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Abstract 

Aust. J. Phys., 1985,38,329-35 

The dead time of some position sensitive detectors is determined by the arrangement in time of 
the totality of incoming events, irrespective of the position channel to which each event may be 
assigned. If the arrangement of events in position is statistically independent of their arrangement 
in time, the ratios of the means for the different position channels are unaffected by dead time 
and all channels need correction by the same factor, determined solely by the combined rate for 
all channels. Expressions for the variance of the individual counts in each channel are given for 
Type I counters. A symmetric uncertainty in the allocation of each event to its proper channel 
is considered and has no effect in a first approximation. 

1. Introduction 

It is familiar to users of particle counters that the observed number of counts 
(registrations) requires a correction for 'dead time' and that this correction increases 
proportionally with the count rate. Thus, without appropriate correction, low count 
rates, quite apart from any background rate, are enhanced relative to peak rates. In 
recent years the efficiency of data collection has been increased by the use of spatial 
position sensitive detectors and this has been of great importance where sources have 
been intrinsically weak as, for example, in some neutron diffraction experiments. In 
some cases these detectors have been composed of arrays of completely independent 
counters and, of course, low count rates are enhanced relative to peak rates in the 
usual way. 

There are, however, linear position sensitive detectors available which take the form 
of a single gas-filled proportional counter, where the position of an incoming particle 
is determined by means of fast electronics from the time difference between pulses 
arriving at the two ends of the counter. In this case, the arrival of a particle at any 
position can render the counter dead, for a short time, to the recording of particles 
arriving at any position whatsoever. On intuitive grounds, it might be expected that 
the dead time correction is now a function of the total rate of arrival of particles from 
all positions rather than the rates for particular positions and, therefore, that the 
low count rates are not enhanced relative to the peak rates; the rates at all positions 
require correction by the same factor. 
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Some experimenters have expressed doubts about the validity of their intuition and 
these doubts are reinforced when it is realized that otherwise independent streams of 
events become dependent when they are subjected to a selection criterion imposed by 
dead time. Therefore, the purpose of the present paper is to set these doubts at rest 
by providing a theoretical justification of the above result. The theory developed also 
extends to give some less intuitively clear results for variances. 

The next section introduces some statistical notation and gives some relevant 
information concerning two sorts of idealized counters which have frequently been 
used to model real counters. Section 3 proves the required result in fairly general 
terms under the sole assumption that the time behaviour of the incoming particles is 
statistically independent of their spatial behaviour. Section 4 introduces generating 
functions and uses them to show that, in general, the registered counts in different 
position channels are not statistically independent. In the final section it is shown that 
uncertainty in the allocation of a particular registration to its correct position does 
not significantly distort the count rate, provided that this uncertainty is symmetric 
about each and every position channel. 

2. Single Counter Statistics 

A counter is supposed to register 'random events' which may be X-ray photons or 
particles such as electrons. A common assumption is that these events constitute a 
Poisson process characterized by the natural conditions that in any sufficiently small 
interval 8 t (i) the probability of more than one event occurring is asymptotically 
negligible, and (ii) the probability of just one event occurring is asymptotically r8 t 
(where r is the rate), independent of any previous events. For such a process the 
probability P( 1'0 < t) that the time 1'0 from an arbitrary moment to the next event 
will not exceed t is given by 

P( 1'0 < t) = 1- exp( - r t) . (1) 

It also follows that the probability for exactly n events to occur during any time 
interval of length t is given by the Poisson law 

P[ N(t)= nJ = (rt)n exp( - rt)ln!. (2) 

The mean number of such events E[N(t)J and the square of the standard deviation 
or variance Var[ N(t) J are given by 

E[ N(t)J = Var[ N(t)J = rt. 

Due to 'dead time' a counter is unable to register all events and Feller (1948) 
introduced two ideal cases. Type I is a counter with non-extending dead time and the 
counter is locked and dead for a constant time d after each registration: an event is 
registered if, and only if, no registration has occurred during the interval d preceding 
it. Type II is a counter with an extending dead time and the counter registers if, and 
only if, no event has occurred during the interval d preceding it: an event occurring 
while the counter is dead prolongs the dead time by a further interval d and the 
counter can, in theory, remain dead indefinitely. 
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For practical counters, the overall dead time must include not only that associated 
with the actual counter, but also that associated with the subsequent electronics. Thus, 
real counters are a compromise between these two ideal types and various authors, 
such as Albert and Nelson (1953) and Ramakrishnan (1954), have considered more 
complicated cases. Since, in practice, the theoretical results do not differ much for the 
two types, attention is usually confined to the mathematically simpler Type I case. 

Feller (1948) has given exact expressions for the mean and variance of the number 
of registrations N(t) in time t for both types of counter. More usefully, he has given 
approximations which are asymptotically valid as t tends to infinity. In this limit, for 
Type I, 

E( N(t)J 

Var( N(t) J 

rt/(I+rd), 

rt/(1 + rdi . 

For Type II, the approximations are 

E(N(t)J 

Var( N(t)J 

r t exp( - r d) , 

r t exp( - r d) (1 - 2 r d exp( - r d) J . 

(3) 

(4) 

(5) 

(6) 

In the same limit, the actual number of counts has a normal (gaussian) distribution 
with these means and variances. 

3. Single Channel Statistics 

For a position sensitive counter, each event of the incoming Poisson stream is 
labelled with a linear position in space. Events with labels corresponding to some 
small range of positions are all counted into the same accumulator or channel. Now 
the dead time behaviour of the counter is controlled by the effect of all the incoming 
events together and the question arises as to how this dead time affects the statistics 
of the individual channels. 

The critical assumption is that the statistics of the spatial arrangement of events 
are completely independent of their statistics in time. As will be shown below, it now 
follows, independently of the counter type, that the relative values of the expectations 
(mean values) of the counts in the various channels are unaffected by dead time: all 
channels need correction by the same factor determined solely by the combined rate 
for all channels. The variance of the channel counts is also quite simply computed. 

Let us consider one particular channel with the label zero. We let p = 1- q be 
the proportion of incoming events with this label and, for an interval of length t, we 
let N( t) and No( t) be respectively the number of registrations in the combined stream 
and those in the 'diluted' stream with the label zero. Then using an indicator variable 
Xi we have 

N(t) 

No = ~ Xi' 
i= 1 

(7) 

where Xi has the value 1 if the ith registration has the label zero, and is zero otherwise. 
Now the association of a registration with the label zero is independent of N( t) 
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and so the calculation of the mean value of No( t) can be carried out in two steps. 
Firstly, conditional on some fixed but arbitrary value of N( t), the spatial average 
over Xi is calculated and, finally, this result is averaged for all relevant values of 
N(t). Conditional on a fixed value of N(t), the random variable ~ Xi has a binomial 
distribution and E{~ XiIN(t») is a common generic notation for the mean value of 
this sort of conditional distribution. Thus, we have 

(N(t») {(N(t) )} 
E i:1 Xi = EN Ex i:1 Xii N(t) 

= E{pN(t») , (8) 

whence 

E{ No(t») = pEl N(t») . (9) 

For a Type I counter, equation (3) gives 

E{No(t») ::::: prt/(l+rd), (10) 

where r refers to the rate of the whole incoming stream. 
The variance is slightly more complicated to calculate and depends on the general 

result (Feller 1966, p. 164, Ex. 18) 

varC¥: X) =EN{varxC¥: XiIN(t»)} +varN{ExC¥: XiIN(t»)} 

=E{ N(t)pq) + Var{pN(t») , 

whence 

Var{No(t») = pqE{N(t»)+p2Var{N(t»). (11) 

For a Type I counter, equations (3) and (4) give 

Var{No(t») ::::: pqrt/(I+rd) +p2rt/(I+rd)3. (12) 

4. Generating Functions 

Study of random variables such as N which take only integral values n = 0, 1, 2, ... 
is facilitated by the powerful method of generating functions as outlined by Feller 
(1968, Ch. XI). We let Pn = P(N = n) and define the generating function 

G(s) = i Pn sn . (13) 
n=O 

For a proper distribution we have 

G(I) = i Pn = 1, (14) 
n=O 
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and so the series converges absolutely and represents an analytic function in the unit 
disc. If the mean J.L and variance cr2 exist, differentiation of (13) shows that 

G'(I) = f nPn = J.L, (15) 
n=O 

/I 00 __ 2 2 
G (1) = ~ n(n-l)Pn = O-+J.L -J.L, (16) 

n=O 

which is the second factorial moment and, moreover, the Taylor series expansion 
about s = 1 is 

(17) 

For the Poisson process with rate r, the number of events at time t has the generating 
function 

00 

Gp(s) = ~ (rt)n exp(-rt)sn/n! = exp{ -rt(s-I)J, (18) 
_ n=O 

while for the binomial distribution with parameter P 

(19) 

A diluted stream can be constructed by selection from the events of an incoming 
stream, the selections being made independently with probability p. Then, for the 
resulting diluted stream, we have 

and so 

which, on interchanging the order of summations, becomes 

00 

= ~ P(N=m)(ps+q)m, 
m=O 

so that 

Gdil(S) = G(ps+ q). (20) 

This result is a special case of a general theorem (Feller 1968, p. 287) concerning the 
generating function for a sum, such as (7), of a random number of random variables. 
From equation (18) it follows that a diluted Poisson process is another Poisson process 
with rate r p. 
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The results of the previous section are recovered by regarding the registrations in a 
particular channel (with label zero) as obtained by dilution of the whole stream with 
probability p. If we let IL = E{ N(t») and (T2 = Var{ N(t») be the mean and variance 
of the registrations due to the entire total stream, then the generating function for 
the combined stream is given by (17), so that the generating function for the diluted 
stream is 

G(ps+ q) = G{p(s-I)+ 1) 

=1 +PIL(s-I) +!i(s-li(1L2-1L+(T2) + .... 

Since the coefficient of H s - 1)2 can be written in the form 

the results (9) and (11) are recovered immediately on comparison with (17). Of course, 
the generating function contains information about the whole distribution and not just 
about the first and second moments. 

The bivariate generalization of (13) is the two variable generating function 

H(s" ~) = ~ P(~ = n, Nz = m) si sf, (21) 
n,m 

and the covariance is 

(22) 

when the partial derivatives are evaluated at ~ = ~ = 1. Moreover, by following 
the model of the calculation leading to (20), the joint generating function for a pair 
of streams diluted independently with probabilities Pi and P2 from a common parent 
stream is 

(23) 

It now follows that the covariance of these two diluted streams is 

(24) 

Thus, in general, the two streams are correlated and so are not independent: the only 
exception arises when (T2 = IL, in which case all streams are Poisson. 

5. Effect of Uncertainty in Channel Assignment 

In practice, the assignment of a registration to its proper channel is not always 
correctly made and, moreover, every channel is contaminated with registrations from 
neighbouring channels. Thus, a registered particle which actually arrives in channel i 
(i = + 1, ± 2, ... ) will be misassigned to channel 0 with some probability 1T i and, if it 
arrives in channel 0, it will be correctly assigned with probability 1T o' The effect of this 
on the preceding analysis is quite simple: the stream of registrations in channel 0 is 
still a dilution of the entire stream of registrations, but the probability of a particular 
event being registered in channel 0 is altered. Provided that misassignment occurs 
independently of the spatial and temporal arrangement of particles, this probability is 
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p = l: Pi 7T i' 

where Pi is the probability that a particle arrives in channel i, and, both here and 
below, the summation without limits is for i from - 00 to + 00. 

The formulas (9)-(12) and (20) continue to apply with the altered interpretation 
for p. To see the effect of misassignment on the true arrival stream, we let J.L i = 
Pi E( N( t) J be the mean number of particles, at some fixed time t, which should have 
been registered in channel i, and 0-; be the corresponding variances. Then, from (9), 
the mean count in channel 0 is given by 

(25) 

and from (11) the variance of this count is 

(26) 

where J.L = E(N(t)J and 0-2 = Var(N(t)J are the mean and variance of the overall 
total number of registrations in time t. Here use has been made of the relation 

0-7 = PiJ.L +P7(0-2_J.L) , 

which is just (11) for the individual streams. If there were no dead time, the second 
term would disappear, as the registration streams would all be Poisson. In most 
practical cases it should make only a small contribution and so the variance of the 
count should be crudely equal to l: 7T i J.L i· 

To see what effect this sort of uncertainty in the assignment of the registrations to 
their correct channels may have, we consider the case of symmetric misassignment, 
7T i = 7T _ i' and a locally linear variation of mean counts with channel number or 
J.Li = A + if). Then, we have 

and there is no effect of misassignment in this first approximation. 
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