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Relativistic intermediate-coupling wavefunctions are used to evaluate transition energies, line 
strengths and transition probabilities for all allowed and forbidden n = 2-2 transitions for krypton 
and molybdenum beryllium-like ions. Our results are in very good agreement with those calculated 
using the relativistic multi-configuration Hartree-Fock approximation. These calculations were 
carried out under the same physical assumption that the dominant correlation effect is the n = 2 
intra-shell correlation. We also discuss the importance of relativistic effects on the radial functions, 
the relativistic intermediate-coupling scheme in the variational process, the importance of radiative 
corrections for transition energies between states with different occupation of the 2s shell, and 
the relative importance of intra- versus inter-shell correlation effects. 

1. Introduction 

Excitation energies and oscillator strengths for transitions in highly stripped ions 
are needed for estimating the energy loss through impurity ions in plasmas and for 
plasma diagnostics. Accurate absorption oscillator strengths are also required for 
determining the density and temperature of the solar corona. PreCision spectroscopy 
both in astrophysical and in beam-foil measurements also demands accurate 
theoretical calculations. 

The study of relativistic effects in the beryllium isoelectronic sequence has attracted 
much attention from theoreticians. The aim has been to develop a theory for 
calculating excitation energies, oscillator strengths and transition probabilities 
accurately. However, discrepanCies still exist between the different theories. 

Theoretical calculations are based on several approaches; one method is to form 
relativistic intermediate-coupling wavefunctions. The radial functions are calculated 
in the LS coupling scheme and the relativistic corrections are treated in the Pauli 
approximation as first-order perturbations of the nonrelativistic energy (Weiss 1976; 
Glass and Hibbert 1978a, 1978b; Glass 1979a, 1979b, 1981a, 1981b, 1982; 
Nussbaumer and Storey 1979). Another approach is the relativistic multi-configura
tion Hartree-Fock approximation (Kim and Desclaux 1976; Armstrong et al. 1976; 
Cheng and Johnson 1977; Cheng et al. 1978, 1979). The relativistic random-phase 
approximation has been used (Lin and Johnson 1977; Johnson and Lin 1979), while 
Johnson and Huang (1982) have also used the multi-configuration relativistic random
phase approximation. 
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In a nonrelativistic treatment, a transition involving a change in spin is strictly 
forbidden in LS coupling. However, in a full relativistic treatment this transition 
is allowed, and it is also allowed in the Breit-Pauli approximation. Armstrong 
et al. (1976), Cheng and Johnson (1977), Lin and Johnson (1977) and Johnson and 
Huang (1982) have evaluated oscillator strengths for the resonance transition and 
the inter-combination (spin-orbit electric dipole) transition for ions in the beryllium 
isoelectronic sequence. They only included configurations in the wavefunctions which 
could be formed from the n = 2 complex, keeping a Is2 core. Nussbaumer and 
Storey (1979) have evaluated transition probabilities for beryllium-like ions which 
span the range of nuclear charges Z = 20-42. These authors included the con
figurations Is22s2, Is22s2p, Is22p2, Is2nlnl', Is2nln'I' and Is21 a21'P, where n,n' = 
2,3,4,5, 1,1' take all allowed values and rJ. + f3 = 3. They did not consider the 
possibility of using the three-configuration basis composed of 2S2, 2s2p and 2p2. 
Glass (1982), using relativistic intermediate-coupling wavefunctions, evaluated 
oscillator strengths for the resonance transition and the spin-orbit electric dipole 
transition 2s2p 3p~ --+ 2S2 1So for iron, krypton, molybdenum and tungsten beryllium
like ions. This showed that the same degree of accuracy could be achieved by using 
the three-configuration basis composed of 2S2, 2s2p and 2p2; i.e., it is not necessary 
to include additional radial functions (n > 2) in the basis set. For the oscillator 
strengths, agreement between the different theoretical calculations was very good. 

The results reported by Glass (1982) indicate that, for highly ionized atoms in 
the beryllium isoelectronic sequence, only configurations which can be formed from 
the n = 2 complex, while keeping the Is2 core, are necessary in order to achieve 
relativistic intermediate-coupling wavefunctions with reasonably accurate transition 
energies and probabilities for the resonance transition and the inter-combination line 
2s2p 3p~ --+ 2s2 ISO. However, the same approximations may not be valid for other 
electric dipole and spin-orbit electric dipole transitions between other n = 2-2 
transitions. 

Cheng et al. (1979) used the relativistic multi-configuration Hartree-Fock 
approximation and reported results for all electric dipole and spin-orbit electric 
dipole transitions between the n = 2-2 levels. These calculation~ were done under 
the physical assumption that the dominant correlation effect is the n = 2 intra-shell 
correlation. 

The present investigation extends these studies by evaluating all electric dipole' 
spin-orbit electric dipole, magnetic dipole, magnetic quadrupole and electric 
quadrupole transitions between the n = 2 levels for krypton and molybdenum 
beryllium-like ions, using relativistic intermediate-coupling wavefunctions formed 
from the three-configuration basis composed of 2S2, 2s2p and 2p2. The large-scale 
configuration interaction expansion, needed by Nussbaumer and Storey (1979) to 
obtain very accurate transition probabilities, is too extensive to be used in the 
theoretical and computational study of low-energy collisions of electrons by complex 
atoms and ions. It is therefore of interest to investigate how few configurations are 
necessary in order to achieve wavefunctions corresponding to reasonably accurate 
excitation energies and transition probabilities. 

In reporting this set of results it is thus possible to establish: 

(i) the importance of relativistic effects on the radial functions; 

(ii) the relativistic intermediate-coupling scheme in the variational process; 
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(iii) the importance of radiative corrections for transition energies between states 
with different occupation of the 2s shells; 

(iv) the relative importance of intra- versus inter-shell correlation effects. 

2. Relativistic Intermediate-coupling Wavefunctions 

The relativistic intermediate-coupling wavefunctions are represented by the 
configuration interaction expansion 

P(JMJ) = LcVlcJI;(ct.jLjSjJMJ), 
j . 

(1) 

where the cJl j are single-configuration wavefunctions constructed from the one-electron 
functions (spin orbitals) 

u(r, m.) = r- 1 Pnz{r) YT'(e, cp)x(m.}. (2) 

The angular momentum functions of the orbitals are combined according to 
coupling schemes ct. j to form L j and Sj, and the total angular momentum J arises 
from the vector coupling 

J = L+S. 

The radial functions are expanded in analytic form as 
k 

where k ~ n-I and where 

Pn,(r) = L CjnICPjnl(r), 
j= 1 

CPjn,(r) = {(2(jnl)2I j n l + 1/(2Ijnl)!} t r1jnl exp( - (jnl r). 

(3) 

(4) 

(5) 

We also require the radial functions, for a given value of I, to form an orthonormal set: 

Jooo Pn,(r) Pn'l(r) dr = c5nn" 1+1 ~ n' ~ n. (6) 

We choose the Is, 2s and 2p functions as the Hartree-Fock functions of the 
ls22s2p 3pO state. 

With this set of radial functions, the relativistic intermediate-coupling wave
functions in equation (1) were determined by including in the summation for each 
symmetry (J and n) all possible configurations with a common ls2 core, with the 
different L j and Sj satisfying (3). The expansion coefficients cVl were determined 
by diagonalizing the Hamiltonian matrix with respect to this basis. The 
Hamiltonian consists of the nonrelativistic electrostatic terms, plus the Darwin, 
mass-correction, spin-orbit, spin-other-spin, spin-spin, spin-contact and orbit-orbit 
contributions. 

3. Transition Probabilities 

The probability that an N-electron atom or ion in a state I j> will make a transition 
to a lower state I i> with the emission of dipole radiation is given by 

64n4 

A(j--+i) = 3hA~ . . L 1 <JjMj I QI'IJiMi> 12, 
}Ig} Mj,M,,1' 

(7) 
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where 

N 

electric: Q = e L rk C (1)(k) , (8a) 
k=l 

magnetic: 
e N 

Q = - - L {/(k) +gss(k)} , 
me k=l 

(8b) 

where gs = 2·00232 is the gyro magnetic spin ratio. For spin-allowed transitions 
we have 

electric: I1S = 0; I1L = 0, ± 1; ° =1= 0; I1J = 0, ± 1; ° =1= 0; (9a) 

magnetic: I1S = 0; I1L = 0; I1J = 0, ± 1; ° =1= ° (9b) 

(where ° =1= ° means J i = 0, j ---+ i, Jj = ° is not allowed) and for spin-forbidden 
transitions 

electric: I1S = ± 1; I1L = 0, ± 1, ±2; ° =1= 0; I1J = 0, ± 1; ° =1= 0; (lOa) 

magnetic: I1S = ± 1; I1L = 0, ± 1, ±2; I1J = 0, ± 1; ° =1= 0. (lOb) 

Similarly for quadrupole radiation we have 

64n6 

A(j---+i) = .~, '5 L 1 <JjMj I Q.u I JiM;) 12 , 
jigj Mj,M".u 

(11) 

where 

N 

electric: Q = e L r~C(2)(k), (l2a) 
k=l 

magnetic: 
e N 

Q = meJ6 k~l rk[C(l)(k) x {2/(k) +3gss(k)}J<2). (l2b) 

For spin-allowed transitions we have for both electric and magnetic 

I1S = 0; I1L = 0, ±1, ±2; 0=1= 0, ° =1= 1; 

I1J = 0, ±1, ±2; 0=1= 0, 0=1= 1, t =1= t; (13) 

and for spin-forbidden transitions 

electric: I1S = ±1; I1L = 0, ±1, ±2; ° =1= 0, ° =1= 1; 

I1J = 0, ±l, ±2; 0=1= 0, 0=1= 1, t =1= t; (14a) 

magnetic: I1S = ±1; I1L = 0, ±1; ° =1= 0; 

I1J = 0, ±1, ±2; ° =1= 0, 0=1= 1, t =1= t. (14b) 
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Table 1. Radiative transitions from 282p 3p~ 

Ion Transition Type Calculation 1 (A) Sf A (S-I) 

KrXXXIII 2s2p 3p~ --> 2S2 ISO El A 170·52 0·300(-2) 4'089(8) 
B 172·52 0'299(-2) 3 '935(8) 
C 169'80 0'293(-2) 4'040(8) 

--> 2s2p 3Pg Ml A 1202·00 9· 356(3) 

MoXXXIX 2s2p 3p~ --> 2S2 ISO El A 138'65 0·331(-2) 8· 380(8) 
B 141·96 0'337(-2) 7 '966(8) 
C 137·90 0·329(-2) 8'481(8) 

..... 2s2p 3Pg Ml A 849·03 2'511(4) 

Table 2. Radiative transitions from 282p 3p~ 

Ion Transition Type Calculation A. (A) A (S-I) 

KrXXXIII 2s2p 3p~ ..... 2s2p 3p~ Ml A 247·77 8·014(5) 
B 247·30 8'016(5) 

..... 2S2 ISO M2 A 101·01 1· 503(2) 
B 101·63 1'462(2) 

..... 2s2p 3p~ E2 A 247'77 1·317(2) 

..... 2s2p 3Pg E2 A 205·43 1·661(2) 
B 205·20 1'727(2) 

MoXXXIX 2s2p 3Pg --> 2s2p 3p~ Ml A 122·69 6'196(6) 
B 122·60 6'182(6) 

..... 2S2 ISO M2 A 65·09 9,248(2) 
B 65·79 9'027(2) 

..... 2s2p 3p~ E2 A 122·69 2,165(3) 

..... 2s2p 3Pg E2 A 107 '12 2,241(3) 
B 107·00 2· 316(3) 

Table 3. Radiative transitions from 2s2p 1 p~ 

Ion Transition Type Calculation A. (A) Sf A (S-I) 

KrXXXIIl 2s2p Ip~ ..... 2S2 ISO El A 73·72 0·336(-1) 5 '660(10) 
B 74·19 0'334(-1) 5·526(10) 
C 72·27 0'325(-1) 5'809(10) 

--> 2s2p 3Pg Ml A 272·96 1'114(5) 
..... 2s2p 3p~ Ml A 129·88 5· 583(5) 
--> 2s2p 3Pg Ml A 117·22 1'126(6) 
--> 2s2p 3Pg E2 A 272·96 1· 509(1) 
--> 2s2p 3p~ E2 A 129·88 1'856(2) 

MoXXXIX 2s2p 1 P~ ..... 2S2 ISO El A 51·45 0'238( -1) 1'178(11) 
B 51·83 0'235( -1) 1,139(11) 
C 49·74 0'228( -1) 1'249(11) 

--> 2p2 3PO El A 432'18 0'917(-3) 7'669(6) 
B 428·10 0'907(-3) 7· 806(6) 
C 386·00 0'863( - 3) 1·013(7) 

..... 2s2p 3p~ Ml A 245·58 2· 371(5) 

..... 2s2p 3p~ Ml A 81·82 3'248(6) 
--> 2s2p 3Pg Ml A 74·61 6'763(6) 
--> 2s2p 3p~ E2 A 245'58 2'068(1) 
..... 2s2p 3p~ E2 A 81'82 1'418(3) 



606 R. Glass 

Table 4. Radiative transitions from 2p2 3p 0 

Ion Transition Type Calculation 1 (A) Sl A (S-l) 

KrXXXIII 2p2 3po --+ 2s2p 3p~ El A 119·13 0'173(-1) 2'065(10) 
B 120'80 0'172(-1) 1·980(10) 
C 117·20 0'165(-1) 2'082(10) 

--+ 2s2p 1P~ El A 1439 0·128(-2) 8 '912(5) 
B 1454 0'126( -2) 8· 303(5) 
C 1701 0'126(-1) 5 '192(5) 

--+ 2s2p 3p~ M2 A 229·44 7·267 

MoXXXIX 2p2 3PO --+ 2s2p 3p~ El A 100·92 0'130(-1) 2· 573(10) 
B 100·85 0·129(-1) 2· 539(10) 
C 97·44 0'122(-1) 2'674(10) 

--+ 2s2p 3p~ M2 A 568·75 4'292( -3) 

Table 5. Radiative transitions from 2p2 3P1 

Ion Transition Type Calculation 1 (A) Sl A (S-l) 

KrXXXIII 2p2 3P1 --+ 2s2p 3p~ El A 123·59 0'195(-1) 6,979(9) 
B 124·35 0·193(-1) 7 '765(9) 
C 122·40 0'185(-1) 6· 815(9) 

--+ 2s2p 3p~ El A 82·46 0·104(-1) 1,268(10) 
B 82·74 0·104(-1) 1'239(10) 
C 80·67 0,102(-1) 1· 313(10) 

--+ 2s2p 3Pg El A 77'17 0'156(-1) 2,294(10) 
B 77·42 0·154(-1) 2,243(10) 
C 75·50 0·153(-1) 2'400(10) 

--+ 2s2p 1P~ El A 225·84 0'117(-2) 6·791(7) 
B 227·13 0'117(-2) 6'736(7) 
C 224·80 0'116(-2) 6'881(7) 

--+ 2p2 3PO Ml A 270·21 7· 334(5) 
--+ 2S2 1So Ml A 55·58 2'493(5) 
--+ 2s2p 3p~ M2 A 123·59 0 
--+ 2s2p 3p~ M2 A 82·46 4·205(2) 
--+ 2s2p 1P~ M2 A 225·84 2'486( -1) 

MoXXXlX 2p2 3P1 --+ 2s2p 3p~ El A 104·09 0'140(-1) 8 '484(9) 
B 104·40 0,139(-1) 8 '253(9) 
C 101·40 0'131(-1) 8 '465(9) 

--+ 2s2p 3p~ El A 56·36 0·711(-2) 2'690(10) 
B 56·39 0·705(-2) 2'656(10) 
C 53·95 0'684(-2) 2'943(10) 

--+ 2s2p 3Pg El A 52·80 0·112(-1) 5 '262(10) 
B 52·85 0'111(-1) 5 ·091(10) 
C 50·65 0'110(-1) 5· 688(10) 

--+ 2s2p 1p~ El A 181·11 0'130(-2) 1'494(8) 
B 182·37 0'129(-2) 1'440(8) 
C 176·00 0'125(-2) 1· 552(8) 

--+ 2p2 3po Ml A 127·69 6· 608(6) 
--+ 2S2 1So Ml A 40·06 1'095(6) 
--+ 2s2p 3p~ M2 A 103·09 0 
--+ 2s2p 3p~ M2 A 56·36 2'281(3) 
--+ 2s2p 1p~ M2 A 181·11 3 '156(-1) 
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For the electric dipole and magnetic quadrupole transitions the parity of the states 
must change, while for the magnetic dipole and electric quadrupole transitions the 
parity of the states must not change. The components of the tensor C a satisfy the 
equation 

eta) = (~)tY/l. 
/l 2()(+1 a 

(15) 

In general, the electric dipole transitions are the strongest lines. However, even 
though a transition may be forbidden by the electric dipole selection rules (for example, 
the depopulation of the 2s2p 3p~ level), it may not be forbidden if one includes the 
interaction between the atom and the magnetic vector of the radiation field or the 
variation of the field in the vicinity of the atom. The magnetic dipole, magnetic 
quadrupole and electric quadrupole transition probabilities are generally smaller 
than electric dipole transition probabilities by about a factor of 10- 8 . 

Table 6. Radiative transitions from 2p2 3P2 

Ion Transition Type Calculation A (A) s' A (S-1) 

KrXXXIII 2p2 3P2 -> 2s2p 3p~ El A 112·12 0·281(-1) 7·858(9) 
B 112·84 0·282(-1) 7 ·965(9) 
C 110·80 0·270(-1) 8 ·036(9) 

-> 2s2p 3p~ El A 77·03 0·242(--1) 2 ·160(10) 
B 77·49 0·239(-1) 2·081(10) 
C 75·47 0·244(-1) 2·302(10) 

-> 2s2p 'P~ El A 190·29 0·246(--1) 1·468(9) 
B 191 ·47 0·243(-1) 1·400(9) 
C 188·60 0·240(-1) 1·449(9) 

-> 2p2 3p, Ml A 1209 3·785(3) 
-> 2s2p 3p~ M2 A 112·12 3·804 
-> 2s2p 3p~ M2 A 77·03 3 ·108(2) 
-> 2s2p 3Pg M2 A 72·39 3 ·423(2) 
-> 2s2p 1p~ M2 A 190·29 8·507( -1) 
-> 2p2 3P, E2 A 1209 2·630( -2) 
-> 2p2 3PO E2 A 219·29 1·759(2) 
-> 2S2 'So E2 A 53 ·14 1·135(4) 

MoXXXIX 2p2 3P2 -> 2s2p 3p~ E1 A 93·98 0·180(--1) 9 ·907(9) 
B 94·55 0·178(-1) 8·550(9) 
C 91·85 0·166(-1) 8·698(9) 

-> 2s2p 3p~ El A 53·22 0·201(-1) 5·439(10) 
B 53·38 0·198(-1) 5 ·267(10) 
C 51·11 0·201(-1) 6·095(10) 

-> 2s2p 1p~ El A 152·23 0·177(-1) 2·008(9) 
B 154·30 0·175(-1) 1 '936(9) 
C 149·00 0·169(-1) 2·071(9) 

-> 2p2 3P, Ml A 955·41 6·818(3) 
-> 2s2p 3p~ M2 A 93·98 2·470 
-> 2s2p 3p~ M2 A 53·22 1· 659(3) 
-> 2s2p 3Pg M2 A 50·07 1·635(3) 
-> 2s2p 'P~ M2 A 152·23 8·711(-1) 
-> 2p2 3p, E2 A 955·41 3·865(,- 2) 
-> 2p2 3PO E2 A 112·58 2· 848(3) 
-> 2S2 'So E2 A 38·46 2·891(4) 
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Table 7. Radiative transitions from 2p2 1D2 

Ion Transition Type Calculation 1 (A) SI A (S-l) 

KrXXXIII 2p2 1D2 --+ 2s2p 1P~ El A 100·81 0·476(-1) 1· 882(10) 
B 101· 38 0·458(-1) 1· 781(10) 
C 98·70 0~459( -1) 1·933(10) 

--+ 2s2p 3Pg El A 73·62 0·294(-1) 2·990(10) 
B 74·06 0·296(-1) 2·949(10) 
C 72·19 0·297(-1) 3 ·205(10) 

--+ 2s2p 3p~ El A 56·76 0·999(-3) 2·214(9) 
B 56·99 0·109(-2) 2· 375(9) 
C 55·31 0·989(-3) 2·369(9) 

--+ 2p2 3P2 Ml A 214·67 1·013(6) 
--+ 2p2 3P1 Ml A 182·09 1·129(6) 
--+ 2s2p 3Pg M2 A 73·62 1·101(3) 
--+ 2s2p 3p~ M2 A 56·76 3·510(2) 
--+ 2s2p 3Pg M2 A 54·20 4·119(1) 
--+ 2s2p 1p~ M2 A 100·81 8·094(1) 
--+ 2S2 lS0 E2 A 42·58 1·912(4) 
--+ 2p2 3P2 E2 A 214·67 5 ·129(2) 
--+ 2p2 3P1 E2 A 182·09 3 ·438(2) 
--+ 2p2 3PO E2 A 108·40 2·035(1) 

MoXXXIX Zp2 1D2 --+ 2s2p 1p~ El A 63·94 0·319(-1) 4·947(10) 
B 64·70 0·309(-1) 4·627(10) 
C 61·68 0·305(-1) 5 ·275(10) 

--+ 2s2p 3Pg El A 50·73 0·240(-1) 7·456(10) 
B 51·15 0·239(-1) 7 ·235(10) 
C 49·05 0·238(-1) 8 ·177(10) 

--+ 2s2p 3p~ El A 35·89 0·430(-3) 3·769(9) 
B 36·09 0·474(-3) 4·088(9) 
C 34·41 0·414(-3) 4·122(9) 

--+ 2p2 3P2 Ml A 110·21 7 ·169(6) 
--+ 2p2 3P1 Ml A 100·05 7·689(6) 
--+ 2s2p 3Pg M2 A 50·73 5 ·211(3) 
--+ 2s2p 3p~ M2 A 35·89 1·196(3) 
--+ 2s2p 3Pg M2 A 34·43 1·070(2) 
--+ 2s2p 1P~ M2 A 63·91 6·429(2) 
--+ 2S2 lSo E2 A 28·51 4·124(4) 
--+ 2p2 3P2 E2 A 110·22 7 ·523(3) 
--+ 2p2 3P1 E2 A 100·05 4·041(3) 
--+ 2p2 3po E2 A 55·69 1· 597(2) 

4. Results and Discussion 

Wavelengths A. and probabilities A for transitions between the n = 2 levels of 
beryllium-like krypton and molybde:t;tum ions are shown in Tables 1-8; calculation A 
is the present calculation while calculations Band C are those of Nussbaumer and 
Storey (1979) and Cheng et al. (1979) respectively. The notation rx(fJ) implies rx x loP. 
For the spin-allowed electric dipole transitions, the line strengths Sl are also listed 
in Tables 1-8, given by 

Sl = L I <'l'(j)(J,MJ ) I f rkl 'l'(i)(J,MJ1» 1
2

, (16) 
MJj.MJI k=l 
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where 
N 

< pUl(J, MJ) I L rk I pOl(J, M J.) 
k=l 

N 

= Lc)JJlLcV'\4iiIXjLjSJMJ)1 L rkl4ij(IXjLjSjJMJ). (17) 
j j k= 1 

That is, the line strength is proportional to the transition radial integrals 

tx) PRI(r) r PnAr) dr (n' ~ n; l' ~ 1), (18) 

and the expansion coefficients cVI of the relativistic intermediate-coupling expansion 
" (1). The inclusion of configuration interactions in the calculation of line strengths 

introduces cumulative or cancellation contributions. 

Table 8. Radiative transitions from 2p2 'So 

Ion Transition Type Calculation ,qA) S' A (s-') 

KrXXXIII 2p2 'So ,.-> 2s2p 'P~ El A 78·75 0·228(-1) 9·475(10) 
B 79·26 0·221(-1) 8 ·975(10) 
C 77·11 0·224(-1) 9·911(10) 

-+ 2s2p 3p~ El A 49·03 0·223(-4) 3·829(8) 
B 49·26 0·287(-4) 4·873(8) 
C 47·81 0·230(-4) 4·264(8) 

-+ 2p2 3p, Ml A 120·92 5 ·835(6) 
-+ 2s2p 3p~ M2 A 61·12 2·498(3) 
-+ 2p2 'D2 E2 A 359·95 1·228(2) 
-+ 2p2 3P2 E2 A 134·86 6· 513(3) 

MoXXXIX 2p2 'So -+ 2s2p 'P~ El A 53·42 0·146(-1) 1·936(11) 
B 54·01 0·147(-1) 1·895(11) 
C 51·58 0·147(-1) 2·174(11) 

-+ 2s2p 3p~ El A 32·32 0·805(-5) 4·837(8) 
B 32·50 0·815(-5) 4·813(8) 
C 31·02 0·524(-5) 3·558(8) 

-+ 2p2 3p, Ml A 76·49 2·675(7) 
-+ 2s2p 3p~ M2 A 43,88 1·087(4) 
-+ 2p2 'D2 E2 A 324·85 9·931(1) 
-+ 2p2 3P2 E2 A 83·08 4·020(4) 

Our calculated line strengths (A) for the electric dipole transitions are in excellent 
agreement with those of Nussbaumer and Storey (1979) (B). This implies that: 

(i) the contribution to the line strength from the additional transition radial 
integrals (18) due to the additional radial functions is very small; 

(ii) and/or the expansion coefficients cyl of the configurations Is2nlnl', Is2nln'I' 
and Is2/~21 'P, where n, n' = 2,3,4,5, 1,1' take all allowed values and 
IX + p = 3, are very small; 

(iii) or the contribution to the line strength from (i) and (ii) is not small but 
there are, instead, large cancellation effects. 

Point (iii) appears to be rather doubtful in view of the good agreement between both 
sets of results for all electric dipole transitions. 
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The line strength operator is a one-electron operator. The important correlation 
corrections to the line strengths for transitions of the type 

2s2p -+ 2S2 (19) 

would be configurations of the type 

2s2p -+ 2snp, 2S2 -+ 2sns (20) 

in the relativistic intermediate-coupling wavefunction (1), and for transitions of the 
type 

2p2 -+ 2s2p (21) 

the important corrections would be configurations of the type 

2p2 -+ 2pnp, 2s2p -+ ns2p . (22) 

Since our results for all electric dipole transitions are, in general, in excellent 
agreement (with discrepancies generally less than 1 %) with those of Nussbaumer 
and Storey (1979), inclusion of additional np functions as corrections to the 2p 
function for the 1 pO or 2p2 states, or ns functions as corrections to the 2s function 
for the 1 pO or 2S2 states, is not necessary. 

In Tables 1-8 we have also included the line strengths for the electric dipole 
transitions from the relativistic multi-configuration Hartree-Fock approximation 
(calculation C). Agreement between our relativistic intermediate-coupling calculations 
and the relativistic multi-configuration Hartree-Fock calculations is very good. The 
discrepancies range from less than 1 % to approximately 5 % with the exception of 
the transitions 2p2 3P2 -+ 2s2p 3p~ and 2p2 ISO -+ 2s2p 3p~ where our results are 
10 % and 54 %, respectively, greater than those of Cheng et al. (1979). 

Agreement between our calculated wavelengths and the corresponding relativistic 
multi-configuration Hartree-Fock results is good, with discrepancies ranging from 
1 % to approximately 5 %. However, there is one exception, in the region of crossing 
of the 2p2 3p 0 and 2s2p 1 P~ levels, where agreement between our results and those 
of Cheng et al. is disappointing. Just before the crossing, the calculated transition 
energies (for the transition 2s2p 1 P~ -+ 2p2 3p 0) differ by approximately 12 %. For 
the energy separation of the 2p2 3p 0 and 2s2p 1 P~ levels we obtained a value of 
69493 cm -1; Cheng et al. obtained values of 70124 cm -1 excluding the Lamb shift 
correction and 58790 cm -1 including the correction. For molybdenum we obtained 
a separation of 231385 cm-I, while Cheng et al. obtained values of 239391 cm- 1 

excluding the Lamb shift correction and 259055 cm -1 including the correction. In 
general, our calculated transition energies are in better agreement with those of 
Cheng et al. when the Lamb shift corrections are included. However, within the 
region· of level crossing the transition energies evaluated using the relativistic inter
mediate-coupling method differ quite substantially from those evaluated using the 
relativistic multi-configuration Hartree-Fock method with the Lamb shift corrections 
included. 

In the Introduction we pointed to four matters we wished to consider in this paper. 
Our first aim was to look at the importance of relativistic effects on the radial 
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functions. In the relativistic intermediate-coupling approach, the radial functions 
are determined in an LS coupled representation; i.e., the radial functions are 
calculated in the nonrelativistic approximation. The relativistic corrections are 
included in the Hamiltonian in order to determine the configuration mixing in (1). 
In the relativistic multi-configuration Hartree-Fock approximation, the Dirac 
operator which includes the nuclear spin-orbit term is used in determining the 
relativistic radial functions. The coefficients of the configuration mixing are also 
determined using the same level of approximation. The Breit operator and the 
Lamb shift corrections are excluded from the relativistic Hamiltonian with which 
the variational calculation is carried out. The line strength is proportional to the 
transition radial integrals in (18) and the expansion coefficients in (1). Good 
agreement between the line strengths calculated in the relativistic intermediate
coupling approach and those by the relativistic multi-configuration Hartree-Fock 
approximation implies that the omission of the relativistic terms at the optimization 
(determination) stage of the radial functions is not serious. 

Our second aim was to look at the relativistic intermediate-coupling scheme in 
the variational process. We have shown that the relativistic intermediate-coupling 
scheme can be used to obtain accurate results for line strength calculations. The 
transition energies calculated in the relativistic intermediate-coupling scheme are also 
in good agreement with those calculated by the relativistic multi-configuration 
Hartree-Fock approximation. Thus, the error associated with the inclusion of the 
spin-orbit, spin-other-orbit, spin-spin, Darwin, spin-contact, mass-correction and 
orbit-orbit terms in the Hamiltonian, in order to determine the configuration mixing, 
is small. Again, this implies that the omission of the relativistic terms at the 
optimization of the radial functions is not serious. 

Our third aim was to look at the importance of radiative corrections for transition 
energies between states with different occupation of the 2s shell. For beryllium-like 
ions the Lamb shift corrections are only important for electric dipole and magnetic 
quadrupole transitions. With the exception of the transition energies within the 
region of level crossing, agreement between our results and those of Cheng et al. 
is very good. Thus the importance of radiative corrections for transition energies 
between states with different occupation of the 2s shell is not too serious. The Lamb 
shift corrections included in the relativistic multi-configuration Hartree-Fock calcula
tions of Cheng et al. are order-of-magnitude estimates only. As the Lamb shift scales 
as Z4, errors associated with the estimated values can be substantial for high-Z ions. 

Our fourth aim was to look at the relative importance of intra- versus inter-shell 
correlation effects. A comparison of our results with those of Nussbaumer and 
Storey (1979) shows that for highly ionized atoms in the beryllium isoelectronic 
sequence the same degree of accuracy can be achieved by using the three-configuration 
basis composed of 2S2, 2s2p and 2p2. Thus, it is not necessary to use the large scale 
configuration interaction expansion, which Nussbaumer and Storey used to obtain 
reasonably accurate excitation energies and transition probabilities for highly ionized 
atoms, because the intra-shell correlation effects are much more important than the 
inter-shell. 

We have also calculated magnetic dipole, magnetic quadrupole and electric quadru
pole transition probabilities, and of these, the magnetic dipole transition probabilities 
are the largest. In some cases they are the same order of magnitude as the electric 
spin-orbit transition probabilities. Comparison of all three types of higher transition 
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probabilities with the work of Nussbaumer and Storey (1979) was possible in certain 
cases, and the agreement is good. 

The 2s2p 3p~ level can decay by the following processes: 
(i) magnetic dipole radiation to 2s2p 3P?; 

(ii) magnetic quadrupole radiation to 2S2 1S0 ; 

(iii) electric quadrupole radiation to 2s2p 3pg.1. 

From Table 2 it is seen that the 2s2p 3p~ level will depopulate with the emission of 
magnetic dipole radiation. That is, for highly ionized ions in the beryllium isoelec
tronic sequence, the magnetic quadrupole transition plays no part in depopulating 
the 2s2p 3p~ level, in contrast to the result implied by Lin and Johnson (1977). 

Nussbaumer and Storey (1979) labelled the even parity J = 2 levels according 
to their respective dominant SL parent configurations. However, the energy 
separation of the levels increases with increasing Z, and therefore in Tables 6 and 7 
we have reversed the Nussbaumer and Storey designation. 

5. Conclusions 

We have shown in the present paper that, by means of the relativistic intermediate
coupling approach for moderately high Z, the calculated transition energies 
(wavelengths), line strengths and transition probabilities are in very good agreement 
with those calculated using the relativistic multi-configuration Hartree-Fock 
approximation. These calculations were carried out under the same physical 
assumption that the dominant correlation effect is the n = 2 intra-shell correlation. 
We have also discussed the importance of relativistic effects on the radial functions, 
and the relativistic intermediate-coupling scheme in the variational process. We 
conclude that the omission of the relativistic corrections from the Hamiltonian with 
which the variational calculation is carried out is not too serious. Furthermore, we 
have discussed the importance of radiative corrections to transition energies between 
states with different occupation of the 2s shell. With the exception of the transition 
energies within the region of level crossing, agreement between our results and those 
of Cheng et al. (1979) is enhanced when radiative corrections are included in their 
calculations. However, it is important to note that the Lamb shift corrections used 
by Cheng et al. are only estimates and, because the Lamb shift scales as Z4, the 
associated errors could be substantial for high-Z ions. It should also be mentioned 
that mass polarization effects lead to correction terms that are linear in Z. However, 
these are much smaller than the Lamb shift corrections, especially for high-Z ions. 
We have also discussed the question of the relative importance of intra- versus inter
shell correlation effects. Since our results are in very good agreement with those 
of Nussbaumer and Storey (1979), who included both intra- and inter-shell 
correlation effects in their study of highly ionized beryllium-like ions, we conclude 
that the omission of inter-shell correlation effects is not serious. 

The good overall agreement between our results and those of Nussbaumer and 
Storey (1979) has an important physical application in the theoretical and computa
tional study of low-energy collisions of electrons by complex atoms and ions. The 
R-matrix method describing the scattering of low-energy electrons by complex atoms 
and ions has been extended by Scott and Burke (1980) to include terms of the 
Breit-Pauli Hamiltonian. The large-scale configuration interaction expansion 
required by Nussbaumer and Storey (1979) to obtain very accurate transition 
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probabilities is too extensive to be used in the R-matrix method for electron-atom 
scattering. It is therefore of interest to investigate how few configurations are 
necessary in order to achieve configuration interaction wavefunctions corresponding 
to reasonably accurate transition energies and probabilities. 

Thus, in principle, for highly ionized ions of the beryllium isoelectronic sequence 
it is possible to introduce relativistic corrections and intermediate coupling through 
perturbation theory and the Pauli approximation with nonrelativistic wavefunctions. 
The relativistic multi-configuration Hartree-Fock method, however, accounts for. 
correlation and relativistic effects in the same theoretical framework. One of the 
major uncertainties at high Z is the contribution of quantum electrodynamic effects 
such as the Lamb shift correction, which could be more important than the Breit 
interaction in obtaining accurate transition energies between states. Further refine
ment of the theory is desirable as it will provide a sensitive test of the theoretical 
treatment of relativistic and quantum electrodynamic effects. However, while progress 
is being made at the theoretical level, there is a lack of relevant experimental data. 
Experimentally determined transition energies and transition probabilities for highly 
ionized atomic systems would be highly desirable to enable comparisons to be made. 
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