz force by relativistic inertia, can be written as
(Burman and Mestel 1978)

(2)

where Uk denotes Vk - Qwt, the velocity reduced by the local velocity of corotation
with the star. Inserting the toroidal flow restriction Vk·= vkc/> t into equation (2) shows
that P k must be independent of azimuth, leaving the poloidal equation

(3)

Attention will now be restricted to the axisymmetric case, in which the magnetic
and rotation axes of the star are either parallel or antiparallel. The poloidal magnetic
field (which, because of the absence of poloidal electric currents, is here the total
magnetic field) is expressible in the form w -1 t x VP, where P == - wAcJ>. The equation
of motion (3) reduces to

(4)

After inserting the Endean integral (1) for P k and using the fact that, for toroidal
flow, C

2V Yk = y~ vkcJ> VvkcJ>' equation (4) becomes

(5)
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where i denotes the unit cylindrical radial vector. It follows that

107

(6)

which will be used in Section 4.
The physical significance of equation (5) is clear: it is a direct representation of

the balance of the Lorentz force, which can be expressed as - ek V lP+ek c -1 Uk X B
(Burman and Mestel 1978), by the relativistic rotational inertia. For corotational
flow, equation (2) shows that P k is constant throughout the flow, while it follows
from equation (5) that (Burman 1980) eklP/mk c2 = 1-(l-x2}t, satisfying the boun­
dary condition lP = 0 on x = o. Equation (5) shows that departure from corotation
introduces a z dependence into lP.

Taking the curl of the force-balance equation (5) shows that the velocity's depen­
dences on wand z are linked identically by the relation

(7)

where ak denotes Vkq)W, the angular speed of the flow. Note that if vk</> is taken to be
independent of z, then it cannot be other than proportional to w-corresponding to
exact corotation if that is imposed as a boundary condition as w~ O. More generally,
since B, is positive in an electron zone and negative in a positive ion zone, the w
derivative of ak vanishes on the surfaces

(8)

(9)

except, perhaps, where B, = 0; here W Bkz denotes ek Bz/mk c, the z component of
the nonrelativistic vector angular gyrofrequency of species k. The angular speed of
the flow reaches a maximum, for each z, on one of these surfaces.

3. Admissible Toroidal Flows

For convenience, the subscript k labelling the species will now be dropped and
the dimensionless variable P == (e/mc 2)QP/c will be used; also, z will be taken as
normalized to one at distance c/Q above or below the equatorial plane.

The identity (7) takes the essentially dimensionless form

(~P _(y3 +y)Vq,)orx = of orx.
ox c az oz ax

This shows that, when inertia is neglected, a is a function of P only, which just
expresses magnetic domination of the flow. The full relation implies, because of the
factor aP/az on the right-hand side, that a varies with z only through a dependence
on P; that is, a can be regarded as a function «(x, P) ofx (explicitly) andP. Therefore, on
transforming to x and P as independent variables, remembering that oa/ox in (9)
is at constant z, the identity becomes

(aa) 3 v</> (act)- _+(y +y)- --;;;; = 0,ax p C op x

except perhaps where Bw = o.

(10)
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Consider, in particular, a small departure from corotation: a = Q-e where
Ie I ~ Q. The relation (10) becomes, to first order in s,

(11)

So, in a small, nearly toroidal departure from corotation, e must be a function of a
single variable:

e ~ e(P - l' + 1/1'), (12)

with l' = (1- x 2
) -t; this is just the statement that e is constant on the characteristics

of the linear first-order partial differential equation (11) that it satisfies. Even these
flows will not be purely toroidal, since the functional form (12) will not, in general,
satisfy precisely the full toroidal flow identity (9).

In particular, for small, nearly toroidal departures from corotation where x 2 ~ 1
[the problem studied by Holloway and Pryce (1981)], the functional form (12) reduces to
s ~ e(P-x2). In the dipole approximation, we have -P/x2 = (coB/Q)(1+3cos 20) - t ,
where COB == elilmc and 0 is the angle from the dipole axis. So, for x 2 ~ 1, s must be
close to being a function of P only, which is the negligible inertia result once again.

In terms of f3(x, P), denoting v4>/c, as the independent variable, the toroidal flow
identity (10) becomes

(8f3/8x)p+ (1'3 + y)f3(8f3/8P)x = B]», (13)

with l' == (1- f32)-t. This quasilinear first-order partial differential equation has the
singular solution f3 = x, corresponding to corotation, and a complete integral

yf3 +b/f3 = (P+a)/x == Q, (14)

where a and b are independent of x and P. Although z is being treated as a parameter
at this stage, a and b cannot depend on z since f3 can depend on z only through P;
thus a and b are constants. Another form of this complete integral is

l' -1/1' +b = f3Q. (14')

The complete integral shows that f3 can, in fact, be regarded as a function of the
single variable Q; pure corotation, being a singular solution, is an exception. For
toroidal flow in axisymmetric pulsar magnetospheres, excluding precise corotation,
all quantities are determined by a single scalar quantity: they follow from the magnetic
field through its Stokes stream function P.

Eliminating either l' or f3 from the complete integral, using either the forms (14)
or (14') respectively, yields quartic equations for f3 and 1':

f34 = (1 - f32)(Qf3 - b)2 ,

1'(1' -1/y +b)2 = (1' -1/y)Q2.

These give f3 andy in terms of Q.
Taking the gradient of the complete integral (14) results in

(15)

(16)

(17)
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Since fJ is a function of Q only, this is, in effect, an equation for dfJ/dQ; it will be
found useful in calculations. Note that

oQ/ox = -wBzIQ _(b+yfJ2)lfJx and oQ/oz = wBW/Q. (18a, b)

It is readily checked, using equations (17) and (18a), that oa/ox vanishes on the
surfaces defined by equation (8).

Let Pand ~ denote the dimensionless variables ePlme2 and elP/me2
• The equation

of motion (4) for toroidal flows in axisymmetric magnetospheres can be rewritten in
the present notation as

(fJlx -1)V(xyfJ-P) = VP. (19)

After using the complete integral (14) to substitute for xyfJ - P, equation (19) integrates
to

.p = l+b{xlfJ -In(xlfJ) -C},

where C is a constant. Comparison with the Endean integral (1) shows that

(j> = 1- y(l- xfJ) +b{x]fJ--In(xl fJ) - C} .

(20)

(21)

(22)

By taking the gradient of this equation and making use of the complete integral again,
it is readily verified that the toroidal flow condition (5) is satisfied. Equations (20)
and (21) present the variables .p and iP for flow corresponding to the complete
integral (14).

The relativistic vorticity V x yv of flow corresponding to the complete integral
can readily be calculated by using the integral in the form (14), taking fJ = fJ(Q),
obtaining dfJ/dQ from equation (17) and using equations (18) for VQ:

V x yv = b_
y;3j32(j32

00B +b~2-j32)Qk) ,

where roB == eBlmc and k is a unit vector parallel to the symmetry axis.
Note that flows with b = 0 are characterized by having zero generalized vorticity,

roB +V x yv; in other words, their magnetoidal field B+ (me/e)V x yv vanishes.
Equation (20) shows that .p = 1 for such flows, as is the case for pure corotation
when the boundary condition lP = 0 is imposed at the star. These are the only
toroidal flows for which P is constant. The integral (14) shows that flow with zero
generalized vorticity cannot extend to the star, since Q diverges there.

4. Magnetic Field and Charge Density

Forms taken by the Gauss and Ampere laws under the constraints of steady rotation
and axisymmetry have been given by Mestel et ale (1979). The former is

(23)

where p" denotes the electric charge density. If only a single species is present in a
region, or if all species present have the same azimuthal velocity component v4n so
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that the 4> component of electric current density in the region is pev cjJ , then the azi­
muthal component of the Ampere law is

(24)

In the absence, as here, of any poloidal electric current, BcjJ = 0 satisfies the remainder
of Ampere's law.

For toroidal flow, '1 2<1J is related to '1 2 P and VP by equation (6). Eliminating
(j) and '1 2P among equations (6), (23) and (24) results in

e 2 (xp)' OBz 2 Bwap m02
2( 3 )pp'

P = -1' ----+1' ----1' l' +1'-,
2x 2nc 4n OZ 4ne x

(25)

where the ·p.rime denotes partial differentiation with respect to x with z constant.
Suppose that the flow velocity VcjJ can be specified throughout an ion or electron

zone. Equation (24) together with (25) for p" and appropriate boundary conditions
on P-for example, that it takes dipolar form near the star-determine the magnetic
field throughout that zone.

Once the magnetic field in the zone has been found, equation (25) determines the
charge density there. The first two terms on the right-hand side are a direct generaliza­
tion of the Goldreich-Julian (1969) charge density, valid for corotation, to general
toroidal flow; these two terms are necessarily connected by the identity (7). The
third contribution to p" has resulted from allowing for inertia, as indicated by the
presence of the rest mass in its coefficient.

In the case of corotation, equation (25) for the charge density reduces to

which is the same as equation (3.9) of Mestel et ale (1979). The magnetic contribution
is the Goldreich-Julian charge density, and is positive where B, < 0 and negative
where B, > 0, vanishing with Bz : when inertia is neglected, positively and negatively
charged zones of corotation are separated by the B, = 0 surfaces.

The inertial contribution to pe is negligible in the bulk of a corotating zone, but
determines an outer boundary to the zone (Wang 1978; Mestel et ale 1979): Since
its sign is opposite to that of the magnetic term, the inertial term reduces p", and
hence the particle number density, to zero where IWBkz 1/0 = t(1'3 + 1'). So ion and
electron zones are, if corotating, separated by thin neighbourhoods of the B, = 0
surfaces, and terminate inside the light cylinder where 1'k ~ (21 W Bkz 1/0)1/3 (Wang
1978). The non-corotational part - '1<1J of the electric field, which provides the
centripetal force on the corotating particles, produces the inertial term in p" through
its contribution to V . E; it hence leads to the vanishing of p" when the Wang con­
dition is satisfied (Mestel et ale 1979).

Since p is a function of Q only, equation (25) for the charge density in terms of
the magnetic field can be rewritten as -
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(26)

After using equations (18) for V Q, equation (17) for dP/dQ and the complete integral
(14), it follows that

e ~ b+yp
2

2~{ Qmc~( 3 (XWB/Q)2) .}
P - 2 b 3{32 Y B, + 2 l' +1' + b p2 ·nc -1' x e x +1'

For p" to have a finite zero-inertia limit, the formula (26) shows that b must diverge
at least as fast as 11m as m ~ 0, giving

(27)

(28)

Equation (26) expresses the charge density in terms of the magnetic field and the
flow velocity, both of which are determined by the variable Q. An alternative proce­
dure, which leads to a particularly simple result, is to eliminate the. magnetic field
from equation (25') in favour of Q by using equations (18) relating B to VQ and Q.
After using equation (17) for dP/dQ, and the complete integral (14) as well, there
results, since d l' = 1'3Pd{3,

4ne p. = !(y2 -1) Q + ~ dy C~Q)2) ,
Q2m {3 x2 y dQ

where V denotes (cIQ)V. With only a single species of number density n present
at any point, this is an equation for w~/Q2, where wp -is the angular plasma frequency
(4ne2nlm)t.

In principle, equation (16) enables 1', and hence {3, to be eliminated from (28),
giving an expression for p" as a function of Q and x. Equation (16) is a quartic for
l' in terms of Q, but gives Q directly in terms of 1':

(29)

which is just another form of the complete integral; it follows that

Hence it is much easier to eliminate Q than l' from equation (28)~ yielding

4ne e _ y2-1+bY y3_ y- b(V)2
Q2m P - l' x2 + (1'2_1)2 l' ,

giving p" in terms of 1', VI' and x.
Equation (24) for the magnetic field has the dimensionless form

V2 p +2WBzIQ = (4nelfJ2m)x{3pe.

(30)

(31)

(32)

On taking Q as the independent variable, using equations (18) relating the magnetic
field to VQ, equation (32) becomes

(33)

Any of the above equations for p", namely (26), (28) or (31), can be substituted
into equation (33) to provide the fundamental differential equation of the problem.
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After inserting pC from (28), equation (33) can be written in the form

f; . (y-lf;Q) = YQlx2
•

R. R. Burman

(34)

On applying equations (29) and (30), giving Q and dQ/dy in terms of y, equation (34)
becomes

(35)

(36a, b)

with fey) and f'(y) defined by the right-hand sides of equations (29) and (30). So
the fundamental equation of the problem is now a nonlinear second-order partial
differential equation for the Lorentz factor.

5. Inside the Light Cylinder

I shall now study toroidal flows that approach corotation on the axis of symmetry:
f3 ~ x as x ~ O. Since BiiJ must vanish on the axis, P must approach zero faster than
x as x ~ 0, except perhaps on the equatorial plane; in the dipole approximation,
P varies as x 2 as x ~ 0, except on z = 0 where it varies as Y]»: Also iP ~ 0 and
ijJ ~ 1 as x .~ O. Hence, for flows in which f3 ~ x as x -+ 0, the complete integral
(14) shows that b = a, while equation (20) for .p shows that C = 1.

The integral describing the flow, namely equation (14) with b = a, can be written
in the forms

!!..!= 1 +y~2/a and s =e. p -'I ~l/y.
x 1 +Pla a 1 +Pla

The integral (36a) shows that the flow is close to corotation so long as the terms yf32la

in the numerator and Pia in the denominator can be neglected. In the dipole approxi­
mation, we have P ~ -X

2WBIQ. Thus the flow is close to corotation so long as

(37)

Hence, for the flow to remain close to corotation for a sensible distance from the
star, the constant a must be huge, at least of order wBsIQ; here, WBs == eBslmc with
B; denoting the magnetic field strength on the surface of the star at its poles. If a

is written as dWBsIQ, where d is a constant, then Pia = - (x2/2d)(Rlr)3 in the dipole
approximation; r is the distance from the centre of the star and R is the star's radius.

The condition y ~ Ia I will be very easily satisfied, implying that the integral (14)
with b = a reduces to f3 ~ a] Q; that is

f3lx ~ (1 +Pla)-l . (38)

The flow is sub-rotating or super-rotating according to whether Pia is positive or
negative respectively. Since IPia I is everywhere small, equation (38) can be further
approximated to

f3lx ~ 1 -Pia or e ~ QPla. (39a, b)

The condition y ~ Ia I cannot be a sufficient one for equation (38) to be valid:
somewhere, extremely close to the light cylinder, that equation will begin to violate
the relativity restriction f3 < 1. Thus, the condition

x < 1 +Pla (40)
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is required. Equations (38) and (39) should be applicable from the rotation axis' to
slightly beyond the light cylinder or to slightly inside it according to whether Pia is
positive or negative respectively.

Use of equation (38) for Pin equations (20) and (21) for P and &, with b = a and
C = 1, shows that

tJt ~ l+a{P/a-In(1 +P/a)} ~ 1 +P2/2a,

giving

VP ~ P(a+p)-lfjp ~ (P/a)fjp,

iJ ~ tJt-{(1 +P/a)2- x2}-t(1 +P/a-x2).

Use of equation (38) in the force-balance equation (5) shows that

f/iP ~ (1 +P/a)-l[{(1 +P/a)2_ x2} -txi+(P/a)f/P]

~ {(I +P/a)2- x2}-txi+(P/a)xQ-l ooB xt .

(41a, b)

(42a, b)

(43)

(44a)

(44b)

The small size of Pia has been used in obtaining equations (41b), (42b) and (44b).
So long as x is not extremely close to one, equations (43) and (44b) reduce to

&~ 1- (1 - x2)! +p2/2a ,

f/& ~ (l-x2)-txi+(P/a)xQ-l ooB x t.

(45)

(46)

When the terms involving P in equations' (41)-(46) are neglected, the results corre­
sponding to pure corotation are recovered.

These flows require further study, but the preliminary investigation of this section
is sufficient for certain inferences to be drawn.

6. Implications for Model Building

The standard Goldreich-Julian (1969) model of the pulsar magnetosphere features
zones of corotating electrons and positive ions, in which particle inertia and all
forces other than the Lorentz force are neglected, implying that E is orthogonal to
B. The electron and ion zones are separated by the B; = 0 surfaces, corresponding
to cos2

() = t in the dipole approximation. Jackson (1978) pointed out that this
configuration is unstable to charge mixing. He studied the infinitesimal additional
electrical fields introduced by infinitesimal perturbations to this configuration. The
resulting component Ell of the electric field along B is, in the neighbourhood of the
B, = 0 surfaces, directed so as to force the electrons into the ion zone and the ions
into the electron zones. Jackson argued that recombination would occur in those
regions; the resulting neutral particles would be removed by gravity and could not
be replaced from the star.

When particle inertia is allowed for, with the assumption of corotation retained,
the function (]J must be introduced in order to support the motion. The resulting (]J

is proportional to the mass-to-charge ratio of the species: it is negative and compara­
tively small in the electron zones and positive and very much larger in the ion zone.
Thus, there is a big jump in (]J between the zones, and the resulting electric field is
directed so as to accelerate electrons into the ion zone and ions into the electron
zones (Burman 1981a, 1981b).
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So far, this is consistent with Jackson's (1978)work. But, whereas a stability analysis
of the kind he used is intrinsically unable to give the magnitude of the effect, other
work (Burman 1981a, 1981b) showed that the effect of inertia is very large: beyond
x ~ 1130, the jump in iP is sufficient to accelerate the electrons to relativistic speeds.
The implications of these results for model building are quite different from those
advocated by Jackson.

Because of the rapid particle acceleration across the thin regions between the
electron and ion zones, very little recombination is to be expected-rather, processes
of acceleration and mirroring of particles occur, with electrons penetrating the ion
zone and ions penetrating the electron zones. The electron-dominated and ion­
dominated zones are separated, not by gaps, but by inertial boundary layers (Burman
1981c) of reduced density because of the increased poloidal velocities. The mirroring
provides the means to keep the electron and ion zones replenished.

The mirroring is not by the usual mechanism of magnetic mirroring in regions of
converging magnetic field lines-rather, the electrons undergo electrical mirroring,
caused by the Ell fields, in the northern and southern' boundary layers, oscillating
between the two, while the ions oscillate between electrical mirroring in the boundary
layers and centrifugal mirroring closer to the star. Both mirroring mechanisms owe
their origin to inertia: while the centrifugal mirroring is directly inertial, the electrical
mirroring is indirectly so, since the Ell fields causing it have been set up because of the
differing inertia of the toroidally flowing electrons and, ions.

But what is the result of removing the constraint of corotation-which, after all,
is now seen to represent but a singular solution-while retaining that of toroidal flow?
The equations of the last section provide the answer: the fundamental problem of
mismatch of iP and its derivatives between electron and ion zones remains. The form
of iP is not so simple as in the corotational case, and is not just proportional to the
mass-to-charge ratio. But in the expanded forms of iP and ViP, some of the terms
do have that dependence; again, iP and its gradient cannot be matched between
electron and ion zones.

With a written as dWBs/Q, equations (45) and (46) take the forms

iP ~ (mc2Ie){I-(I-x2}!-} + (QI2cdBs)(QPlc)2 ,

ViP ~ (Qmcle)(I-x2)- t xi+(xld)(Q2Plc 2)B x tlBs •

(47)

(48)

If d is independent of the species, then the jump in iP, and the corresponding Ell'
between electron and ion zones are much the same as with precisely corotating zones:
relaxing the assumption of corotation does not alter the physical implications of my
earlier analysis (Burman 1981a, 1981b).

Consider the component Fllof the Lorentz force parallel to the magnetic field
acting on a stray electron in the ion zone or on a stray positive ion in an electron
zone. Equation (48) shows that, in both cases, F II has the sign of B6j: it is parallel
to B in the northern (magnetic) hemisphere and antiparallel in the southern. The
centrifugal effect experienced by the electron will be negligible in comparison with
the electric force, which has arisen through the need to support the centrifugal effect
on the ions. The centrifugal effect on the stray ion will act in support of F II•

Once in the ion zone, the electrons experience a Lorentz force component F
11

directed so as to accelerate them deeper into the ion zone, until they cross into the
opposite hemisphere where F II will decelerate them, They will travel approximately
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along magnetic field lines, mirroring between the northern and southern boundaries
separating the electron and ion zones.

Once they have penetrated into an electron zone, the ions will be decelerated by
a combination of the Lorentz force component F II and the centrifugal effect, mainly
the latter. They will travel approximately along magnetic field lines, mirroring between
some point above the stellar surface and the boundary separating the electron and
ion zones.

It is easily seen that the usual idea of introducing a vacuum gap between the electron
and ion zones cannot be used to overcome the matching difficulty. In an axisymmetric
magnetosphere, we have cP = ¢ +DP/c. In a vacuum region, the scalar potential ¢
satisfies Laplace's equation. So, in a vacuum gap stretching indefinitely away from
the star, ¢ can be represented as a series in inverse powers of r, beginning with the
quadrupole term varying as l/r 3

, but with a l/r term if there is a net charge. The
magnetic stream function has a similar series expansion, beginning with the dipole
term varying as l/r. Thus, the behaviour of the potential cP as a function of r is
nothing like that described by equation (47) for cP in a toroidally flowing zone near
the star: matching between such a zone and a Vacuum gap is clearly impossible.

It might be feasible to circumvent this argument by making the vacuum gap
terminate at some finite distance from the star, so enabling terms involving positive
powers of r to be introduced into cP in the gap. But, in any case, introduction of a
vacuum gap is unphysical. The forces in the boundary regions between zones are in
the wrong direction, acting to produce charge mixing instead of charge separation,
and they accelerate the particles too powerfully to allow much recombination to occur.

Proposed models of the axisymmetric pulsar magnetosphere invariably have zones
occupied solely by toroidally flowing particles. There are almost always, in addition,
zones containing outflowing or poloidally circulating particles emitted from the
star's polar caps. A fewauthors (e.g. Michel 1980; Michel and Pellat 1981) have
advocated purely rotational models, in which there is no poloidal flow at all.

But it is clear from the above discussion that there can be no zones occupied solely
by toroidally flowing particles: although the toroidal flow condition can be satisfied
locally, global considerations imply that poloidal flow is endemic. In particular, the
purely rotational models do not work.

It is interesting that no explicit use of any dynamical boundary condition at large
distances from the star has been required in order to deduce the physical picture
discussed here. Solutions satisfying the boundary conditions on the star form only
a single-parameter family, and the qualitative behaviour is determined.

7. Comparison with Other Work
Jackson (1980, 1981) studied purely toroidal flows using the approximation in

which the component Ell of the electric field parallel to the magnetic field vanishes
in the plasma. This approximation arises when inertia, and all forces other than the
Lorentz force, are neglected, so that the equation of motion of a species reduces to
the statement that the Lorentz force on it is zero. Thus, the differential equation of
motion is approximated by a simple algebraic equation. Jackson dealt with both
finite and infinite axisymmetric magnetospheres, and took Ell to vanish throughout
the plasma.

As a result of these studies, Jackson (1981) claimed that the angular speed of the
flow must go to zero on the symmetry axis, a notion which is in conflict with the
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behaviour described by the complete integral above. I shall now discuss the reason
for this disagreement.

The precise result established by Jackson can be described as follows. Consider
an axisymmetric pulsar magnetosphere of infinite extent, in which the flow is purely
toroidal, of angular speed a, and the magnetic field, with stream function P, has
dipolar form at large distances from the star. Application of the Ell = 0 approxima­
tion in which a is a function of P only, throughout the magnetosphere, together with
the requirement that the flow speed must remain below c at large distances from the
star, implies that (Jackson 1981, Section III)

lim {a(P)jP} ~ M < 00,
p~o

(49)

where M is a constant. It appears from this that a(P) must tend to zero at least as
fast as P as the surface P = 0 is approached; this surface consists of the symmetry
axis together with a surface at infinity.

The essential point is that the neglect of inertia in the Ell = 0 approximation
means that the flow speeds are not automatically kept below c, so some step must be
taken in order to satisfy this requirement. In the Goldreich-Julian (1969) model,
which is based on the same approximation, it is the need to keep the speeds outside
the light cylinder below c that leads to the existence of a stellar wind, as Mestel et ale
(1979) emphasized. Goldreich and Julian imposed the boundary condition of perfect
conductivity on the stellar surface; as a result, the E'I = 0 approximation yields the
isorotation law u ~ KB for each species, where K is a scalar: the lines of the reduced
flow velocity coincide with those of the magnetic field. The toroidal part of this
relation shows that, beyond the light cylinder, K must be nonzero in order to keep
vet> below C. Hence, the poloidal part of the isorotation law shows that there is neces­
sarily a poloidal flow beyond the light cylinder. Jackson did not impose the boundary
condition of perfect conductivity on the stellar surface and was led, not to a poloidal
flow, but to the limit (49).

It should perhaps be emphasized that the Jackson limit (49) arose from the global
imposition of the Ell = 0 approximation. It would not arise from neglecting inertia
just where the flow speed is small.

In my work, since relativistic inertia is fully incorporated, the flow speeds are
automatically kept below c, except for the singular integral corresponding to coro­
tation, a solution which must be restricted to the region inside the light cylinder.
Yet my complete integral does not show a to have the behaviour that Jackson deduced
for it. What is the explanation?

The reason lies in taking the apparent freedom of choice of the functional form
a(P) in the Ell = 0 approximation at its face value. That apparent freedom is illusory:
it is not that a(P) was left free in Jackson's work but that it was undetermined. The
correct interpretation is that there does exist a specific functional form of a(P) appro­
priate to the E'I = 0 limit, but the equations of that limit are too weak to determine it.

In contrast, the work set out in the present paper, with relativistic inertia fully
incorporated, fully determines the functional form of a, leaving only two constants
free to be chosen to satisfy boundary conditions.

To study the zero-inertia limit of the rigorous theory, one can regard y in the com­
plete integral (14) as a parameter labelling the inertial term and let it go to zero, giving

a ~ Qb/(P+a). (50)
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Whereas the equations of the Ell = 0 approximation leave a an undetermined function
of P, approaching that approximation as a limit of the rigorous theory determines
the functional form of a appropriate to that approximation. Equation (50) gives
the required functional form. It shows that a(P)jP diverges as P ~ 0: the Jackson
limit (49) is violated. Equation (50) shows that, if the plasma extends to the axis,
then the constant a must be nonzero so that l1, will remain finite there. It follows that
a must take the finite nonzero value Qbja on the axis.

8. Concluding Remarks

The purpose of this paper has been to report a study of toroidal flows that are not
restricted to corotation with the star. The general analysis has been exact within the
constraints of steady rotation, axisymmetry and no dissipation, representing, for each
species, a balance between the Lorentz force and relativistic inertia. I have shown
that the flows are described by a complete integral, together with a singular solution
corresponding to precise corotation with the star. This makes the full range of such
flows now available for study.

The complete integral and singular solution follow from a quasi linear first-order
partial differential equation that toroidal flows must satisfy, so demonstrating the
existence of an underlying quasilinear structure to this highly nonlinear problem.

I have used the complete integral to show that there can be no zones occupied
solely by toroidally flowing particles, though there may well be zones dominated by
particles whose motion is largely toroidal. It is not surprising that the qualitative
implications of this analysis of toroidal flow are just the same as in my earlier work
based on corotation: it was always intuitively clear that the electric forces were
simply too great for any reasonable toroidal departure from corotation to have a major
effect. But it is, perhaps, more compelling to see the conclusion emerge from a
rigorous analysis of general toroidal flow.

The real problem in understanding the pulsar magnetosphere is not the Goldreich­
Julian one of satisfying the boundary conditions on the star: it is that of matching
regions dominated by different species.

The complete integral extends by one the list of known integrals of the motion
(Westfold 1981). These will undoubtedly feature prominently in the process of
obtaining a self-consistent pulsar magnetosphere model. Recent work of mine
has shown that knowledge of the complete integral for purely toroidal flow,
invoked as a limiting case, is very helpful, perhaps essential, in developing the full
flow equations for axisymmetric magnetospheres.
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