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Schwinger's variational method for the scattering phase shift produced by a central potential is 
adapted to reflection by a planar potential barrier (or well). The formulation is general, for an 
arbitrary transition between any two media, but the application here is limited to reflection at a 
barrier between media of equal potential energy. The simplest variational estimate for the reflection 
amplitude correctly tends to -1 at grazing incidence, as it must for any finite barrier. This is in 
contrast to the first order perturbation reflection amplitude, which diverges at grazing incidence. 
The same variational estimate is also correct to second order in the ratio of the interface thickness 
to the wavelength of the incident wave. The theory applies also to the reflection of the electromagnetic 
s (or transverse electric) wave at an interface between two media. 

1. Introduction 

The variational theory developed here gives an estimate of (for example) the 
reflection amplitude of electron waves at an oxide barrier between two metals or of 
electromagnetic s waves at an interface between two dielectrics. The formulation is 
general, but the application will be limited to an important special case: the reflection 
at a barrier or interface between like media. Two examples of this special case are: the 
reflection of electrons at an oxide barrier between the same metal, and reflection of 
light by a soap film in air. 

The quantum and electrodynamic problems described above are mathematically 
identical, since in each case one is dealing with a linear second order partial differential 
equation of the same form. For particles of mass m and energy E moving in a 
potential V(z), the probability amplitude satisfies Schrodinger's equation 

(1) 

For electromagnetics (or transverse electric) waves propagating in the xz plane 
and moving in a medium with dielectric function e(z), the electric field is (0, Ey, 0), 
and Ey satisfies 

(2) 

where c is the speed of light and OJ is the angular frequency of the monochromatic 
wave (see e.g. Landau and Liftshitz 1960, Sect. 68). 
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Fig. 1. Reflection of a particle of mass m at a planar potential inhomogeneity. 
The potential energy function (lower curve) is V = AVsech2 (z/a), as discussed 
in Section 5. The upper curve is a schematic representation of the z variation 
of the wavefunction for normal incidence; the middle curve is for incidence 
at 45°. 
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Fig. 2. Reflection of an electromagnetic wave of angular frequency (}) at a planar 
inhomogeneity in the dielectric function e (upper curve). The lower curve is a 
schematic representation of the wavefunction at an angle of incidence of 60°. 
The dielectric function is given by e = 1 +sech2 (z/a); reflection for this type of 
profile is discussed in Section 5. 
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Since V and e are taken to be functions of z only, and IJ' and Ey are independent 
of y for plane waves propagating in the xz plane, both IJ' and Ey are of the form 
exp(i Kx) ljI(z), with ljI satisfying 

(3) 

where 

q2(Z) = (2m/h2){E- V(Z)}-K2 (quantum particle wave) (4a) 

(electromagnetic s wave). (4b) 

The separation of variables constant K is kll' the x component of the wave vector 
in either medium, so if 81 and 82 are the angles of incidence and refraction, then 
K = k1 sin 81 = k2 sin 82 (Snell's law), where for i = 1,2 

k? = q?+K2 = (2m/h2)(E- VJ (quantum particle wave) (Sa) 

(electromagnetic s wave). (Sb) 

Thus (1- V;/E)t or et are the refractive indices for the two media. The component 
of the wave vector normal to the interface is q(z), with limiting forms 

(6) 

The reflection of particles at a planar potential well, and of electromagnetic waves 
at a planar inhomogeneity in the dielectric function, are illustrated in Figs 1 and 2. 

The reflection amplitude r and the transmission amplitude t are defined in terms 
of the asymptotic forms of the solution of (3): 

(7) 

and satisfy the flux conservation law (provided q1 and q2 are real) 

(8) 

(see e.g. Landau and Lifshitz 1965, Sect.2S). 
We shall derive and apply a variational principle for r. Since the proof uses the 

Green function approach of perturbation theory, and since it will be instructive to 
compare the perturbation and variational approaches, we shall first give a brief 
review of the former. 

2. Perturbation Theory for Reflection Problems 

We wish to express ljI, the solution of (3) and (7), in terms of a known function 
ljI 0, the solution of 

d2lj1o/dz2 +q~ljIo = 0, 

exp(iq1z) +roexp(-iq1z) +-ljIo ---+ to exp(iq2 z). 

This is done in terms of a Green function G(z, 0 satisfying 

(9a) 

(9b) 

(10) 
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We then have 

(11) 

where Aq2 = q2 - qt. We now iterate (11) so that successive iterations give successive 
orders (in Aq2) in the expansion t/J = t/J 0 + t/J 1 + t/J 2 + .... To first order in Aq2 we 
obtain 

(12) 

The choice of qo(z) (and thus of t/Jo and G) depends on the problem. In the simplest 
case of like media on either side of the interface, the natural choice is qo constant, 
equal to the common value of q1 and q2' Then, we have 

'0 = 0, t/Jo(z) = exp(iqoz) , G(z, 0 = (1/2iqo)exp(iqolz-(I). (13) 

This case was discussed by Morse and Feshbach (1953, p.1071). The first order 
perturbation value for the reflection amplitude is obtained from (12) by taking the 
limit z -+ - 00 and extracting the coefficient of exp( - i qo z): 

We note that '1 diverges as qo -+ 0 (at grazing incidence). 
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Fig. 3. Six analytic parts of the Green function in the z' plane: 
A, : (2i q2)-1 exp(i q2 0 {exp( - i q2 z) - ro exp(i q2 z)} 
A 2 : (2iq2)-lexp(iq2z){exp(-iq2') -roexp(iq20} 
B: {i(q, +q2)}-lexp{i(q2z -q, O} 
C, : (2iql)-lexp(-iq,O{exp(iq,Z) +roexp(-iq,Z)} 
C2 : (2iq,)-l exp(-iq, z){exp(iq, 0 +roexp(-iq,')} 
D: {i(q, + q2)} -1 exp {i(q2' - q, z)}. 

(14) 

The general case of unlike media (q1 # q2) has recently been studied by Lekner 
(1 982a). For long waves, the natural choice for qo(z) is the step function (qo = q1 
for z < 0 and qo = q2 for z > 0), for which 

(15a) 
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z > 0, (15b) 

where 

(16,17) 

For this problem the Green function has six analytic parts, as shown in Fig. 3. 
The reflection amplitude is r = rO+r1 + ... , where the first order part r1 is found 
from (12) and Fig. 3 to be* 

(18) 

Higher order parts of the reflection amplitude may be obtained from the limiting 
form of 

(19) 

but they rapidly become complicated. 

3. Variational Estimate for the Reflection Amplitude 

In this section we adapt Schwinger's variational method for the tangent of the 
phase shift produced by scattering off a central potential (Schwinger 1947; Blatt 
and Jackson 1949). As in the perturbation theory, ljI is taken to be the solution of (3) 
and (7), ljIo the solution of (9), and G the solution of (10). We rewrite (11) as 

(20) 

On multiplication by I1q2(z) ljI(z) and integration over the whole range of z, we obtain 

f ~ 00 dz I1q2(z) ljI2(Z) + f ~ 00 dz I1q2(z) ljI(z) f ~ 00 d( I1q2(() ljI(() G(z, 0 

= f~oo dzAq2(z)ljI(z)ljIo(z). (21) 

We write this as S = F, where S (the left side of 21) is of second degree in ljI, and F 
(the right side of 21) is of first degree in ljI. Now ljI satisfies the integral equation (11); 
the asymptotic form of ljI as z ~ - 00 is found from (11) and Fig. 3 to be 

== exp(iQ1 z) +rexp( -iQ1 z). (22) 

* A misprint in the second term in (A 7) of Lekner (1982a) has been corrected in equation (18). 
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It follows that, for the exact ljJ, 

(23) 

For the exact ljJ, we also have S = F. We consider now a shift to a neighbouring 
function (in the variational sense) ljJ+(jljJ, where ljJ is the exact solution. The integrals 
F and S shift by 

(jF = J~oo dz(jljJ(z) l1q2(z)ljJo(z), (24) 

(jS = 2 f~oo dZ(jljJ(Z)l1q2(Z)(ljJ(Z) + J~oo d( I1q2(()G(Z,OljJ(()) 

= 2 J~oo dz(jljJ(z) l1q2(z)ljJo(z). (25) 

Thus (jS = 2(jF. But because S = F, so (jS/S = 2(jF/F, or 

(j(F2/S) = o. (26) 

This is the variational principle: the correct ljJ will extremize F2/S. The extremal 
value of F2 /S approximates F = 2iql(rO-r) and thus we have a variational value 
for the reflection amplitude: 

(27) 

In general one has a parametrized trial function ljJvar(z), which when substituted 
for ljJ(z) gives the values par and svar; the parameters which extremize (Fvar)2/svar 
then give the best value (in the space spanned by the trial function) of the reflection 
amplitude. However, a useful variational estimate can be obtained without any 
parameters in ljJvar, provided ljJvar is well chosen. For example, we can take ljJvar = ljJo. 
This gives a value for r var which corresponds (in terms of the input or trial function) 
to the first-order perturbation value r: 

where (from equation 18) 

Thus, we have 

Fo = J~oo dz I1q2(z)ljJ5(z) 

= J~oo dz I1q2(z){exp(iql z) +roexp( -iql z)Y 

+ (~)2 Joo dz I1q2(z)exp(2iq2z) 
ql +q2 0 

-2iql r l· (29) 
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The numerator r1 is first order in flqZ, as is the second term in the denominator, 
and thus r1 and r~ar agree to first order. A special situation arises when r1 is divergent; 
one example of this will be discussed in the next section. 

4. Reflection at an Interface between Like Media 

Here we set qo equal to the common value of q1 and qz, ro equal to zero, and let 
t/Jo(z) = exp(iqoz) and G(z, 0 = exp(iqo I z-( J)/2iqo. Then r1 is given by (14), 
and (30) simplifies to 

At grazing incidence (qo ~ 0), r1 diverges. This is unphysical: r must stay within 
the unit circle in the complex plane. But r~ar does not diverge and, in fact, r var ~ -1 
at grazing incidence, the correct limiting value for any finite reflecting potential. 
[This result follows from the general expression for the reflection amplitude (Lekner 
1982b, equation 18) on setting q1 = 0.] 

The variational expression for r based on the trial function has another desirable 
property: it is exact to second order in the interface thickness. The reflection 
amplitude to second order in the interface thickness is known for an arbitrary 
interface profile (Lekner 1984). When q1 = qz the general expression reduces to 

(32) 

where the series continues to higher order terms in the interface thickness. From 
(14) we have 

(33) 

Also, we have 

J~oo dz flqZ(z)exp(iqoz) J~oo d( flqz(Oexp(iqo Oexp(iqo I z-( J) 

= (J~<Xl dz flqZ(Z)f + .... (34) 

On substituting equations (33) and (34) into (31) we regain (32). 
Since r~ar is the same as r1 to first order in flqZ, and is correct to second order in 

the interface thickness, we expect this variational estimate to work best for weak 
reflection, and for interfaces whose thickness is small compared with the wavelength. 
In fact, the practical range of validity of (31) can be greater than this, as shown by 
the example in the next section. 
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5. Application to the sech2(z/a) Potential 

The wave equation for motion of a particle in the potential 

V(z) = Vo +LiVsech2(z/a) (35) 

is solvable in terms of the hypergeometric function (Landau and Lifshitz 1965, 
pp. 79, 80). For motion in one dimension, with particle energy E = Vo +h2k~/2m, 
the reflection amplitude is given by 

where 

r(i ko a)r( -s -i ko a)r(l +s -i ko a) 
r = ~-:::""-=r""'( --'-:-:i k"""o-a7") r=(~l"';'+-s~) r=(:--_-s7") --'~, (36) 

(37) 

The above applies to reflection at normal incidence. From (3) and (4) we see that 
for reflection at oblique incidence the effective wave number is given by 

with the limiting value 

(38) 

The differential equation for the probability amplitude, and its boundary conditions, 
are thus of the same form at oblique incidence as for normal incidence, with ko 
replaced by qo. It follows that at oblique incidence the reflection amplitude is given 
by (36), with ko replaced by qo. 

We may consider at the same time the reflection of electromagnetic s waves, with 
the dielectric function given by 

e(z) = eo +Liesech2(z/a). 

The reflection amplitude is given by (36) with qo replacing ko, and 

s = 1-[ -I + {I +4Lie(w2/c2)a2}t]. 

(39) 

(40) 

In both cases the problem is characterized by two dimensionless parameters; firstly, 
a coupling parameter (cf. Lekner 1972) 

(41) 

which is a measure of the strength and size of the reflecting inhomogeneity, and 
secondly, p = qo a, the product of the normal component of the wave number with 
the thickness of the barrier. 

We will restrict ourselves here to real s (IX ;;" -t) which implies LiV ~ h2/8ma2 
and Lie ;;" _c2/4w2a2 (there is no restriction on negative values of LiV or positive 
values of Lie). Then, using r(z) r(l- z) = nisin nz, we find 

Irl2 = Icoshnp+icotnssinhnPI-2 

cos2{!n(1 +41X)t} 
(42) 
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Fig. 4. Reflection at normal incidence at a sech2(z/a) profile, for particles 
(Vo =; O,~V= -E) or electromagnetic waves (eo = 1,~e = 1),asafunctionof 
the profile thickness. The wave number k is equal to (2mE)-!!./1i and ro/e respectively. 
The solid curve gives the exact reflectivity (e) (equation 42), the dashed curve 
the variational estimate (v) (equation 44), and the dot-dash curve the perturbation 
theory expression (p) (equation 43). 

o 30 60 
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Fig. 5. Reflectivity as a function of the angle of incidence for the sech2(z/a) 
profile. The exact, variational and perturbation results are denoted bye, v and p. 
The curves are for ~ V = - E or ~e = eo, with ka = t (k being defined in Fig. 4). 
The distance over which the profiles differ by more than 10% of 1 ~ V 1 or I. ~e 1 

from Vo or eo is 2alog(y'10+3); for ka = t, this is about 0·29 times the 
wavelength. . 
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The corresponding perturbation and variational expressions are (from equations 14 
and 31) 

1 r1 12 = (na/sinh np)2 , 

1 rIar l2 = 1 rl I2/{(1 +a)2+(a/p)2}. 

(43) 

(44) 

These expressions for the reflectivity are compared in Figs 4 and 5. We note again 
the divergence of the perturbation theory at grazing incidence, where the variational 
theory gives the correct value of unit reflectivity. 

6. Discussion 

We have seen that the adaptation of Schwinger's variational method for the 
scattering phase shift to reflection problems gives a useful expression for the reflection 
amplitude, even in the simplest case of a trial function with no variational parameters. 
It is easy to write down more realistic trial wavefunctions. In equations (45) below, 
rand t are variational parameters, and the vertical line separates two analytic parts 
of the trial function. These analytic parts are to be joined at some zo, which may be 
chosen by symmetry, e.g. Zo := 0 for the example in Section 5, or which may itself 
be a variational parameter: 

exp(i qo z), (45a) 

exp(i qo z) +rexp( -iqo z) 1 texp(i qo z), (45b) 

exp{i ¢(z)} , ¢(z) = f: dC q(z) , (45c) 

exp{i¢(z)} +rexp{ -i¢(z)} 1 texp{i¢(z)}, (45d) 

q-t(z)exp{i¢(z)}, (45e) 

q-t(z)exp{i¢(z)} +rq-t(z)exp{ -i¢(z)} 1 tq-t(z)exp{i¢(z)}. (45f) 

The results given here are based on (45a); even this trial function (which does not 
have reflection built in) leads to a variational expression for the reflection amplitude 
which is exact at grazing incidence, and correct to second order in the interface 
thickness. 

The results given here are restricted to quantum particle waves and to the electro­
magnetic s wave. We hope in the future to also extend the theory to the electro­
magnetic p wave, in order to make available formulae for the interpretation of 
ellipsometric data on interfaces (Beaglehole 1983). 
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