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Abstract 

For a rank- n separable potential, some of the conditions for the existence of positive energy bound 
states are given and discussed. It has been shown that scattering can occur at positive energy 
bound states and only a particular type of them can be interpreted as zero-width resonances. 

1. Introduction 

For a class of separable potentials bound states occur at positive energies (Gourdin 
and Martin 1957; Martin 1958), and these states have been interpreted as zero-width 
resonances (Bolsterli 1969; Beam 1969). Recently, it has been shown that, in general, 
a positive energy bound state (PEBS) cannot be interpreted as a zero-width resonance; 
a rank-two potential can give a PEBS and a scattering phase shift at the same energy 
(Husain and Suhrabuddin 1980). Here we will derive some general conditions under 
which a rank-n potential can produce PEBS, and also identify the PEBS which give 
scattering and the ones which are zero-width resonances. This will be shown by a 
number of illustrative cases. 

2. Theory 

We consider the s-wave Schrodinger equation 

(::2 +k2)l/J(r) = I: K(r,r')l/J(r')dr', 

where 

n 
K(r, r') = ~ AJ;(r)J;(r,) (Ai FO). 

i= 1 

The solution of these equations at the energy k 2 = k6, such that 

l/J( ko, r) --+ 0 

l/J( ko, 0) = 0, 

as r --+ 00 , 

(1) 

(2) 

(3) 

(4) 
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is known as the PEBS wavefunction. A solution of equations (1) and (2) which 
satisfies these conditions is 

n 
ljJ(k, r) = ~ clk)4>;(k, r) (ci #=0), 

i=1 

where 4> i( k, r) satisfies 

with 

as r-oo, 

and where ci(k) is given by 

with 

n 

ci(k) = Ai ~ d;/k) clk) , 
)=1 

Equations (6) and (7) can be solved to give 

4>i(k, r) = - ~ J~ sin k(r- r')J;(r') dr', 

and hence 

4>lk,O) = - sin kr J;(r) dr = gi(k). 1 J'" 
k 0 

From equations (4), (5) and (11) we get 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

Therefore ljJ(k, r), given by equation (5), gives rise to a PEBS at k 2 = k~ provided 
that equations (8), (9) and (12) are satisfied at that energy. 

Moreover, the solution of equations (1) and (2) such that 

is given by 

ljJ( k, 0) = 0, 

ljJ(k, r) _ sin kr + tan 0 cos kr as r - 00 

(13) 

(14) 

tJis(k, r) = ~ sin kr + i~1 alk){ 4>lk, r) - g;(k) cos krJ, (15) 
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where 

with 

n 
ai(k) = Aigi(k) +Ai l: pik) aik) , 

j=! 

Now consider the matrix 

D(k) = {(l/A)8ij - Pij(k)} , 

so that from equations (16) and (18) we have 

1 n 
a.(k) = l: t . .(k) g.(k) , 

I detD(k) j=! IJ 'J 

where tij( k) are the cofactors of the j i th element of the matrix D( k), 
From equations (14), (15) and (19) we get the scattering phase shift as 

k 
tan 8(k) = - l: tij(k) gi(k) 9j(k) , 

detD(k) i,j 

and to satisfy the condition (12) we may take 

gi(ko) = 0, for i = 1,2, .. " n 

or 
for i = 1,2, .. " m 

= 0, i = m+l, .. " n, 

The coefficients ci(ko) for i = 1,2, .. ,' m are related by the equation 

541 

(16) 

(17) 

(18) 

(19) 

(20) 

(21) 

(22) 

(23) 

When condition (21) is satisfied and keeping in mind equation (18), it may be 
possible that gi(k) and D(k) have k2 _ k~ as a factor, and hence we may write 
tan 8(k) in the form 

(24) 

where v(k) is free from the factor k2 _ k~, We note that tan 8, having this form, can 
be interpreted as a zero-width resonance, In general, equation (24) is difficult, if not 
formidable, to derive explicitly; however, in the following section we will study a few 
different cases and describe the correct interpretations, 
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3. A Few Cases for the PEBS 

Case 1 

We consider the form factor 

( 2/37 ) J;(r) = f3; r - 2 2 exp(-f3; r), 
ko+f3; 

(25) 

which has been shown to be equivalent to a Coulomb potential (Husain and Awin 
1985). In this case we have g;(ko) = 0 for all i. Moreover, when n = 1 the form 
factor (25) contains both repulsion and attraction so that the phase shift changes sign 
at k 2 = k6. This can be compared with the one given by Tabakin (1968) which has 
similar properties. We now consider two situations: 

Rank-one potential. In this case n = 1 and from equations (5) and (10) the PEBS 
wavefunction is given by 

lJ1b(ko,r) = Nrexp(-f3 J r), (26) 

provided that 

(27) 

The phase shift at the energy k 2 is given by 

tan 8(k) = 

- (k2 - k6)216 kf3i/( k 2 - k6) 

(k6 - f3i)( k2 + f3i}3 + 2f3i( k 2 + f3i}2( k6 + f3i) - 8f3i( k2 - k6)( k 2 - f3i}. (28) 

Rank-two potential. We take n = 2 and the PEBS wavefunction in this case is 
given by 

(29) 

where one of the c; is arbitrary and the A; are determined from equation (8). In a 
similar manner, one can get tan 8( k) in the form given by equation (24). 

Case 2 

Here we use condition (22) to determine both the PEBS wavefunction and the 
scattering phase shift at the same energy. We consider the form factor (Yamaguchi 
1954) 

j;( r) = exp( - f3; r), (30) 

where i = 1,2, and g;(ko) i=0 for i = 1,2. The PEBS wavefunction at k 2 k6 is 
(Husain and Suhrabuddin 1980) 
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with 

lfib(ko, r) = N{exp(-J31 r) - exp(-J32 r)J, 

Al = 2131(131 +J32)(k6+J3r)/(J32-J3 I) , 

11.2 = 2132(13 1 +J32)(k6+J3~)/(J3I-J32)' 

The phase shift at the PEBS k2 = k6 is given by 

Case 3 

Here we consider a rank-three potential with the form factor 

fi(r) = exp(-J3; r), i = 1,2 

i = 3, 

543 

(31) 

(32) 

(33) 

(34) 

(35) 

so that g;(ko) :1= 0 for i = 1,2 and [h(ko) = O. From equations (5) and (to) the 
PEBS wavefunction is given by 

with 

2 c. 
1: 2 I 2 = O. 
;=1 ko+J3; 

Moreover, the phase shift at k2 = k6 can be shown to be 

k6 -131 132 ko cot 8( ko) = 
13 1 +132 

+ C3 J33(k6+J3D(k6+J3~) 
CI (k6 + J3~) { (k6 + J3D(J32 + 133)2 - (k5 + J3D(J3 1 + 133)2 J . 

Case 4 

We consider the form factor 

fi(r) = exp(-J3; r), i = 1,2,3, 

so that g;(ko) :1=0 for all i, and the PEBS wavefunction is 

(37) 

(38) 

(39) 
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with 

3 c. 
lJib(ko,r) = 1: 2 I 2 exp(-I3;r), 

;=1 ko+l3; 

3 c. 
1: 2 I 2 = o. 
;=1 ko+l3; 

The phase shift, in this case, is given by 

ko cot 8( ko) = 

(k~ -131132)(k~ + 13~)2(131 -132) + «(j/ cI)(k~ ~ 132133)(k~ + 131)2(133 -131) 

(k~ + 13~)2(l3r -I3D + «(j/ CI)( k~ + 131)2(13~ -I3D 

(40) 

(41) 

(42) 

Hence, we see that cases 2, 3 and 4 have given rise to both a PEBS as well as a 
scattering phase shift. 

2.". 

l..". 
2 

o 

4. Sample Calculations 

2 

x 

Fig. 1. Phase shift 8 
as a function of the 
energy x for case 1, 
with n = 1. 

To get a clearer idea about the behaviour of the phase shift we perform some 
sample calculations for the two cases 1 and 2. 

Case 1 (n = 1). If we put x = k2/l3r (with Xo= k~/I31) then we can write 

~ (x- Xo)216x!/(x- Xo) 
tanu= -----------~--~~~----~----------

(Xo-l)(x+ 1)3 +2(x+ 1)2(Xo+ 1)-8(x- Xo)(x-l) 

To determine Xo we solve equation (27) to get 
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where IL = Pl.1 13i- If we choose IL = 6 we get 41 = 2; the corresponding phase 
shift is shown in Fig. 1. 

Case 2. If we take 132 = 2131, then 

I 

tan 8("0) = 3x8/(41-2). 

Moreover, if A2 = 4A1, we get 41 = 2 and the resulting phase shift is equal to !1T. 

5. Conclusions 

For a certain class of separable potentials [with gi("o) =0] the PEBS can be 
interpreted as a zero-width resonance, while for potentials satisfying the condition 
that not all gi( "0) are zero and linearly dependent, PEBS and scattering can occur 
at the same energy. In addition, we note that for a rank-n potential, we have n+ 1 
equations relating the 2n-1 parameters Ai (i = 1,2, ... , n) and Ci (i = 1,2, ... , n-1) 
and both the PEBS and the scattering phase shift have n - 2 parameters. This result 
is quite clear from the cases studied. From these arguments, it is obvious that the 
interpretation of PEBS as a zero-width resonance does not hold in general and a 
different interpretation is necessary. 
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