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Abstract 

The covariant response tensor for a relativistic electron gas is calculated in two ways. One involves 
introducing a four-dimensional generalization of the electron-positron occupation number, and the 
other is a covariant generalization of a method due to Harris. The longitudinal and transverse 
parts are. evaluated for an isotropic electron gas in terms of three plasma dispersion functions, and 
the contributions from Landau damping and pair creation to the dispersion curve are identified 
separately. The long-wavelength limit and the non-quantum limit, with first quantum corrections, 
are found. The plasma dispersion functions are evaluated explicitly for a completely degenerate 
relativistic electron gas, and a detailed form due to Jancovici is reproduced. 

1. Introduction 

The literature on the (dielectric) responses of a relativistic quantum electron gas 
is relatively sparse. Tsytovich (1961) calculated the response functions using an 
averaged propagator method for an arbitrary electron gas described in terms of the 
occupation numbers n+(p) and n-(p) for electrons and positrons; he also derived 
explicit results for the isotropic case and briefly discussed the limit of an ultra­
relativistic Boltzmann gas. Jancovici (1962), using a method based on a quasi-boson 
Hamiltonian, derived explicit expressions for a relativistic, completely degenerate 
electron gas. Hakim and Heyvaerts (1978), using a method involving the one-particle 
Wigner function, developed a covariant theory (in the Lorentz gauge) and considered 
the quantum corrections to the response of a non-quantum electron gas. Delsante 
and Frankel (1980) and Kowalenko (1982) used a relativistic version of Harris' (1969) 
non-relativistic quantum approach to derive expressions for the longitudinal response 
of a degenerate electron gas and of a relativistic pair plasma at zero temperature. 

Our main interest in the present paper and in an accompanying paper (Melrose 
and Hayes 1984, see p. 639) is in defining plasma dispersion functions for a relativistic 
quantum electron gas, and in discussing their approximations in the non~quantum 
and non-relativistic limits. In this paper we discuss more general results; we 
specialize to thermal distributions in the accompanying paper. 

In Section 2 we calculate the response functions in covariant form by introducing 
a four-dimensional occupation number N(P) which is similar to the four-dimensional 
distribution F(P) used in treating the response of a non-quantum electron gas in 
a covariant and gauge invariant manner (Melrose 1982). The longitudinal and 

0004-9506/84/060615$02.00 



616 L. M. Hayes and D. B. Melrose 

transverse response functions for an isotropic electron gas are then written down; 
in Appendix 1 these functions are rederived using a covariant version of Harris' 
(1969) method. 

In Section 3 the integrals over angle are carried out and it is found that the 
responses may be described in terms of three transcendental functions, denoted by 
S(O)(k), S(l)(k) and S(2)(k), with S(1)(k) and S(2)(k) appearing only in one particular 
linear combination in both the longitudinal and transverse dielectric functions. 

In Section 4 the contributions to dissipation from Landau damping (LD) and 
pair creation (PC) are considered separately. Two important approximations, the 
long-wavelength and the non-quantum limits, are treated in Section 5. In Section 6 
we apply our results to a completely degenerate electron gas and rederive Jancovici's 
(1962) expressions, whose validity in detail has been questioned by Kowalenko (1982). 
Finally we present some detailed results for the dispersion curves in a high temperature 
pair plasma. 

Our notation is that used by Melrose (1982) with units chosen such that h = c = 1. 

2. Covariant Form of the Response Tensor 

In this section we define a four-dimensional occupation number N(P) for an 
electron-positron gas and write a covariant form of the linear response tensor 
(Tsytovich 1961) in terms of it. We then show that this form reproduces the 
appropriate non-quantum result written in terms of F(P) (Melrose 1982). 

Let electrons be described by ( = 1 and positrons by ( = - 1. Their usual 
occupation numbers are written n~(p) with p being the physical momentum (and not 
minus the physical momentum for positrons). The 4-momentum P = (E, P) is 
related to the physical 4-momentum p = (8,p) by P = (p, i.e. 

E = (8, P = (p. (1) 

We define N(P) by 

2nm 
N(P) = I-8(E-(8)n~«(p), 

~ 8 
(2) 

which may be written in the alternative form 

N(P) = L4nm8(p2-m2)8«(8)n~«(p), (2') 
~ 

where 8(8) is the Heaviside step function. The definition (2) corresponds to 

Joo dE N(P) = m n+(p) , 
o 2n 8 

Jo dE m 
-N(P) = -n-(-p), 

-00 2n 8 
(3a, b) 

where the factors ml8 are analogous to the corresponding factor y-l appearing in 
the relation between F(P) and f(p) (cf. Melrose 1982; equation 23). 

Following Tsytovich (1961) we derive the linear response tensor rxI'V(k), with the 
wave 4-vector k = (m, k), by starting from the vacuum polarization tensor, namely 

J d4P 
rxI'V(k) = -ie2Sp (2n)4 yI'G(P)y"G(P-k) , (4) 
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where Sp denotes the trace over y matrices. The propagator in vacuo is re-interpreted 
as a propagator statistically averaged over the electron gas. As shown in Appendix 1, 
the resulting form is 

1 .N(P») +1-- . G(P) = (yIlPIl+m)(p2 _m2 +iO 2m (5) 

The term involving N (P) arises from the electron gas; it does not affect the non­
resonant part of the propagator, which arises from the principal value part of the 
vacuum term. The resonant part of the vacuum propagator is replaced by itself 
times a factor 

1-2I9('8)n~('p). 
~ 

The unit term describes the vacuum response, which we omit hereafter. The non­
resonant part of G(P) is then given by the principal part of the term involving 
1/(p 2 _m2 ) in (5) and the resonant part is given by the term involving N(P). 

As pointed out by Tsytovich (1961) the Feynman prescription for evaluating the 
resonant part of (5) is acausal, and the only physical part of (4) is the hermitian 
part which arises from the resonant part of one propagator and the non-resonant 
part of the other. Writing 

P' = P-k, P" = P+k, (6) 

there are two contributions which give 

rr(k) = 2e2 J d4 P PV(P P') (N(P) + N(P') ) 
m (211f ' p'2_m2 p2_m2 (7a) 

_. 2e2 J d4 P (FIlV(P, P') FIlV(P, P"») 
-, - -- N(P) + ---:~-..;. 

m (2n)4 p'2_m2 p"2_m2 ' 
(7b) 

with 

PV(P, P') = tSp{yll(y'P,+m) f(y'P;+m)} 

= Pllp,v+P VP'Il+ gIlV(m2_pp'). (8) 

The alternative form (7b) follows from (7a) by shifting the origin of integration for 
the final term and using obvious symmetry properties of (8). 

A further form may be derived from (7b) by replacing the variable of integration 
P by - P. Under P -> - P we have P' -> - P" and P" -> - P'; the symmetry 
properties apparent from (8) then imply that the quantity in large parentheses in 
(7b) is invariant under P -> - P. It follows that 2N (P) in (7b) may be replaced by 
N(P)+N(-P). 

On performing the integral over E, equations (3) imply that the resulting expression 
depends on the occupation numbers only in the combination 

n(p) = n+(p)+n-( -p). (9) 

An obvious physical interpretation of this result is that an electron (charge - e) with 
momentum p and a positron (charge e) with physical momentum -p correspond 
to the same current. 
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The reduction of (7b) to the non-quantum limit involves two steps. First one 
makes the identification 

f d4P f 
2 (2n)4 N(P) = d4P F(P) (10) 

between N(P) and F(P). The factor of 2 on the left arises from the two spin states 
of the electron, and the factor (2n)-4 is omitted on the right by choice of convention. 
A minor complication concerns the positrons. One may regard the non-quantum 
limit as requiring that there be a negligible number of positrons (Hakim and Heyvaerts 
1978). Alternatively one may regard electrons and positrons as separate types of 
classical particles, and separate F(P) into two independent components for the two 
corresponding distributions. 

The second step is to expand in Ii and retain only the lowest order non-vanishing 
terms. In (7b) Ii appears only in P' = P-/ik and pI! = P+lik. Using the <5 function 
in (2') one has 

p'2_m2 = -2kP+k2, pI!2_ m 2 = 2kP+k2, 

where the dependence on Ii is implicit. Then on expanding in Ii one finds 

with (Melrose 1982) 

Then (7a) reduces to 

P'V(P, P') F"V(P, pI!) "V 
2 2 + 2 7. ~ -a (k,P/m), P' -m pI!_m 

a"V(k,P/m) = g"V + P"kv+pvk" k 2p"pv 
nJ +--(Pk)2 

ex"V(k) = - ~ f d4P F(P)a"V(k,P/m) , 

(11) 

(12) 

(13) 

which reproduces the relevant non-quantum result (cf. equation 22 of Melrose 1982). 

3. Response Functions for Isotropic Distributions 

The longitudinal (L) and transverse (T) response functions may be derived from 
(7a) using a method given by Melrose (1982). The result is 

L,T _ 2 P - e-e L,T f d3 ( , 

ex (k) - 2e (2n? nee) oi_(e_e,)2a+ (p,k) 

e+e' 
+ 2 LT() w _(e+e,)2 a -, p,k) , (14) 

with 

a~(p,k) = l=+=2.(e2 + P .k_2(P.k)2) 
ee' 1 k 12 ' 

(l5a) 

al(p,k) = 1 =+= 2.(m2 _ p.k + (P.k)2) 
ee' Ik 12 ' 

(15b) 
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where e denotes e(p) = (m 2 + I p 12}l: and e' denotes e(p') with p' = p-k. We also 
change notation, writing n(p) as nee) for an isotropic distribution. The result (14) 
is essentially that given by Tsytovich (1961). 

The integral over p involves angular integrals, which may be chosen as polar angles 
of p relative to k. The integral over azimuthal angle is trivial, and the remaining 
integrals over I p I and the polar angle may be rewritten as integrals over e and e' 
with e_ <:S; e' <:S; e+ and 

e± = (e2 ±21 p II k I + I k 12)~. (16) 

This gives 

aL.T(k) = -- de nee) de' - ee'a~T(p,k) e2 J J E+ {( 1 1) 
4n2 1 k I E_ w-e+e' w+e-e' 

+ ( 1 _ 1 )ee'a~T(p,k)}. (17) 
w-e-e' W+e+e' 

Using the relation 

J ' em _ em _ (w-e)e tn - 1 
de , - + ... 

W-e+e n n-l 

J de' 
+( -It(w-eY w-e+e" 

we may rewrite (17) in the form 

aL.T(k) = ~ J de ii(e){cL.T(e k) 
4n2 1kl ' 

J E+ (1 1) 
+b~T(e,k) E_ de' e'-e+w + e'+e-w 

+b~T(e,k)JE+ de' (, 1 +, 1 )}, (18) 
E_ e +e+w e -e-W 

with 

cL(e,k) = 41plw2 /1 k l, cT(e,k) = -2Ipl(w2 +lkI 2 )/lkl, (19a, b) 

w2 

b'±(e, k) = 21 k IzCW2 -I k 12 =t4we+4e2 ) , (l9c) 

bT(e k) = __ (W2-lkI2)(W2 +lkl2 + 4m21kl2 =F4we +4e2).' 
± , 41kl2 w2_lkl 2 (19d) 

The integral over e' may now be performed giving 

e2 n w2 e2 mw2 
aL(k)' = _0_ + {1.(W2 _I k 12")S(0)(k) 

mlkl2 2n21kl3 4 

-mwS(1)(k)+m2S(2)(k)}, (20a) 
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T __ e2nO(W2+ 1 k 12) _ e2m(w2-1 k 12){( -s~+tw2+tl k 12)S(0)(k) 
a (k) - 2mlkl2 41l?lk12 

-mwS(1)(k)+m2S(2)(k)}, (20b) 

where 

J d3p m m J no = 2 (-;--J-n(s) ="2 dsipi n(s) 
211:) s 11: 

(21) 

is the proper number density, and with 

So = C _;~lkI2 +tl k I2r· (22) 

The plasma dispersion functions introduced in (20) are 

S(O)(k) = J ~ n(s)lnAl' (23a) 

J ds 
S(1)(k) = m2 n(s) In A2 , (23b) 

J ds 
S(2)(k) = m 3 n(s)lnAl' (23c) 

with 

(s+ -s+w)(s+ -s-w)(s+ +s-w)(s+ +s+w) 
Al =~----~------~------~----~ (L -S+W)(L -S-W)(L +S-W)(L +s+w)' 

(24a) 

(s+ -s+w)(s+ +S-W)(L -S-W)(L +s+w) 
A2 = . 

(L -S+W)(L +s-w)(s+ -s-w)(s+ +s+w) 
(24b) 

Alternative forms of the functions (24), along with another function A 3 , are written 
down in Appendix 2. 

In the next section we use the functions (23) to discuss Landau damping and 
pair creation. 

4. Landau Damping and Pair Creation 

The kinematics for Landau damping (LD) and pair creation (PC) were discussed 
by Tsytovich (1961); LD corresponds to the resonances at s-s' = ±w and pair 
creation to the resonances at S + s' = ± w. LD is allowed only for W < 1 k 1 and 
PC only for w2 > 4m2+lkI 2; there is no damping for Ikl 2 < w2 < 4m2+lkI 2. 

The resonant parts of the dielectric functions are not included correctly in (4), 
due to the propagator G(P) being of the Feynman type and hence acausal (positrons 
propagate backwards in time). However, the causal condition may be imposed on 
(7a) and (7b) and subsequent forms of aflV(k) by replacing W by W + i 0, according to 
the usual Landau prescription. 
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By inspection of (18) we may identify the functions 

1 I f8+ 1 
St3±(k) = mn+1 dB Bnn(B) e_ dB' B' -B±(W +iO)' (25a) 

1 I d n-() f e+ dB' 1 S~'2±(k) = mn+1 B B n B e_ B' +B=+=(W +iO" (25b) 

which separate the dispersion into parts due to LD and PC. The functions (23) 
are related to the functions (25) by 

s(n)(k) = S£'6+(k) + S~'2+(k) +( -1Y{S£'6-(k)+ S~'2_(k)} . (26) 

The relation (26) allows us to identify the imaginary parts of s(n)(k) in terms of the 
contributions from LD and PC. After using the Plemelj formula 

_1 _. = P( X-I) _ i n6( x) , 
X +10 

where P denotes the Cauchy principal value, and integrating over B', the relevant 
imaginary parts are given by 

n Ie+±ro 
ImS£~±(k) = =+= ---;;+r dB Bnn(B) 

m e_±w 

n fa) 
=+= ~ dB (B±lw)" n(B±lw) , 

m eo 
(27a) 

1m S~'2±(k) = ± :+ 1 I ±ro-e- dB Bn nCB) 
m ±ro-e+ 

n Itlrol+eo 
± ~8(±w) dB Bnn(B) 

m tlwl-eo 

n Ieo ± ---;;+r8(±w) de {GI w I +B)" n(ll w I +B) 
m 0 

+GI w I-B)" nGI w I-e)}, (27b) 

where 8(w) is the step function. 

5. Long-wavelength and Non-quantum Limits 

The approximate cases of most interest are the long-wavelength limit and the 
non-quantum limit along with the first quantum corrections to it. 

Long-wavelength Limit 

The long-wavelength limit is obtained by expanding InA[ and InA2 in powers 
of I k I. On retaining terms up to 0(1 k 15), inserting the expansions into equations (23) 
and thence into (20), one finds to 0(1 k 12) 

ReClL.T(k) = AL.T(W) + I k 12B L,T(w), (28) 
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2e2 f 382-lp12 
AL(W) = AT(W) = - -2 d81pI n(8) 4 2 ?, 

311: 8 -W 

2e2 f ( I P 12 BL(w) = - 22 d8 ipln(8) 4 2 2(1-3IpI2/582) 
11: W 8 -W 

W 2 

+ "e2_w2,itlpI2 -282 -31p1 4 /582) 

+ _~6~PI2~,2,(t82_-tIPI2)), 

2e2 f ( IpI 2 
BT(w) = - 2""2 d81 P I n(8) 4 2 2(t -I P 12/582) 

11: W 8 -W 

2 

+ " ~ W 2)i!1 P 12 -282 _I P 14/582) 
~ 

161pI 2w2 2 2) 
+_,,~ ?,~(8-tlpl)· 

(29a) 

(29b) 

(29c) 

We have used these expressions in treating the example discussed in Section 7 below. 
The region of validity of the small I k I expansion is restricted by the location of 

the singular points in the integrands of (17) or (18). This region depends on the 
form of the distribution function. 

Let us start by considering the contribution to the integrals of particles with given 
P and 8. Then in (17), the small I k I expansion is valid for 

I k I < I (I P 12u2±2w8+(2)t± I pi u I, (30) 

which must be satisfied for all four choices of sign. The most restrictive condition 
is for ±u = -1, where u is the cosine of the angle between k and p. Then (30) 
leads to two conditions: 

Ikl < 1(lpI2+2w8+W2)t-lpll, 

Ikl < IClpI2_2w8+(2)t-lpll· 

(3Ia) 

(3Ib) 

Without loss of generality we may now assume W > O. The square root in (31a) 
is then always real, and that in (31 b) is imaginary for 8 - m < W < 8 + m, and real 
otherwise. For W < 2m, the right-hand sides of (31) are always nonzero. For 
W > 2m, the RHS of (31 b) becomes zero at W = 28, so there can be no Iong­
wavelength expansion for particles with an energy of 1W, We may re-write (3Ib) as 

Ikl < Ipl-(lpI2_2w8+W2)t, 

< (2W8 - (2)t , 

< Ipl-(lpI2_2w8+W2)t, 

< ClpI2_2w8+(2)t-lpl, 

0< W < 8-m; 

8-m < W < 2m; 

8+m < W < 28; 

28 < w. (32) 
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If we have a distribution of particles over the whole momentum range then the regions 
in which small I k I expansions are valid will be given by the minimum values of the 
right-hand sides of (3Ia) and (32). These conditions then become 

Ikl < w; (33a) 

Ikl < W, w < m; 

< (2wm _ w 2)! , m < w < 2m; (33b) 

and we see that no long-wavelength expansion is possible for w > 2m. These limits 
are plotted in Fig. 1. 

More realistic distributions of particles cover a range of momenta from zero to 
some effective maximum Pm' For a degenerate distribution Pm would be the Fermi 
momentum, while for a Boltzmann distribution Pm may be identified as several times 
the thermal momentum. Since for w > 2m the right-hand side of (3ib) becomes 
zero at 8 = 1-W, there can be no long-wavelength expansion if the distribution 
includes particles with this energy, i.e. if the maximum energy 8m is greater than 1-w. 
So there is no expansion for 2m < w < 28m • 

4 

(33a) 
Fig. 1. Conditions (33a) and (33b) 
for the boundaries of the region of 

E 
validity of the long-wavelength expansion 

~ 2 are plotted for the LD and PC contributions 
~ to the dielectric functions when all values of 

particle momentum ([PI from 0 to 00) are allowed. 

2 

(J)lm 
4 

Fig.2. Conditions (34a) and (34b) 
for the boundaries of the region of 

validity of the long-wavelength expansion 
are plotted for the LD and PC contributions 

when only values of momentum from 
o to Pm are allowed. 

E 
~ 
~ 

4 

(34a) 

(34b) 

4 

(J)lm 

Subject to this condition, the regions of validity for a small I k I expansion are 
again given by finding the minimum values of (3ia) and (32) over the momentum 
range from zero to Pm' These conditions become 

Ikl < (p!+2W8m+W2)t-pm ; (34a) 
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Ikl < min{Pm~(p!-2wam+wZ)t, (2wm-wZ)t}, 0 < w < am-m; 

< (2wm-wZ)t, am-m < w < 2m; 

< (p!-2wam+wZ)t -Pm' 2am < w. (34b) 

These conditions are plotted in Fig. 2 for Pm = O· 5m. 
In the non-quantum limit, the long-wavelength expansion corresponds to an 

expansion in the ratio of particle speed to phase speed, which in this case is I k I Pm/warn. 
Taking the non-quantum limit w ~ a, we find that (34a) reduces to 

Ikl < warn/Pm· 

In the non-quantum case, this condition applies to the contribution to the dispersion 
from LD. Hence we interpret (34a) as the condition for the small I k I expansion 
which applies to the LD contribution, and (34b) as the condition which applies to 
the PC contribution. 

Non-quantum Limit 

In developing approximations for the non-quantum limit we start from In ..11 and 
In A z in the forms 

1 _ I ({w- I klv +(wZ_1 k IZ)/2a}{w+ I klv _(wZ_1 k IZ)/2a}) 
nAl - n {w-lklv-(wZ-lkIZ)j2a}{w+lklv+(wZ-lkIZ)/2a} , 

(35a) 

I _ I ({W+lkIV -(wZ-lkIZ)/2a}{w+lklv +(WZ- lk IZ)/2a}) 
nAz - n Z Z Z Z . 

{w-Iklv -(w -Ikl )/2a}{w-lklv +(w -Ikl )/2a} 
(35b) 

In the non-quantum limit the terms (W Z -I k IZ)/2a do not contribute. Hence this 
limit requires 

/w-Iklv/ ~ /wz-l k lz //2a. (36) 

In this limit we find 

W
Z 

- I k I
Z (1 1) InAl = ----

2a w-Iklv w+lklv 

(wZ_lkIZ)3( 1 1) 
+ 12a3 (w-lklv)3 - (w+lklv)3 + ... , (37a) 

InAz = 2In(w+lkIV) 
w-Iklv 

(WZ -I k IZ)Z (1 1) 
+ 4a z (w-lklv)Z-(w+lklv)Z + .... (37b) 

The requirement (36) may be interpreted as follows. When a particle emits (upper 
sign) or absorbs (lower sign) a quantum (w, k) the resonance condition 
a(p+k) = a(p)+w requires, to lowest order in h, 

w = k.v ±(2a)-l(lk.vlz -lkI Z)+ .... (38) 
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The correction term to the classical resonance condition OJ = k. v corresponds to 
the quantum recoil which splits the LD resonance into two parts. Hence, the 
singularities at OJ-Iklv = ±(OJz-lkI Z)/2B in (35) may be attributed to resonance 
in emission and absorption when the effects of the quantum recoil are retained. 

OtMr explicit quantum terms in the dielectric functions. (20) occur in the 
coefficients of S(O)(k): in the non-quantum limit the coefficient in (20a) vanishes 
and that in (20b) reduces to - mZ 1(1 - OJZ II k IZ). 

In the non-quantum limit it is conventional to rewrite n(p) in terms of the classical 
distribution function f(p). We need to introduce distributions f+(p) for electrons 
and f-(p) for positrons. Then in classical notation n(p) should be replaced 
according to 

f+(p)+.r( -p) = 2n(p)/(2n?, 

where the factor of 2 arises from the two spin states. 

6. Completely Degenerate Limit 

The completely degenerate limit corresponds to 

n(B) = 1, B < BF; 

= 0, B > BF; 

(39) 

(40a) 

(40b) 

where BF is the Fermi energy. The functions s(n)(k) may be evaluated explicitly 
in this case. Some of the details of the evaluation are outlined in Appendix 2. 

Denoting any quantity evaluated at B = BF by a subscript F, we find that 

(0) BF OJ Bo 21 k I (BF+ PF) S (k) = -lnAIF - -lnAzF + -lnA3F + --In -- , 
m 2m m m m 

(41a) 

( 1) 1 BF 1 OJ Bo OJ Bo 
( ) z {()Z ( )Z} S (k) = 2 m InAIF -2 2m + m lnAzF + 2m m InA3F 

+ 2~1{ G:r + (1~lr~}IneF:PF), (41b) 

S(Z)(k) = I k31:;;BF +t(~) \nA 1F -t(2:){ G:r +3(~) }nAZF 

+t(~) {3(2:) Z + (~) Z} lnA3F 

Ik l [. {(OJ)Z (Bo)Z20JZ+'kj2}1 (BF + PF) +- 1+2 - + - In -- . 
3m 2m m I k 12 J m 

(41c) 

When substituted into (20) these reproduce results obtained by lancovici (1962), 
allowing for differences in notation and a factor of eZ which he has omitted in his 
equations (AI) and (A4). Note in particular that 

no = m 3 {BF PF -In (BF + PF) } , 
2nz mZ m 

(42) 
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and In{(eF+PF)/m} = sinh- 1(PF/m). Equations (41) also reproduce a result due to 
Kowalenko (1982) for the longitudinal dielectric function, subject to appropriate 
choices of signs of some of his square roots. 

7. High Temperature Pair Plasma 

The functions s(n)(k) have also been evaluated in the limit of a high temperature 
pair plasma. This corresponds to a Fermi-Dirac distribution with zero chemical 
potential, with n+(p) = n-(p) and· 

nee) = 2n+(p) = 2(eP+ 1)-1, (43) 

where p = miT is the inverse temperature. However, we have made several 
approximations in treating this case: we assume the long-wavelength limit and 
expand in OJ/2m for OJ < 2m and in 2m/OJ for OJ > 2m. The results, which are quite 
cumbersome, are written down in Appendix 3. 
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Fig. 3. Dispersion curves are shown for (a) longitudinal and (b) transverse waves 
in a pair plasma [cf. the distribution (43)] at 1·5 x 1011 and 3 x 1011 K. The 
lower and upper dashed curves correspond to 0) = I k Ie and 0)2 = 4rn2 e4 /1i + I k 12 
respectively, which separate the LD region to the right from the PC region to 
the left. 

The dispersion relations for longitudinal and transverse waves can be found using 
an iterative procedure and, in the cases considered numerically, the iterative procedure 
was found to converge rapidly. The region of validity for our various approximations 
restricts our results to temperatures around 1011 K. The dispersion relations for 
(a) longitudinal and (b) transverse waves are plotted in Fig. 3 for T = 1· 5 X 1011 K 
and 3·0 x lO11 K. Also shown are the threshold curves OJ = 1 k 1 and OJ2 = 4m2 + 1 k 12 ; 
LD occurs to the right of these curves and PC to the left of them. The dispersion 
curves for longitudinal waves cross from the LD region, through the dissipation-free 
region to the PC region, whereas the dispersion curves for transverse waves are 
entirely within the PC region. 
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8. Discussion 

Our main emphasis in this paper is on the plasma dispersion functions which appear 
in a relativistic quantum treatment. In the accompanying paper (Melrose and Hayes 
1984) we apply these results to thermal distributions of particles. Here we discuss 
the general features of the dispersion functions: resonances and the effect of 
particles on pair creation. 

The plasma dispersion functions contain singularities, and when any particular 
singularity occurs in the physical regime 0 < I p I < 00 it corresponds to a resonance. 
In the non-quantum case the only singularities are at v = ±w/I k I; for I w I < I k I 
this resonance is due to LD. In the relativistic quantum case there are eight 
singularities. Four of these correspond to LD and the other four to PC. The four 
LD singularities arise from pairwise splitting of the two non-quantum LD 
singularities; as suggested in Section 5, this splitting may be attributed to the different 
quantum recoils in emission and absorption. As in the non-quantum case, the 
singularities are related pairwise through the transformations w ~ - w, and only half 
of them can correspond to resonances for a given sign of w. 

In Appendix 2 the singularities appear as zeros of the arguments of logarithms 
and are labelled i = 1-4 (cf. equations A26). These may be rewritten in terms of 
I v I, I p I or 8 using (A23). In terms of the resonant energies there are LD resonances 
at 8 = 80 ± tw and PC resonances at 8 = tw ± 8 0 , In the range I k 12 < w2 < 4m2 + I k 12 

the parameter 80 is imaginary and there is no resonance. The resonant energies 
correspond to two roots in each of the regions of LD and PC and if we denote these 
roots by 8R1,2 then they are given by 

8R1 ,2 81,84' LD; 

81,82 , PC, w > 0; 

84 ,83 , PC, w < O. 

The corresponding resonant speeds are 

V1,2 = - V3 ,4 = 
I k 1/2m ±W80 /l k 1m 

wj2m ±801m 

In the non-quantum limit these reduce to V1,2 = - V3,4 = w/I k I. 

(44a) 

(44b) 

(44c) 

(45) 

The threshold for PC is at 8 0 = 0, when V1 and V2 are equal to the inverse of 
the phase speed. Hence, the resonant speed in the PC case is near the speed I k I/w 
which one would define by taking the ratio of the momentum to the energy of the 
photon as though it were a material particle. Again, except at threshold, the resonance 
is split in two. 

Another interesting point concerns the effect of the particles on dissipation due 
to pair creation. Let us discuss this for the case of a completely degenerate electron 
gas. Dissipation due to LD in this case requires that the electron be in an occupied 
state, i.e. 8 < 8F , before absorbing the quantum, and be in a previously empty state, 
i.e. 8+W > 8F' after absorbing the quantum. However, in PC there is no initial 
particle and there is a pair in the final state. There is no restriction on the positron 
(all positron states are initially unoccupied) but the electron must be in a previously 
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unoccupied state, i.e. E > EF• This implies that the presence of electrons suppresses 
dissipation due to pair creation below the value which one would have in vacuo. 
The sign of 'dissipation' due to PC in a plasma is opposite to that for LD and 
appears to cause growth. However, the actual effect is simply to reduce the 
dissipation which would occur in vacuo. 

Acknowledgments 

The initial work by L.M.H. on this topic was under the supervision of Dr N. E. 
Frankel. The introduction of the variable t (see Appendix 2) arose from a suggestion 
by Dr R. C. McPhedran. 

References 

Berestetskii, V. B., Lifshitz, E. M., and Pitaevskii, L. P. (1971). 'Relativistic Quantum Theory', 
Part I (Pergamon: Oxford). 

Delsante, A. E., and Frankel, N. E. (1980). Atm. Phys. (New York) 125, 135. 
Hakim, R., and Heyvaerts, J. (1978). Phys. Rev. A 18, 1250. 
Harris, E. G. (1969). Adv. Plasma Phys. 3, 157. 
Jancovici, B. (1962). Nuovo Cimento 25, 428. 
Kowalenko, V. (1982). Ph.D. thesis, Univ. of Melbourne. 
Melrose, D. B. (1982). Aust. J. Phys. 35, 41. 
Melrose, D. B., and Hayes, L. M. (1984). Aust. J. Phys. 37, 639. 
Melrose, D. B., and Parle, A. J. (1983). Aust. J. Phys. 36, 799. 
Tsytovich, V. No (1961). Sov. Phys. JETP 13, 1249. 

Appendix 1 

The electron propagator in coordinate space may be written as the vacuum 
expectation value (see e.g. Berestetskii et al. 1971; p. 251) 

G(x-x') = -iTr[po T{t,t(x)~(x')}], (AI) 

where 

Po = 10><0 I (A2) 

is the vacuum density operator, and T denotes the chronological product. Using 
a similar notation to equations (9) of Melrose and Parle (1983), the second quantized 
wavefunctions are written in the form 

t,t(x) = L a~ t,t~(x) exp( - i (Eq t), (A3a) 
q.~ 

~(x) = I a~~~(x)exp(itEqt), (A3b) 
q,~ 

where q labels the quantum numbers collectively, with Eq = E = (m 2 + I P 12)! here, 
and where a:, a;;, a: and il;; are the electron annihilation, positron creation, electron 
creation and positron annihilation operators respectively. The statistical average is 
achieved by replacing Po by the density matrix p for the electron gas. Then (AI) 
becomes 

G(x-x') = -iI I Tr[p{a~a~:9(t-t') -a~:a~9(t'-t)}] 
~,q ~',q' 

x l{I~(x) iJ!~:(x') exp( - i (Eq t) exp(i (' Eq, t'), (A4) 
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where the extra minus sign arises from the anticommutation of the operators, namely 

[ -"~' .~] _ n aq " aq + - b bq'q' (A5) 

The trace (Tr) over states is performed most conveniently by introducing a Fock-space 
representation 1 nq+, n;) for electrons and positrons; p may then be identified as the 
sum over all states of the outer product 1 n; , n; )<n; ,n; I. Then using the familiar 
relations <n 1 aat 1 n) = nand <n 1 ata 1 n) = l-n for anticommuting creation at and 
annihilation a operators, one has 

T [ •• ~ -"~'] - ~~~' ~ {1(1 Y) ~ ~-} r paqaq , - U U qq '"2 +~ -~nq , 

T [ ,",-;' .~] - ~~~'!> {l(t Y) Y~} r paq , aq - U U qq '"2 - ~ + ~nq • 

(A6a) 

(A6b) 

The next steps are to replace the step function by its integral representation, 

. J dQ exp( -iQt) 
9(1) = 1 2n Q + i 0 ' 

to identify the t/I~(x) with the plane-wave functions, 

t/I~(x) = x~(p)exp(i(p.x), 

and to perform the sum over spin (J using 

y y. (yl'p +m L x~(p)X~(p) = I' . 
a (8 

The sum over q then reduces to an integral over d3p/(2n)3 giving 

(A7) 

(AS) 

(A9) 

J
dQJ d3p ,,(yl'pl'+m 1 {' '} {' '} G(x-x' ) = - (-)3 L., ( -Q' exp -1(8(t-t) exp l(P·(X-x) 
2n 2n ~ 8 +10 

x [H(I+0-(n~«(p)}exp{ -iQ(t-t')} 

- H(1-0 +(n~«(p)}exp{i Q(t- I')}] . (AlO) 

Finally a Fourier transform of (AlO) is carried out, 

G(P) = J d4 (x_X') exp{iP(x-x')} G(X_X') , (A11) 

and straightforward manipUlation allows one to reduce G(P) to 

G(P) = (yI'PI'+m)( 2 12 . +inb(E-(8)nS«(p)f() , 
P -m +10 

(AI2) 

with P = (p. The form (5) then follows from the definition (2) of N(P). 

Alternative Derivation of cr(k) 

Harris' (1969) non-relativistic quantum method may be generalized as follows 
to calculate af'V(k). The Dirac Hamiltonian in second quantized form is separated 
into an unperturbed part 

flo(t) = L (8q a~(t) d~(t), (A13) 
~q 
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and a second part of first order in the test field Aix) 

111(t) = eLL a~;(t) a~(t)Id3x iJi~;(x)i'!/J~(x)Aix) 
e'q' eq 

x exp{i«('eq,-(eq)t}. (AI4) 

In Harris' method the temporal variation is included in the operators, or equivalently 
in the density matrix 

1Tf1;'1;( _ T ['-"1;'( ) '1;( )' T q'q t) - r paq, t aq t J. (AlS) 

The evolution of the products of operators in (AIS) is found using the equation of 
motion 

dP(t) 0 ~ ~ 
- = l[H(t),P(t)] , 

dt 
(AI6) 

for any operator Pet). Using (AB), (AI4), (A16) and the anticommutation relations 
(AS), one finds 

d _'>r'( ) '1;( ) 'r' r )-"I;'() AI;( ) -aq, t aq t = l(~ eq,-~eq aq, t uq t 
dt 

+ ie L Id3x' A/x') 
I;",q" 

[ -"1;'" ) AI;( . ,7X'( ') v,/.I;'( ') {O(r. r" )} x uq,,(J aq t)'I'q" x Y 'l'q' X exp 1 ~eq-~ eq" t 

-"1;'( ) '1;"( ) ;-;;1;( ') V,/.I;"( ') {'(VII VI) }] - aq, t aq" t 'I' q X Y 'I' q" X exp 1 1., eq" - 1., eq, t . (AI7) 

Now we make a perturbation expansion in powers of Av. The zero order density 
matrix is given by (A6b): 

[tp~;~(t)J<0) = 'P~ eFt; bq'q, (AI Sa) 

'P~ = 1-(I-()+(n~, (AISb) 

and the first order term then follows from (A17): 

, I dQ 'PI; _pI;; I· [p~,~(t)](1) = -e - exp( -iQl) ~ q, d3x ' AvCX', Q) 
2n Q-1.,eq +( eq , 

x iJi~(X') yV!/J~;(X') exp{i(C eq, - (eq)t} . 

The linear response is described in terms of the linear current 

[JI'(X)J<1) = - e Tr[p~(x) yl'tfr(x)] (1) 

(A19) 

= -e L L iJi~;(x')yl'!/J~(x)exp{ -i(Ceq'-(eq)t}['P~Vt)](1), (A20) 
,',q' "q 

where we have inserted (A3) and retained the linearized part of (AlS). After 
inserting (A19) in (A20), identifying the wavefunctions as in (AS), and writing 

I d4k 
[JI'(x)](1) = (2n)4 exp(i kx) IY.I'V(k) Av(k) , (A2l) 
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one identifies 

aIlV(k) = e2 L sPJ d 3 p t(e' -O+'n~('p)-('n~'("p') 
~',~ (2n)3 O)-'e+"e 

x (,,~ee' yIlGy'p, +m)Y"G'y'p~+m»). (A22) 

In (A22) it is assumed that the occupation numbers are independent of spin so that 
the sum over spin states may be performed using (A9), and ('p' = 'p -k is implicit. 
Apart from notation, (A22) is equivalent to (7a). 

Appendix 2 

Here we write down some alternative forms of the functions Al and A2 defined 
by (24), and of a third function A 3 • We then carry out the integrals involved in 
deriving (41). 

Alternative Forms for AI, A 2 , A3 

We introduce four different variables which are monotonic functions of the energy e 
of a particle: these are e itself and I p I, v = I p I/e and t, given by 

e 1 +t2 Ipi 2t 

m 1-t2 ' m 

2t 

1-t2 ' v = 1+t2 ' 

The functions (24) and A3 may be expressed in the following forms: 

(t + t1)(t+ t2)(t+ t3)(t+ t4 ) (p + Pl)(P+ P2) 
Al = =-----

(t- t 1)(t - t2)(t- t3)(t- t4 ) (p - Pl)(P- P2) 

4e20)2-(0)2-1 k 12_21 p Ilk 1)2 

- 4e20)2-(0)2-lkI 2 +2Ipi Ik1)2' 

(t + t1)(t + (2)(t - t3)(t- t4 ) (v + v1)(v+ v2) 
A 2 = = .,.----":-.,.---=,-

(t- (1)(t- t2)(t + t3)(t + t4 ) (v- v1)(v- v2) 

4(eO) + I p II kI)2_(0)2_1 k 12)2 

4(eO)-1 p II k 1)2_(0)2_1 k 12)2' 

(t+ t1)(t- t2)(t- t3)(t+ t4 ) (v + V1)(V- V2) 
A3 = =----

(t- t1)(1+ t2)(t + t3)(t - t4) (V- v1)(V + v2) 

[(0)2 _I k 12)e+ p{(1 k 12_0)2)(1 k 12 _0)2 +4m2)}t]2 -4m40)2 

[(0)2 _I k 12)e-p{(l k 12 -0)2)(i k 12 _0)2 + 4m2)}t] 2 -4m40)2 . 

In terms of the parameters 

a = (0)2 -- J k 12)/2mO) , b = I k I/m, 

(A23) 

(A24a) 

(A24b) 

(A24c) 

(A25a, b) 
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we have 

b+(a2+b2-1)t = -ljt3' 
tl = l+a (A26a) 

2 b2 1)t 
b-(a + - = -1/t4' 

t2 = l+a (A26b) 

with 8;, p; and V; for i = 1,2 defined by substituting t = t; in (A23). One finds 

81 ,2 = tW±80 , 8 3 ,4 = -GW±80 )' (A27) 

with 

W a 

2m = I-b 2 ' 

80 b 
m = I_b 2(a 2+b2-1)t. (A28a, b) 

Evaluation of Certain Integrals and Sums 

The quantities s(n)(k) defined by equations (23) are evaluated in the completely 
degenerate limit by partially integrating once and writing the remaining integral in 
terms of the variable t introduced in (A23): 

4 J Ip 1 + t2 ( 1 1 ) 
S(O)(k) = :lnA1F - ;~1 0 dt I-t2 t+t; - t-t; , (A29a) 

(
8 ) 2 4 J Ip (1 + t2

) 2 ( 1 1 ) 
s(1)(k) = t; lnA2F -t ;~1 17; 0 dt I-t2 t+t; - t-t; , (A29b) 

S(2)(k) = t(8F)\nA1F-t ± JIP dt (1+t:)3(_I ___ 1_) , 
m ;=1 0 1-t t+t; t-t; 

(A29c) 

Nith 17i = 1 for i = 1,2 and 17; = -1 for i = 3,4, and with the t; given by equations 
(A26). The t integrals are elementary. Writing 

J (1 + t2 ) 1 +n ( 1 1 ) l\n)(t) = dt -- -- - - , 
, I-t2 t+t; t-t; 

(A30) 

we find that 

1. t - -- n -- - -- n --(0)( ) _ 1 + tf 1 I t + t; I 2t; 1 11 + t I 
, 1 - tf t - t; 1 - tf 1 - t ' 

(A31a) 

( 1) (l+tf)2 It+t;1 2t; 2t (2t; 4t;)1 11+tl 1 (t)- -- In - -----+ --+ n-
; - 1-t~ t-t· I-t~ 1-t2 I-t~ (1-t~)2 I-t' 

, I ~ 'l 
(A31b) 

(2)' (1 + tf) \ I t + t; I 1 2t; 4t ( 3t; 4t;) 2t 
1; (t)= I-tf n t-t; -21-tf(l-t2)2+ I-t?-(1-tf)21-t2 

- -- +--111-(2t/3 + tf) 3 4t; 3t;) 11 + t I 
(1- tf)3 2 (1- t?)3 1- tf 1- t . 

(A31c) 
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Using equations (A25)-(A28) we have 

1 +ti,2 
---2 

1-t1.2 

1 +tt4 w eo 
---2-=-±-' 

1-t3 ,4 2m m 

2t1,2 2t3 ,4 I k I weo 
--=--=-+--
1-t;,2 1-t~,4 2m -Iklm 

These together with (A24) imply 

~ 1 + tf 1 t + ti 1 W eo 
L., --2In -- = -lnAz - - lnA3' 
i=11-t; .t-ti 2m m 

4 (1 + tf) 2 1 t + ti 1 {( W ) 2 (eo) 2} . I lJi --2 In - = - + - In A2 
;=1 1-ti t-ti 2m m 

W eo 
-2--lnA3 

2mm ' 

4 (1 + tf) 3 I t + ti 1_ W {( W ) 2 (eo) 2} I - In - - - - +3 - InA2 
i=1 I-tf t-t; 2m 2m m 

- ~{3(2:r + (~r}lnA3' 
Other relevant sums are 

4 2t. 4 4t. 
i~11-'tf = i~1" ~M = 2lkljm, 

t 2ti(3~tp = ~[1+2{(!!!..-)2 + (~)2}], 
i=1 (1-t;) m 2m m 

4 2t . 
. I lJi 1-'tZ = 0, 
l= 1 i 

4 4ti 4Ikl{(w)2 (W)2(eo)2} i~1 lJi(1_ t?)2 = -;;- 2m + Tki m . 
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(A32a) 

(A32b) 

(A33a) 

(A33b) 

(A33c) 

(A34a) 

(A34b) 

(A34c) 

(A34d) 

The remainder of the derivation of equations (41) involves evaluating t at tF and 
expressing the result in terms of eF and PF using (A23). 

Appendix 3 

The functions AL,T(W) and BL,T(W) defined by (29) may be evaluated for the 
distribution (43) by expanding in either wj2m for w < 2m, or 2mjw for w > 2m. 

Expansion in wJ2m < I 

Writing 

e2m 2 
00 (W )2n AL,T(W) = - --z--z I - fL,T(W, p, n), 

2n: p n=O 2m 
(A35) 
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e2 
00 (w )2n BL,T(W) = - -2 2 I -2 gL,T(w,p,n), 

n n=O m 
(A36) 

we find, setting r = w/2m, 

jL(w,p,n) =p(w,p,n) = (1_r2)1 /2{4t(2)r(n+-!-) +4n 2n+lt(1-2n) 
-jnn! p ,- ". 

+ 4p2r (n+ i ) I p2p t'( -2p) rcp+i) 
nn! p=l (2p)! (p+1)!(n-p--!-) 

2 rcn+i) ( 1 )} +p In(n/p)-C-t---
-jnn!(n-t) 2n-1 

( 2)3 /2{ 8t(2)r(n+i) 4 2n+3 t (-1-2n) 
+ 1-r - 3-jnn! +"3np (2n+1)! 

.±. 2rcn+~) ~ p2P t'(-2 ) r(p+t) 
+ 3P I L., "2 ) I P ( 1) I ( 1) nn. p=d p . p+ . n-p+z 

+ip2 ,rc~;~! ,,(In(n/p)-c+t- 2n~1)}' (A37) 

gL(w,p,n) = 

(1_r2)-1/2{tnp2n-l t(1-2n) + r(n-t)(ln(n/p)_ C-1- _1_) 
(2n-1)! 8-jnn! 2n-1 

r(n+t) I: p2P '(-2) r(p+i) } 
+ 2nn! p=l (2p)! t P p!(n- p-t) 

+(1- r2)1/2{n 2n+ 1 t( -1-2n) + r(n+t)(ln(n/ )-C- _1_) 
P (2n + 1) ! 2-j n n ! p 2n + 1 

r(n+i) ~ p2p '(-2) r(p+-!-) } 
+ I L., It P I 1 1tn. p=l (2p). p.(n-p+z) 

+(1- r2)3/2{2t(2) r(n+i) _ np2n+3 t( -1- 2n) _.1nln+3(4n2 + lOn- 3) t( - 3-2n) 
r\/1tn! r2(2n+1)! 6 (2n+3)! 

_ 3r(n +i) (In(n/p)-c-.1Jl.- _1_) 
2-j n n ! 9 2n + 3 

rcn+-t) p2r(n+~) ( 1 1) 
-iv'npt(-l) (n+1)! - r22-jnn!(n+t) In(n/p)-C+ z - 2n+1 

p2 r(n+~) 00 p2P , rcP+t) -- I -t(-2p)~....,..,...,;;.,.........:..-.,.,.. 
r2 nn! p=l (2p)! (p+1)!(n-p+t) 
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r(p-t) } r(n+D I p2p r'(-2p)(4p2_2p-9) p!(n-p+~) 
- 6nn! p=l (2p)! 

(1 2)5/2{ 4r(2)r(n+D 3 2n+5 r ( -3-2n) + -r - --np 
5r2Jnn! 5 r2(2n+3)! 

_2.n 2n+5(n+1)(n+2)r(-5-2n) +.3. In r(_1)r(n+ t ) 
5 p 2 (2n+5)! 5'1 p n! (n+2) 

r(n+·i) 2r(n+!)( . , 1 ) 
+tJn p3r(-1)r2(n+1)! + 5Jnn! In(n/p)-C-~- 2n+5 

p23r(n+t) ( 1 1) + z5' I( 3) In(n/p)-C- z - -2 3 r vnn. n+z n+ 

p23r(n+t) 00 pZP , r(p-t) 
- 25 I L (2 \l r (-2p)( 1)1( 3) r nn . p = 1 p, . p + . n - p + z 

_ 2r(n+t) I pZP r'(-2 )(P+1)r(P-t)} 
5nn! p=l (2p)! P p!(n-p+!) , 

gT(w,p,n) = 

(1-rZ)-1/2{tn Zn-l r(1-2n) + r(n- t )(ln(n/p)_C_1 __ 1_) 
p (2n-1)! 8~nn! 2n-1 

r(n+t) I pZP '(-2) r(p+~) } 
+ 2nn! p=l (2p)!r p p!(n-p-t) 

+(1- rZ)3/2{2rC2) r(n +~) -in/n+ 3(4nz + lOn + 3) r( - 3 -2n) 
3rzJnn! (2n+3)! 

1 zn+3 r(-1-2n) pZr(n+!) (I /) C 1 1) 
-"3np rZ(2n+1)! - r26Jnn!(n+t) n(n p - +z- 2n+l 

1 I r(n+!) r(n+~)( 4 1) 
-zynpr(-1) (n+1)! - 2~nn! In(n/p)-C- 3 - 2n+3 

pZrCn+!) 00 p2p , r(p+t) - L - r ( - 2p) -----=----=~-
rZ3nn! p=l (2p)! (p+1)!(n-p+t) 

_ r(n+!) I pZP r'(-2p)(4i-2p-3) r(p-t) } 
6nn! p=l (2p)! p!(n-p+~) 

+(1- 2)5/Z{_ 4r(2)r(n+!) _--L 2n+5( +1)( +2) r(-5-2n) 
r 15rZJnn! 15 np n n 2 (2n+5)! 
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(A38) 

12n+5 r(-3-2n) pZr(n+t) (I 1 1) 
-snp r2(2n+3)! + r25Jnn!(n+~) n(n/p)-C- z - 2n+3 + 
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+-LJnp3r( -1) r(n+-t) + 2r(n+D(ln(n/p)_C_1-__ 1_) 
15 r2(n+l)! 15.Jnn! 2n+5 

1 / (1) r(n+-t) 2r(n+-t) ~ p2p '( 2 )(p+ 1)r(p-t) 
+sVnpr - - L.., --r - p -----

n!(n+2) 15nn! p=1 (2p)! p!(n-p+-t) 

pZr(n+-t) 00 p2p , r(p-t)} - . L -r(-2p) 
r25nn! p=1 (2p)! (p+1)!(n-p+1) , 

with 

res) = (l-21 - s),(s), r'(s) = (djds)r(s), 

where '(s) is the Riemann zeta function and C is Euler's constant. 

Expansion in 2m/w < 1 

In the limit w ~ 2m, equations (A35) and (A36) are replaced by 

e2 m2 

AL(W) = AT(W) = - 2n 2p2 

x {8r(2) -r2(ln(n/2r) -C +2 I r2P r'(-2P») I (t:)2n(n-1)r(n-1-) 
3 p=l (2p)! n=O r ,Inn! 

2 00 (P) 2n 00 p2P, (p+n-1)r(p+n-1) 
+2r L - L -,r(-2p) , 

n=2 r p=l (2p). .In(p+n). 

(A39) 

(A40) 

00 (p)2n(n-1)r(n-~)( . 1)} +r2 L - / 2 In(n/2p)-C-tl{l(n-1-)+tl{l(n+l)--2- , (A41) 
n=2 r "nn! n-2 

e2 

BL(W) = - 2n2 

{2r(2) ( , 2n -1 ) 00 (P) 2n r(n -1-) 
x -2- - In(plr) +tl{l(n -1-)-tl{l(n + 1)+ L -

5r 2n(n-l) n=2 r 

00 (P) 2n (n -1)r(n _~) 00 r2p 
+"io+ L - , 2 L --, r'( -2p){p(p-t)-n(n--t)} 

n=O r 2.Jnn. p=l (2p). 

00 _(p)2n 00 p2p (n+p-1)r(n+p-~) } 
+ ~ - L (2 ),r'( -2p) 2.J ( +)' 2 {(n+ p)(n+ p--t)- p(p-t)} , 

n-2 r p=l p. n n p. 

e2 

BT(w) = - 2n2 

{
2r(2) p2 x _ _ 1 00 2n 
15r2 12r2 +rs-{ln(n/2r)-C} ~ (t:) (n-1)2r(n-1-) 

n-O r 4.Jnn! 

(A42) 
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+ L - 2 L -,'( -2p){(n-2)p(p--!-)-(n-l)2(n-~)} 00 (p)2n r(n-~) 00 r2p 

n=O r 2.Jnn! p=l (2p)! 

00 (p)2n(n-1)2r (n- i )( 1 ) 
+ L - .J In(nj2p)-C--!-l/!(n-i)+-!-l/!(n+1)--

n=2 r 4 nn! n-l 

OCJ (p)2n OCJ p2p r(p+n-~) 
+ f: - L (-2 )/(-2p)2J ( + ;,{(p+n-1)(p+n-l)2 

.-2 r p=l p. n n p. 

-(p+n-2)p(p--!-)}} , (A43) 

where l/!(x) is the digamma function. 
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