
The Steady Currents Driven in 
a Conducting Sphere Placed in 
a Rotating Magnetic Field 

w. N. Hugrass and H. A. Kirolous 

School of Physical Sciences, 
Flinders University of South Australia, 
Bedford Park, S.A. 5042. 

Abstract 
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The steady currents (and the associated steady magnetic fields) generated in a conducting sphere 
placed in a rotating magnetic field are calculated in the weakly nonlinear limit. It is found that the 
steady driven current has a poloidal and a toroidal component. The steady toroidal magnetic field 
associated with the driven poloidal current has opposite senses above and below the equatorial 
plane; the net toroidal flux is zero. The relevance of this result to some recent observations in the 
Rotamak experiment is discussed. 

1. Introduction 

The force per unit volume acting on the electron fluid in a conducting object is 
given by 

F = -neE+Jx B, (1) 

where n is the electron number density, e is the electron charge and J is the current 
density, and we have assumed that the ion contribution to the current is negligible. 
The ratio between the Hall force Jx B and the electric force neE is approximately 
given by 

Il '" JB/neE '" B/nerJ, (2) 

where rJ is the resistivity. By using the classical formula for the resistivity 

rJ = me Vei/ne2 (3) 

(me is the electron mass and Vei is the electron-ion momentum transfer collision 
frequency), it can be shown that 

Il '" Wce/Vei' (4) 

where Wce = eB/me is the electron cyclotron frequency. For metallic conductors Vei 

is large, Il is always much smaller than one and the Hall force is rightfully ignored. 
However, Il can be larger than one for semiconductors, gas discharges and cosmic and 
laboratory plasmas. The Hall term becomes dominant in these situations and it has 
to be retained. 
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It is well known that screening currents are induced in conducting objects placed 
in time-varying magnetic fields. The Hall force resulting from the nonlinear interaction 
between the time-varying magnetic fields and the screening currents associated with 
them has in general a steady part as well as a time-varying part. The Hall force drives 
a 'Hall current' in a system of finite dimensions provided that its curl is nonzero. 
The steady part of the Hall current can be much larger than the time-varying part 
since it is limited only by the resistance of its path, whereas the time-varying Hall 
current is limited by the inductance as well as the resistance of its path. Again we 
stress that this Hall current is not significant for metallic conductors (for which 
e ~ 1) but can be appreciable for semiconductors and plasmas. 

The use of rotating magnetic fields to drive steady currents in plasmas (Blevin 
and Thonemann 1962; Davenport et al. 1966; Hugrass et al. 1981) is an application 
of this effect. Consider an infinitely long plasma cylinder, to which is applied a 
uniform transverse magnetic field that rotates about the axis of the cylinder at an 
angular frequency w: 

B = Bwcos(wt-())r +Bwsin(wt-())O, (5) 

where r, () and z are the standard cylindrical coordinates and 1', 0 and z are the corre­
sponding unit vectors. An axial screening current 1z is induced in the plasma, and 
the effect of this current is to limit the penetration of the rotating field in the plasma. 
The Hall force acting on the electrons (which results from the nonlinear interaction 
between the rotating field and the screening current associated with it) has a steady 
part. The corresponding steady Hall current driven in the plasma is 

10 = (-llneYJ)<lzBr>, (6) 

where the angle brackets denote time averaging. We note that the ratio of the Hall 
current to the axial screening current is 

1011z """ BrlneYJ """ wce/vei = e. (7) 

The equations describing this system were solved analytically for e ~ 1 and e ~ 1 
(Jones and Hugrass 1981) and numerically (Hugrass and Grimm 1981) for arbitrary e. 
These studies showed that for e ~ 1 the azimuthal current is given by 

10 ~ -newr (8) 

and the axial current is of the order e -1 10 , This axial current can be much smaller 
than the screening current predicted by the linear theory, and the rotating field 
therefore penetrates into the plasma cylinder much further than the classical skin 
depth. For e ~ I, the axial current is not much different from that obtained using 
the linear theory. For this weakly nonlinear case, the Hall current is calculated 
using the zeroth-order fields obtained from the linear analysis; these zeroth-order 
fields are those associated with the classical skin effect (Jones and Hugrass 1981). 

In the Rotamak experiments, the rotating field is utilized to drive the toroidal 
current in a compact toroidal plasma (Jones 1979; Hugrass et al. 1980; Durance 
et al. 1982). For typical Rotamak experiments we have e ~ 1 and the rotating 
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magnetic field Bro smaller than (but of the same order as) the equilibrium steady 
magnetic field. The steady toroidal current is driven by the steady toroidal compo­
nent of the Hall force resulting from the interaction between the rotating magnetic 
field and the screening currents it induces in the plasma. 

In contrast with the case of a cylindrical plasma, the Hall force drives a poloidal 
steady current in a compact toroidal plasma in addition to the steady toroidal current. 
This poloidal component arises because the screening currents are not purely vertical. 
From symmetry considerations, the poloidal current below the equatorial plane 
must be a mirror image of that above the equatorial plane. It follows that the asso­
ciated toroidal magnetic field is antisymmetric with respect to the equatorial plane; 
this result is obtained naturally from the analysis. 

In this paper we will consider the idealized model of a spherical conductor of 
uniform electron number density and uniform resistivity, to which is applied a uni­
form transverse magnetic field which rotates about the polar axis. The effect of the 
steady equilibrium field appropriate to a Rotamak equilibrium will not be considered, 
and the problem will be treated only for the weakly nonlinear case (8 ~ 1). While 
it is recognized (Hugrass 1982) that steady magnetic fields have an appreciable effect 
on the screening currents (and hence the Hall force) and that the quasi-linear case 
(8 ~ 1) bears little resemblance to the experimental situation, the results obtained 
using this simple model are not expected to be qualitatively different from what 
would be obtained using a more exact (and more complicated) model. Furthermore, 
the disregard of unnecessary details allows a clearer insight into the physical mechan­
ism involved. 

The main assumptions and equations describing the model are presented in Section 
2 and the zeroth-order fields are obtained in Section 3. The steady Hall currents and 
the associated steady magnetic fields are calculated in Section 4 and the relevance of 
these results to the latest observations in the Rotamak is discussed in Section 5. 

2. Main Equations and Assumptions 

Consider a conducting sphere of radius R, placed in a uniform magnetic field of 
amplitude Bro which rotates about the polar axis at an angular frequency w: 

B = Bro sin 8cos(wt-cp)r +Brocos8cos(wt-cp)9 

+Bro sin(wt- cp)«J), (9) 

where r, 8 and cp are the standard spherical coordinates and Y, 9 and eli are the corre­
sponding unit vectors. We assume that the ions are immobile, singly charged and 
have a uniform n.umber density n. The electrons are assumed to form a cold fluid 
of uniform number density n, and the resistivity is assumed to be isotropic and 
uniform. We also assume that the radius of the sphere is much smaller than the 

. free space wavelength of electromagnetic radiation at the rotating field frequency, 
so that the displacement current can be ignored. The fields satisfy Maxwell's equations 

\Ix E = -oB/ot, 

\Ix B = flo J, 

and the appropriate form of Ohm's law 

. YfJ = E -(l/ne)Jx B. 

(10) 

(11) 

(12) 
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Using equations (10)-(12) we obtain 

2 110 oB 1 
\I B - - - = - \I x {(\I x B) x B)} , 

1'/ at ne1'/ 
(13) 

for 0 ~ r ~ R, and 
\l2B = 0, (14) 

for r ~ R. 
It is extremely difficult to obtain a general analytical solution to the above equa­

tions since the right-hand term of equation (13) is nonlinear. We note, however, 
that the ratio of this nonlinear term to the linear term \12 B is of the order B = B/ne1'/ = 
())ce/Vei. It is therefore possible to obtain an approximate solution valid for the quasi­
linear case, e ~ 1, using a perturbation analysis. For the purpose of this analysis, 
we express the magnetic field as the sum of a zeroth-order field Bo and a first-order 
field b1 : 

B = Bo+b1 , (15) 

where hi is of order BBo, and we neglect terms of order e2 and higher. The zeroth­
order field Bo satisfies the equation 

in the region 0 ~ r ~ R, and 

2 110 a 
\I Bo ---Bo = 0 

1'/ at 

\l2Bo = 0 

(16) 

(17) 

in the region r ~ R, and matches the externally applied field (equation 9) for r ~ R. 
The first-order field has a steady part b1s and a time-varying part b1 t. The steady 
part satisfies the equation 

\l2bls = (1/ne1'/)<\lx {(\Ix Bo)x Bo}> (18) 

for 0 ~ r ~ R, and 

\l2b1s = 0 (19) 

for r ~ R, and tends to zero for r ~ R, where the angle brackets in equation (18) 
denote time averaging. It is clear from (18) that his"" eBo as required by the per­
turbation analysis. 

3. ~eroth-order Field 

The zeroth-order field satisfies equation (16) in the region 0 ~ r ~ R and equation 
(17) in the region r ~ R. The solution that matches the externally applied field for 
r ~ R is given by 

B R (c 13/2(yr) B . () i(wt-4») 
Or = e 1 (yr)3/2 w sm e , (20) 

B - R {IC (11/iyr) 13/iyr»)B () i(wt-4»} 
08 - e"2 1 (yr)I/2 - (yr)3/2 w COS e , (21) 

B = R {_.l. C (I 1/iyr) _ 13/2(yr»)B i(wt-4»} 
04> e 21 1 ()1/2 ()3/2 ru e yr yr . 

(22) 
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in the region 0 ~ r ~ R, and 

Bor = Re[{l-Co(R/r)3}Bwsin8ei(wt-</»], 

BOB = Re[{I+tCo(R/r)3}Bwcos8ei(wt-</»], 

Bo</> = Re[ - i {I + tCo(R/r)3} Bw ei(wt-</»] 

in the region r ~ R, where 

I' = (iwllo/rj)1/2 = c5- 1(1 + i), 

[c5 = (2y//wllo)t is the classical skin depth] 

3 3 L 1/2(yR) 
Co = 1 + (yR)2 - yR 11/iyR) , 

3(yR)1/2 
C l = ( R) , 11/ZY 
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(23) 

(24) 

(25) 

and l±n/z(X) is the modified Bessel function of the first kind of half-integer order. 
The components of the zeroth-order current density are 

JOr = 0, 

JOB = Re{i(C tl2r )(yr)t 13/2(yr) BO) ei(O)t-</»}, 

Jo</> = Re{(C1/2r)(yr)t1 3/z{yr)BO)cos8ei(wt-</»} 

in the region 0 ~ r ~ R, and 

JOr = JOB = Jo</> = 0 

in the region r ~ R. 

4. First-order Steady Current and Magnetic Field 

(26) 

(27) 

(28) 

The first-order steady current and magnetic field are independent of ¢. It is 
therefore convenient to solve for the toroidal components, J1s</> and bls</>- The other 
components can be obtained from Jts</> and bls</> using Ampere's law. 

The first-order steady toroidal current density is given by 

J 1Sq, = (-l/nerO<Cv x Bo) x Bo).¢ 

_2. (Wee) 2 (c5/2r)Z{coSh(2r/c5) cos(2r/c5)} - 2{cosl~(2r/c5) - COS(2r/c5)}) 
2 Vei cosh(2R(c5)-cos(2R/c5) 

x newRsin8. (29) 

The first-order steady toroidal magnetic field satisfies the equation 

'V Zb1sq, -blSq,/r 2 sin28 = Gq, (30) 
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in the region 0 ~ r ~ R, and 

\l2b1s</> - b1s</>/r 2 sin28 = 0 (31) 

in the region r ~ R, where 

G</> = (l/neYJ)<\lx {(\Ix Bo)x Bo}).~ 

= (C/r 2)[2(2r/<5) - 2 {cosh(2r/<5) - cos(2r/<5)} 

- (2r/b) -1 {sinh(2r/b) - sin(2r/b) }]B", sin 28, (32) 

C = t(~)2 Wee 1 
b Vei 

(33) 

The solution that satisfies equation (30) in the region 0 ~ r ~ R, and equation (31) 
in the region r ~ R, is continuous at r = R, tends to zero as r ~ 00 and is given by 

b1s</> = tC{Q(2r/b)-(r/R)2Q(2R/b)}Bw sin28 

in the region 0 ~ r ~ R, and 

b1s</> = 0 

in the region r ~ R, where C is given by equation (33) and 

Q(X) = (-3/X3)(sinhX -sinX) + (1/2X2)(cosh X -cosX) 

+ (1/6X)(sinhX + sin X) 

+n(coshX +cosX) + /2X(sinhX -sinX) 

_1.X2 ___ _ ( X2 X6 X 10 ) 

6 2.2! + 6.6! + 10.10! + .... 

(34) 

(35) 

(36) 

It is seen from equations (29) and (34) that the solution depends on two dimensionless 
numbers, Wce/Vei and R/<5. It is convenient to define the normalized toroidal current 
density 

I n = J1s</>/{ -(wcc/veYnewr} (37) 

and the normalized toroidal field 

bn = bls</>/{(Wce/veJBw}' (38) 

Both of these normalized quantities depend on the ratio R/b. Fig. 1 shows the nor­
malized current density I n plotted against r in the equatorial plane 8 = -tn for different 
values of R/b. In Fig. 2, the normalized toroidal field bn is plotted against r in the 
conical surface 8 = in for different values of R/b. It is seen that bn equals zero at 
r = 0 and at r = R, and attains a maximum value bn , max at some intermediate value 
of r. Fig. 3 shows the variation of bn , max with R/<5. It is seen that bn , max is small for 
very small and very large values of R/b, and has a broad maximum for R/b ~ 4. 
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5. Discussion 

It has been shown in previous works that a steady azimuthal current is generated 
in an infinitely long plasma cylinder placed in a rotating magnetic field. This steady 
current is driven by the Hall force 

Fe = .(l/ne)<Jz Br>, 

where Br is' the r component of the rotating field and Jz is the screening current 
induced by the rotating field in the plasma. Similarly, a rotating magnetic field 
drives a steady toroidal current in spheroidal plasmas. It has been observed in some 
recent Rotamak III experiments (described in the paper by Durance et al. 1982) that a 
steady toroidal magnetic field is also generated. It has also been observed that the 
toroidal magnetic field is in a positive sense above the equatorial plane and in a 
negative sense below the equatorial plane; the net toroidal flux is zero (Durance 1983). 

It is suggested here, that this steady toroidal field is produced by a steady poloidal 
current which is in turn driven by the poloidal component of the Hall force. In 
contrast with the case of an infinitely long plasma cylinder, the Hall force which 
arises from. the' interaction between the rotating field and the screening current it 
induces in' a spheroidal plasma is not purely toroidal, but has a nonzero poloidal 
component. From symmetry considerations, the poloidal current in the upper 
hemisphere is a mirror image of that in the lower hemisphere and, consequently, 
the steady toroidal magnetic field is antisymmetric with respect to the equatorial 
plane and the net toroidal flux is zero. It is also found that this steady toroidal field 
has the same sense as observed experimentally (bls </> is positive for 0 ~ e ~ 111: and 
negative for 111: ~ e ~ 11:). The results of this work provide a possible explanation 
for the 'self-generation of a steady toroidal magnetic field in the Rotamak'. It should 
be admitted, however, that the simple model we have adopted here has a number of 
drawbacks. The motion of the ions is neglected, only the quasilinear case is treated 
and the. effect of the equilibrium poloidal field is not considered. The experimental 
results however were obtained for a strongly nonlinear case (8 ~ 1); it follows that 
a quantitative comparison betwe((n theory and experiment is not possible. It is 
also recognized that a steady toroidal field of the observed topology can be generated 
by other physical mechanisms, for example, if the ion fluid acquires a rotational 
motion which violates the Ferraro (1937) isorotation condition. A complete under­
standing of this interesting phenomenon can only be achieved by more detailed 
experimental and theoretical work. 
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