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Low energy surface sputtering of polycrystalline metals is explained theoretically by means of a 
three-body sputtering mechanism involving the impinging ion and two metal atoms. By means of 
quantum-statistical methods, a formula for the number S(E) of atoms sputtered on the average by 
an ion of energy E is derived from first principles. The theory agrees with experimental sputtering 
data in the low energy region above the threshold. As an application, mercury-metal atom scattering 
cross sections are determined by quantitative comparison of the theoretical and experimental S(E) 
values for sputtering mercury ions from various metals. 

1. Introduction 

By means of Fermi's golden rule and the statistical density of states concept, the 
probability S (E) for an atom being sputtered by an ion of energy E incident on a 
polycrystalline metal is calculated for low ion energies, E ~ Eo, above the sputtering 
threshold Eo. This quantum-statistical theory agrees with experimental sputtering 
data for low ion energies (Stuart and Wehner 1962; Askerov and Sena 1969). As an 
application, the formula derived for the sputtering ratio S (E) is used for the determi­
nation of the total scattering cross section of mercury atoms (recombined Hg ions) 
interacting with atoms of various solid metals from experimental sputtering data. 

The previous classical sputtering analyses (von Hippel 1926; Henschke 1957; 
Keywelll955; Wehner 1956, 1957; Harrison 1961; Garber and Federenko 1964; 
Behrisch 1964), as well as the modern sputtering theories based on transport theory 
and Monte Carlo methods [see authoritative reviews by Sigmund (1981), Robinson 
(1981) and Harrison (1983)], contain phenomenological parameters which have to be 
determined from experimental data. This difficulty is typical for theories on compli­
cated solid state many-body interactions, which cannot yet be treated in all details 
from first principles. 

A binary collision between a surface atom of the solid and an ion incident normal 
to the surface can evidently not lead to sputtering since the atom does not acquire 
a momentum component in the direction of the external normal of the surface. Simi­
larly, binary sputtering is not likely to occur for smaller angles of ion incidence if 
its energy is not large compared with the sputtering threshold Eo. It is evident that 
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sputtering, at energies of the order of the threshold, is a three-body process involving 
one ion and two surface atoms of the solid. At higher ion energies, sputtering will 
result also from higher order many-body interactions. 

By restricting the theoretical considerations to ion energies E of the order of the 
threshold energy E ~ Eo, sputtering is regarded as the result of an ion-atom-atom 
interaction. Furthermore, it is assumed that the solid is polycrystalline and has a 
sublimation energy which is on the average Es = (E:ik), where the average is taken 
over the randomly distributed surfaces (ij k) of the crystallites. In this case, the subli­
mation energy Es represents the average binding energy of a surface atom of the 
polycrystalline solid. 

In the three-body sputtering process, the incident ion transfers, on average, the 
energy E. (as well as kinetic energy) to the atom which is expelled and the energy (ex) 
2Es or (P) 4Es to the other atom depending on whether the latter is pushed to an (ex) 
unstable or (p) stable interstitial lattice position. Accordingly, the threshold energies 
for the three-body interactions ex and fJ are 

E" = Es+2Es = 3Es, Ep = Es+4Es = 5Es' 

Depending on whether the process (ex) or (fJ) occurs with dominant probability, the 
apparent threshold [obtained by extrapolation of the experimental S(E) curve, 
E -+ Eo] will be Eo ~ E" or Eo ~ Ep. In theintermediate case, the apparent threshold 
Eo appears to be given by the displacement energy 

Indeed, some of the experimentally found thresholds Eo (Stuart and Wehner 1962; 
Askerov and Sena 1969) are explained by Eo = 4Es. In other cases, the formulae 
E" = 3Es and Ep = 5Es have to be used to explain the measured thresholds. .This is 
demonstrated in Table 1 which compares experimental and theoretical threshold .. 
energies (E", Ep, Ey) for different metals. Sputtering is, in general; not a simple thres­
hold process which can be defined by means of a single threshold value. This will 
be shown in detail through the following quantum-statistical considerations. 

Table 1. Comparison of experimental and theoretical sputtering thresholds 

Target Crystal Eo (theor.) Eo (exp.) Target Crystal Eo (theor.) Eo (exp.) 
element structure (eV) (eV) element structure (eV) (eV) 

Ag fee 5E, = 16·75 17 Nb bee 4E. = 30·84 32 
Au fcc 3E, = 11·70 12 Pt fee 3E,. = 16·80 18 
Co hcp 5E,. = 22·00 22 Ta bee 3Es = 24·00 25 
Cu fcc 5E, = 17·65 17 Ti hcp 5E,. = 24·20 25 
Fe bee 5E, = 20·60 20 W bee 4Es = 35·20 35 
Mo bee 4Es = 24·80 24 Zr hcp 3E, = 18·42 18 

In Table 1, the experimental thresholds have been obtained by extrapolating the 
data of Askerov and Sena (1969). It is seen that the threshold is in general not equal 
to Eo = 4Es, the average displacement threshold in radiation damage. Table 1 
shows that the agreement between the theoretical thresholds (E", Ep, Ey) and the 
experimental values Eo (exp.) is excellent, except in the case of Pt. Whether the ex 
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process or the fJ process is dominant, or both are about equally probable (Ey), is 
apparently not dependent on the respective crystal system (fcc, bcc, hcp). 

2. Quantum-statistical Probabilities 

In general, a sputtering ion recombines with an electron into an atom as soon as 
it approaches the surface of a metal. This means that the incident ion interacts 
actually like a neutral atom with the atoms of the solid. This neutralized ion is 
always referred to as 'ion', in order to distinguish it from the 'atoms' of the solid. 
Experiments indicate that the atom sputtered from the metal surface is also electrically 
neutral (Mott and Massey 1965). 

When an ion of low energy, as defined above, hits the surface of a solid, one of the 
following processes may occur: (1) the ion is scattered without energy loss by the 
bound surface atom it encounters; (2) the ion collides with a surface atom and quasi­
simultaneously with a second atom so that three-body sputtering results. The total 
probability for the ion to interact in either of the two ways with the solid is 

(1) 

where N is the number density of atoms in the solid and a{E) is the total (energy 
dependent) cross section for elastic ion-atom scattering. Let w1(E) and wz{E) be 
the transition probability rates for the processes (1) and (2) respectively. The relative 
probability with which sputtering occurs is then 

(2) 

Combination of equations (1) and (2) yields the sputtering rate, i.e. the number of 
atoms expelled on the average by one ion of energy E from the solid, 

See) = a(E)N2/3 Ws(E). (3) 

In principle, aCE) can be calculated quantum mechanically, or determined experi­
mentally (Mott and Massey 1965). 

In the transition processes (1) or (2), the ion interacts with the surface of the solid 
within an area of the extension of the de Broglie wavelength A = hj(2mE/':' For 
this reason, the spatial part of the phase space is 

R ~ hj(2mE)t. (4) 

The transition probability wee) from a state i to a state fis proportional to the square 
of the matrix element I Mif I and the density of final states dpjdE per unit energy 
(Schiff 1955): 

wee) = (2njh) I Mif I 2dpjdE , (5) 

where 

Mif = JJJQ tfJ; Rlj;i d 3r, (6) 

dpjdE = {Qj(2nh)3}ndcf>(E)jdE (7) 
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for a state containing n independent particles with moments Pl,P2, ... ,Pn. Here 
<P(E) is the volume of momentum space corresponding to the total energy E, H is 
the perturbation (operator) of the Hamiltonian of the ion-atom system which causes 
the transition i --+ f, and t/li and t/lf are the wavefunctions of the total system before 
and after the transition which are normalized for the volume D, where D > V. 
Equations (5)-(7) represent the basis for the determination of the process probabilities 
Wl (E) and wiE). 

Scattering state. The wl(E) is defined as the probability rate for the ion to be 
scattered at the surface of the solid without energy loss. In the centre-of-mass system, 
the ion momentum is p = (2mE)t in the final state and the momentum space volume 
is <P(E) = -1-np3. According to equations (5)-(7), the transition probability for 
scattering per unit time (n = 1) is 

(8) 

where MIt> is the matrix element of the transition (1). 

Sputtering state. The w2(E) is defined as the probability rate for the three-body 
sputtering state with threshold E,n where (J = IX, P (E" = 3E., Ep = 5E.). In the 
centre-of-mass system, the momenta of the ion (i), the sputtered atom (s), and the 
second atom (a) can be chosen as 

Pi =P, P. = -!P-q, Pa = -!p+q, (9) 

so that momentum is conserved r.j Pj = O. Since the potential energy Ea is expended 
in the sputtering interaction of type a = IX, P, the total kinetic energy of the three 
particles is 

* (1 1) 2 1 2 0 E =E-E = -+-P +-q ;?; , 
a 2m 4M M 

(10) 

where M is the mass of the target atom. Equation (10) represents an ellipsoid with 
the axes sections [4{mMj(m+2M)}E*]t and (ME*)t in the six-dimensional space 
of the vectors P and q. Hence, the volume of the momentum space is 

(11) 

From equations (5)-(7) and (1) one obtains the transition probability per unit time 
for the sputtering state with two independent particles (n = 2) 

w2(E) = 2;(2~)3rl MIt> 124n3(mm~~r/2(E-Ea)2H(E-Ea), (12) 

where MIP is the matrix element of the transition, Ea is the threshold, and 
H(E-Ea) = 1 or 0 for E ;?; Ea+O or E :::; Ea-O (the Heaviside function). 

With the assumption w2(E) ~ wl(E), one obtains, from equations (2), (8) and 
(12), for the relative sputtering probability 

D 1 MP) 12( M2 )3/2(E_E)2 w:a(E) _ __ If a H(E-E) 
• - 8n.J21 MIt> 12 m+2M Et a . 

(13) 
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The square of the matrix elements I M(I,2) I are proportional to the probabilities for 
finding the interacting particles in the processes (1) and (2) in the interaction volume 
V (equation 1), i.e. 

(14) 

since there are one and two independent particles in the interactions (I) and (2) 
respectively. Substitution of equations (14) and (4) into (13) leads to the following 
equation for the relative probability for sputtering with threshold Ea (0' = ex, p): 

a ~ 1 ( (M/m)2 )3/2(E-Ea)2 
W. (E) ~ 24h2/1 1 +2M/m £2 H(£-Ea) , (15) 

where 
h2/1 = (D/v,)1 Mffll2/1 MIP 12 (16) 

is a dimensionless coefficient. The matrix elements in h2/1 could be evaluated if the 
force potentials of the interactions (1) and (2) were known. For an individual sput­
tering event, h2j1 would depend on the angle 0 which the momentum of the sputtered 
atom forms with the normal vector of the scattering surface of the respective crystallite. 

However, since we are interested in the net observed sputtering probability W~(E) 
for polycrystalline metals, h2j1 has to be averaged for polycrystalline metals with a 
nearly random spatial orientation of the crystallites. This averaging process is con­
sistent with the use of average sublimation energies E. = <E~jk> for polycrystalline 
metals. 

In the following formulation of the observed sputtering rate S(E), the quantities 
h2/1 and E. represent, therefore, averages or constants for any given ion beam and 
polycrystalline metal. In this connection, it should be noted that the averages of 
h2/1 and Es are the parameters which are observed in the sputtering experiments from 
polycrystalline metals. Furthermore, the experimental data appear to indicate that 
the dimensionless coefficient h2/1 is of the order of 1. 

3. Sputtering Ratio 

In the sputtering of a surface atom by an ion, the two fundamental cases ex and P 
are distinguished, having the thresholds Ea. = 3Es and Ep = 5Es respectively. We 
let the probabilities for the occurrence of the thresholds Ea. and Ep be gao and gp, 
which are normalized in the usual way: 

(17) 

It follows for the relative probability that sputtering occurs with either of the 
thresholds Ea. and Ep: 

w. = L ga w.a• (18) 
a=a"p 

Substitution of equations (18) and (15) into (3) yields for the number of atoms sput­
tered on the average by an ion of energy E: 

(19) 
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Fig. 1. Theoretical (solid curves) and experimental (dashed curves) sputtering ratios for elements 
indicated. 
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For applications, it is suitable to further simplify equation (19), which is strictly 
valid only for ion energies E ~ E~,p. For example, if only one threshold Eo E (Ell., Ep) 
is important (g 11. ~ 1 or g p ~ 1) and the total scattering cross section aCE) varies 
slowly at E :::::; Eo (absence of resonances), then (19) can be reduced to 

(20) 

with 

(21) 

Equation (20) is of the form of the sputtering relation SeE) = const.(E - Eo?, 
which one finds phenomenologically by fitting the experimental sputtering data. This 
relation can, therefore, be employed in the extrapolation E -4 Eo of experimental 
data to find the threshold Eo. On the other hand, equation (20) is also useful for 
predicting the sputtering curve SeE) for polycrystalline metals with known threshold 
energy Eo and total scattering cross section aCE). A method for determining the 
latter has been given by Firsov (1958). 

4. Application 

In the literature, measurements of the total scattering cross sections for Hg atoms 
(recombined ions) and target atoms such as Ag, Au, Co, Cu, Fe, Mo, Nb, Pt, Ta, Ti, 
Wand Zr have apparently not been reported. Theoretical cross-section values are 
not available yet, owing to the mathematical difficulties associated with the applica­
tion of quantum mechanical scattering theory to complex atoms (Mott and Massey 
1965). For these reasons, the cross sections under consideration shall be estimated 
here by comparing the theoretical (equation 20) and experimental sputtering ratios 
SeE). 

In Fig. 1 the dashed curves represent the experimental sputtering data of Askerov 
and Sena (1969) for Hg ions and the (polycrystalline) target materials Ag, Au, Co, 
Cu, Fe, Mo, Nb, Pt, Ta, Ti, Wand Zr [with the lowest SeE) value measured at 
E = E indicated by a dot]. The corresponding solid curves are the theoretical values 
of SeE), based on equation (20) and the theoretical thresholds given in Table 1. The 
cross-section values a(Eo) are chosen in such a way that the experimental and theoret­
ical sputtering curves agree in the low energy region E ~ E, since theory and experi­
ment should show best agreement for the lower ion energies in the three-body sputter­
ing model. The mass m of Hg is 200· 59 a.m. u., and the remaining constants M and N 
in equation (20) are given in Table 2. Also shown are the details of the calculation 
of the cross sections a(Eo) from the experimental sputtering data by means of (20). 
It is seen that the cross sections a(Eo) for atom-atom scattering are between 10-16 

and 10-15 cm2 at low energies, i.e. they are of the order of magnitude expected, 
with h2/1 '" 1 (Firsov 1958). 

Fig. 1 shows that the theoretical sputtering formula (20) describes the experimental 
data rather well in the low energy region E ~ Eo. The theoretical sputtering curves 
are plotted up to E = 100 e V, in order to show the deviations of (20) from the experi­
mental data at larger ion energies. The three-body sputtering model and the sputtering 
formula derived from it evidently represent good approximations in the low energy 
region Eo ~ E < lOEo. 
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Table 2. Constants of sputtering formula and cross sections a(Eo) for various target atoms 

Target M Term 1A N N2/3 Term 28 h2/1 u(Eo) 
atoms (g) (1022 cm- 3) (1015 cm- 2) (cm2) 

Ag l'7906xlO- 22 5·201 X 10-2 5·859 1·509 8·700x 10-2 1· 384 X 10-15 

Au 3.2697x 10- 22 1·856x 10-1 5·903 1·516 2·672x 10-2 4.230x 10-16 

Co 9.7829x 10- 23 l'268x10- 2 8·903 1·994 9·687x 10-2 1·166 x 10-15 

Cu 1·0549 X 10- 22 l'523xlO- 2 8·468 1·928 1·993 x 10-1 2·480x 10-15 

Fe 9.2706x 10- 23 1·111 x 10-2 8·478 1·930 7·649x 10-2 9· 512 X 10-16 

Mo 1· 5926 X 10-22 3 ·998 X 10-2 5·657 1·474 2'248x10- 2 3·661 X 10-16 

Nb 1· 5422 x 10- 22 3.716x 10-2 5·187 1·391 3·719x 10-2 6.417x 10-16 

Pt 3.2385x 10- 22 1·820x 10-1 6·599 1·633 2·244x 10-2 3.298x 10-16 

Ta 3 ·0037 x 10- 22 1'563 X 10- 1 5·526 1·451 9· 593 x 10-3 1· 587 X 10-16 

Ti 7 ·9514 x 10-23 7·581 X 10-3 5·659 1·474 l'786x10- 1 2·908 x 10-15 

W 3'0519x 10- 22 1·615 x 10-1 6·324 1'587 1·344x 10-2 2'032x 10-16 

Zr 1· 5143 x 10- 22 3·564x 10-2 4·253 1'218 2'658x10- 2 5·236 X 10-16 

A Values for the term {(M/m)2/(1 +2M/m)}3/2 from equation (20). 
B Values for the term .'4h2/1 u(Eo)N2/3 from equation (20). 

It should be noted that the theoretical sputtering curves are very sensitive towards 
changes in the thresholds Eo. It can be shown that adequate agreement between the 
experimental and theoretical sputtering curves cannot be obtained by choosing 
theoretical thresholds noticeably different from those in Table 1 and varying the 
values of the cross sections o{Eo). Experimental or theoretical cross-section values 
are obviously necessary for a more quantitative evaluation of the quantum-statistical 
sputtering analysis presented. 

The main purpose of this theory is to demonstrate that the underlying idea of the 
phase space dynamics leads to sputtering ratios which agree satisfactorily with the 
experimental data in the low energy region. This quantum-statistical approach can 
be further generalized by considering higher order interactions with the solid. 
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