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Abstract

We consider manifolds for solar collectors capable of self-draining action as a means of freeze
protection. We study a number of single- and double-header designs, both in the context
of domestic and industrial installations. We present both simple theoretical models and
experimental results for various promising manifold designs, indicating optimal choices for key
design parameters.

1. Introduction

Solar collectors are now used in a wide variety of climatic zones varying from
tropical to near-arctic regions. It is neither practical nor economical to design a single
collector system suitable for such a wide range of conditions, so that the collector
design will depend on the operational environment. One important problem in cold
climates is that of protecting the collector from damage due to the freezing of its heat
extraction fluid. This can be done by adding a suitable anti-freeze chemical to the
fluid. Another method of freeze protection is the complete removal (‘drain-down’)
of the fluid from the collector manifold whenever its temperature rise on passing
through the collector is less than a pre-determined value.

One disadvantage of using anti-freeze in solar collectors heating domestic water
is the increased system complexity required to guarantee purity of potable water.
Also, the exposure of the collector fluid to low ambient temperatures during extended
periods causes substantial heat loss and reduces system efficiency. On the other hand,
the drain-down method must be completely reliable if the system lifetime is not to be
curtailed. Hence, it is desirable to achieve drain-down by passive rather than active
means. Manifolds which achieve this are termed self-draining; they do not require
a heat exchanger and can be significantly more efficient than systems employing
anti-freeze liquid (Dubin and Bloome 1981).

There are numerous ways of designing self-draining manifolds for solar collectors,
but a convenient way of classifying them is into single- and double-header types. In
the former, liquid flows into riser pipes from a header pipe, absorbs thermal energy
and is returned to the same header pipe. In the latter, the heated liquid is collected
by a second header pipe. Here, we discuss designs of both types, concentrating on
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manifolds for evacuated tubular collectors (Kreith and Kreider 1981). However, our
results also have relevance to the design of manifolds for flat-plate collectors.

Important design characteristics which we consider are the distribution and stability
of flow among the various risers of the manifold, head loss around the manifold, and
the efficiency of the self-draining action. We discuss the single- and double-header
manifolds both in the context of a small domestic installation and a medium-scale
industrial system. We present both theoretical models and experimental results for a
number of promising manifold designs. ‘

/

Fig. 1. Self-draining double-header manifold, showing the character-
istic diameters Dy, D,, D, and Dy, the lengths L, and L, and the
inclination angles 6 and ¢.

2. A Double-header Manifold

We consider the self-draining manifold shown schematically in Fig. 1. Water
enters the manifold through an inlet header of internal diameter D,, along which
risers are connected in parallel separated by an interval L,. Water coming from the
inlet header first ascends a pipe of small diameter D, inclined at an angle 0 to the
vertical, before falling under gravity through a pipe of larger diameter D, into the
outlet header. This outlet header has an internal diameter D, and is inclined at an
angle ¢ to the horizontal.

During normal or pumped operation of this manifold, the inlet header and inlet
side of the riser pipes have closed-channel flow, while the outlet portion of each riser
and the outlet header have open-channel flow. When pumping stops, back flow of air
through the outlet header and riser sections enables complete draining under gravity
of the inlet riser sections and the inlet header.

This design is based on commercially developed manifolds for tubular solar
collectors. However, it is commercial practice to use the inner glass walls of the
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evacuated tubes as part of the water containment circuit, while in the manifold of
Fig. 1 water is entirely contained in metal pipes, with a heat transfer fin providing
thermal contact between the collector tubes and the risers.

In previous work (McPhedran et al. 1983) we studied the forced isothermal flow of
water through a parallel connected manifold of the non-self-draining type. We have
adapted the previous formulation to study the isothermal flow through the manifold
of Fig. 1, with the aim of optimizing the various critical design parameters. We will
not discuss the new formulation in detail here, but give the key equations in Appendix
1. The interested reader will find fuller details in McPhedran (1983).

Numerical studies have been made to determine the appropriate values for key
manifold parameters (D,, D}, D;, D, and ¢), both for a small domestic installation
and for an industrial system. The other manifold parameters (L,, L, and 0) are
fixed by the size of the evacuated tubes; the optical design of the solar panel and the
latitude of the installation.

The choice of manifold parameters for the system of Fig. 1 breaks up into three
separate problems. In the first, D; and D, are chosen so that flow in the inlet risers
is sufficiently uniform (i.e. so that the ratio of maximum to minimum riser volume
flow rates is smaller than 2). Also, adequate flow rates must be maintained in each
riser (with the temperature increase in the riser A 7; always being smaller than 5 K).
In the second problem, the diameter D; is chosen to ensure open-channel flow in
each outlet riser. Thirdly, the diameter D, and the inclination angle ¢ are chosen to
ensure open-channel flow in the outlet header.

Flow in the Inlet Section of Risers

Flow characteristics were calculated for a domestic system having 32 risers,
operated at 60°C and with a volume flow rate Qll1 at the entrance to the manifold of
10— m3s—!. Five values were chosen for the internal diameter of the inlet header
D, (stepping from 1 to 5 mm) and D, was varied between 10-9 and 48-4 mm.

For D, equal to 1 or 2 mm, all header diameters considered gave acceptable flow
ratios. For D, equal to 3, 4 and 5 mm the smallest acceptable values of D, are
respectively 17, 23 and 29 mm.

For a fixed value of D,, decreasing the value of D, results in a more uniform
distribution of riser flow. However, if we decrease D, too far then the pump power
required to force water through the risers becomes unacceptably large. Also, with
small values of D, there is an increased risk of riser blockage due to trapped sediment
in the circulating water. For these reasons, we select 3 mm as a reasonable minimum
value for the internal diameter of the inlet riser.

Flow characteristics were also calculated for an industrial system having 160 risers,
operated at 60°C and with Q) equal to 5x10~* m3s~!. For D, equal to 3, 4 and 5
mm the smallest acceptable values of D, are respectively 29, 29 and 42 mm.

Flow in the Outlet Section of Risers

Having obtained appropriate values for the diameters D; and D,, we consider
the problem of choosing the diameter D] of the outlet section of the risers. The
diameter is required to be large enough so that water entering the outlet section will
be carried away sufficiently quickly by gravity to ensure open-channel flow. A simple
argument suffices for a minimum value of Dy, provided that surface tension effects
are negligible.
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Let us calculate the distance s water would have to fall from rest in a pipe of
diameter D/ before the fluid flow rate reached a value Q. (assuming the pipe to be
completely filled by falling water). At greater distances down the pipe, it would only
be partially filled by the falling water. From elementary dynamics we have

v? = (4Q/mD2)? = 2gs, )

where g is the acceleration due to gravity. We ensure open-channel flow by requiring
s to be only a small fraction of the diameter D/ (i.e. s = D//F). Then from (1) we

get 2
4 5
D;=( Q'l) Ft. @
7(29)?
Experiments have been performed to determine suitable values for the factor F.
This increases with decreasing pipe diameter (as surface tension effects increase the

tendency to closed-channel flow). For pipes of internal diameter 11 mm, F is around
5, while for D] equal to 7 mm, F is around 8.

Flow in the Outlet Header

Finally, we consider the choice of the internal diameter D, and pitch angle ¢ of
the outlet header. Let A denote the flow area, which is a function of the distance /
down the outlet header. The flow starts at / = 0 and when / reaches the total header
length [}, it has attained the volume flow rate Q,. An adequate diameter D, will be
such that for all points in the outlet header

A< 17Dl s, €)

1
3
Here S is the safety factor, for which we will adopt the value 0-75. At least 25%
of the outlet header area is then available for air flow to or from the risers.

We have used a continuous model for flow in the outlet header, based on
conservation of momentum rather than mechanical energy at riser/header junctions.
The analysis given in McPhedran (1983) leads to the result

D, > (%%_)5[(3 + %)/291}, sin ¢]z. @

Here u and p denote respectively the viscosity and density of water.

As a sample of the use of (4), for a domestic manifold with 32 risers operated
at 60°C with @y = 7x107° m®s~! and ¢ = 3.3°, we find that D, must not be
smaller than 1.69x107? m. For an industrial manifold with 160 risers and oy =
3-5x107* m*s~! we find from (4) a lower bound on D, of 2-63x10~2 m. These
diameters agree well with those obtained as a result of field tests on similar manifolds
(M. Platt, personal communication 1983).

Practical Operation of the Manifold

In order to test flow balancing and drain-back characteristics of the manifold of
Fig. 1, a set of risers was constructed in clear plastic tubing, the risers being linked
by copper header pipes. At low flow rates this manifold operated in a satisfactory
fashion, with equal flow in all risers and open-channel flow in the outlet section of
each. However, once a riser flow rate exceeded the value Q, obtained from (2), then
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all air was excluded from that riser, reducing head loss in it and further increasing
Q.. This process continued until one riser operated with closed-channel flow, and
neighbouring risers were completely starved of flow. Once the manifold was in this
undesirable condition, it was only possible to restore flow balance by either draining
it completely, or by increasing the flow rate to unacceptably high values.

This potential instability of the manifold places tight tolerances on the uniformity
of its construction, and on the total flow rate QL, if it is used close to its design limits.
Careful design of the recirculating system is then necessary to avoid transient effects
on re-filling of the manifold, which may force it into the closed-channel flow-starved
configuration described above.

When closed-channel flow occurs in a riser, the pressure at the junction point
between the inlet and outlet sections falls below the atmospheric value. Hence, it is
possible to prevent the occurrence of this condition by making a small hole at the
top of the outlet section of the riser. We have verified experimentally that such holes
prevent the onset of closed-channel flow, irrespective of the riser flow rate.

The drain-back characteristics of the manifold of Fig. 1 were seen experimentally
to be entirely adequate. The speed of drain-back was improved by the insertion of a
hole in each outlet riser.

i 5 o | g I ey
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Fig. 2. Self-draining single-header manifold, where the section shown has its risers
tilted along their length at an angle 6 to the vertical. Flow in the header is from
left to right. Shown are the heads A; and #h,, the pressures Py, P; and P, and the
pressure differences A Py and A Ps.

3. Single-header Manifolds

Here we consider manifolds in which all risers take fluid from and return fluid to
a single-header pipe. In this configuration, identical risers have identical flow rates,
irrespective of their location along the header pipe. A balanced, stable flow pattern
is thus a consequence of this design. Also, if the risers are placed above a slightly
inclined header pipe, drain-back will occur.
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We consider the manifold of Fig. 2, which is being refilled after drain-back. Flow
will only start in a riser when the liquid in its inlet arm has reached the top of the riser,
a height L cos 6 above the header. Once this level has been achieved, closed-channel
flow will be initiated in the riser. From Fig. 2, we see that if the pressure difference
A P; between the ends of the riser exceeds pgL, cos 8 then flow will occur in that riser.

~ A
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Fig. 3. Five designs for
single-header self-draining manifolds
relying on flow effects to generate
the refilling heads. Designs

(b) and (e) generate satisfactory
static riser heads (see Table 3).

For (c¢) the penetration distance

x of the outlet riser is shown.
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The pressure difference along the header pipe required to refill all N risers is NA Py.
In order to minimize the size and power requirements on the recirculating pump,
we must design our manifold in order to maximize its pressure-advantage ratio
B = APy/AP,.

We now consider a number of designs (Fig. 3) for single-header self-draining
manifolds. These all use pressure differences associated with liquid flow in a changing
geometry in order to stimulate flow in the risers. As we shall see, it is important
to distinguish two types of pressure difference. The first we call reversible, which is
associated with the conversion of kinetic energy into momentum flow, and vice versa.
The second is irreversible, and is associated with the conversion of kinetic energy
into heat. Good manifold designs attain substantial values of 8 by maximizing the
reversible contribution to pressure differences.

We present a theoretical analysis of the flow properties of the designs in Figs 3a
and 3b. The analysis is intended as a guideline to suitable choices of the manifold
parameters, rather than constituting a rigorous formulation of the flow problem. We
base the analysis on empirical data from the fluid engineering literature (Hansen
1967; Swanson 1970; Miller 1978; Ward-Smith 1980), rather than attempting exact
calculations which would be mathematically abstruse and probably uninformative on
the practical plane. Our formalism is sufficiently simple to be readily understood and,
as we shall see, sufficiently realistic to be valuable in practical manifold design.

We give experimental results for all the designs shown in Fig. 3. While these
designs do not exhaust all the possibilities for efficient single-header manifolds, they
have all been chosen on the basis of ease of manufacture.

Theoretical Analysis of a Single-header Manifold

We consider then the manifold shown in Fig. 4 in which the flow speeds (7, to 7;
and 7,), lengths (L, to Ly) and internal pipe areas (4, to 4; and A4,) are introduced.
The flow problem for this manifold may be reduced to one of determining 7; and
T,, given T,. Key equations for the solution of this flow problem are presented in
Appendix 2; here we only outline the theoretical method and its principal results.

The pressure difference P,— P; between x = L; and Ly may be obtained in two
ways. The first involves fluid passing through the riser, and gives P;— F as a
monotonically increasing function of 7. The second involves fluid passing through
the header and gives P;— F; as a monotonically increasing function of 7;. The
equation for continuity of flow links 7; and 7, to 7,. A bisection method may be used
to find the value of 7, which makes the two expressions for P;— F; equal. Given 7,
flow rates and pressure drops everywhere along the manifold can be readily calculated.
The most important pressure drops are AP, = Py— P, and AP, = P,— P;, which we
will specify by giving the associated head losses 4, and A,.

As well as calculating head differences with flow in the risers, it is important to
calculate them when the manifold is being refilled, so that o, is zero. We denote the
head losses from x = L, to Ly, and from x = L; to L¢ in this situation by A, and
hg respectively. Formulae for 4, and A have been given by McPhedran (1983).

Both ratios A./h and hy/h, could be adopted as figures of merit for manifold
designs. However, our theoretical and experimental studies of the manifold of Fig.
4 have shown these two ratios to be approximately equal, so that they can be used
interchangeably.
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Fig. 4. A section of a single-header manifold showing the definition of the
lengths L; to Lg, the internal cross-sectional areas 4;, 4,, A3 and A4, and
the flow speeds T to 75 and ;.

We consider flow in a manifold having quite small changes in diameter, such as
might be readily introduced by manufacturing errors. In Fig. 4, we take D,/ D, and
D;/ D, to be respectively 1-05 and 0-95. At a suitable total flow rate for the domestic
system (Qlli = 4 Lmin~!) the riser flow rate is too small (the temperature increase
AT, for 40 W thermal input into the circulating fluid per riser being 72°C). However,
at a suitable total flow rate for the industrial system (20 L min—1), the riser flow rate
is sufficiently large (A 7, being 3°C). The corresponding value of 4 for the industrial
system is only 5 cm, whereas a head of 1.03 m would be required to refill a riser 1-45
m long inclined at 45° to the vertical. This design illustrates that the achievement
of static heads large enough to permit filling of the risers is a much more stringent
requirement than obtaining adequate flow rates in the filled risers. It also enables us
to rule out the design of Fig. 3a for a self-draining manifold.

For purposes of generality, we have included two diffusers (i.e. diameter increases)
in the manifolds of Figs 3b and 4. However, the diffuser lying between x = L;
and L, in Fig. 4 makes effectively no contribution to A,, while it does increase 4,.
Our numerical studies have shown that this diffuser only serves to worsen manifold
performance.

Theory versus Experiment for a Single-header Manifold

In Fig. 5a we compare theoretical and experimental values of 4 and 4, the
manifold being that of Figs 3b and 4 and having D, = D, = 1-71 cmand D; = 0-64
cm. The calculated and measured values for 4, agree very well, but the theoretical
estimates of A, are significantly smaller when compared with experiment. This
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indicates that the friction factors f and geometrical loss factors K and K, discussed
in Appendix 2 are probably underestimates.

The system of Fig. 5a has an appropriate design for a domestic manifold. In order
to generate the head of 1-03 m required to refill risers after drain-back the required
total flow rate is 8 Lmin—!. Other performance details of this manifold are given in
Table 1.
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Fig. 5. Riser-static heads are shown as a function of volume flow rate for a single-header
manifold with D; = D, = 1.71 cm: (a) Dy = 0-64 cm and (b) D; = 0-80 cm. The solid
curves and filled squares show theoretical and measured values of the riser head hg, while the
dashed curves and unfilled squares show theoretical and measured values of total head loss A,.

Table 1. Comparison of single- and double-header domestic and industrial systems
Here DDH denotes a domestic double-header manifold with D, = 3 mm, D; =7 mm,
D, = 1.70cm and D, = 1-69 cm. IDH denotes an industrial double-header manifold with D, =
3mm, D; =7 mm, D; = 2.30 cm and D, = 2.63 cm. The domestic single-header manifold
(DSH) has D; = D, = 1-71 cm, D3 =0-635 cm and D, = 4.4 mm. The industrial
single-header (ISH) manifold has Dy = D, = 1-71 cm, D, = 4.4mmand D3 =~ 1-1cm

System Flow rate A TmD AT, Power delivered Refilling
(Lmin—1) C) (@) by pump (W) head (m)
DDH 3.6 5.2 <5.5 0-65 1-10
DSH 4B 1.7 4.7 3.35 5.12
8C 26-4 20.2
IDH 18 5.2 <6-6 3.41 1-16
ISHA 20 4.7 1.0 105 32.0
28 227 49.6

A The industrial single-header values are experimental; the other values are calculated.
B Operation. € Refilling. P AT m is the temperature rise across the manifold.

In Figs 5b and 6 we compare theoretical and experimental values of riser-static
head for manifolds with D; equal to 8 and 10 mm respectively. In the former
case, agreement between theory and experiment is good, both for A, and A, (with
the theoretical value being slightly too low for the total head), while in the latter
the theoretical curves for D5 equal to 10-3 mm lie between the experimental head
values for D; equal to 10 and 12 mm. These measurements demonstrate clearly the
sensitivity of manifold pressure to small changes in D;. We note also that the actual
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profile of the pipe construction varies between theory and experiment. The technique
used to form the constriction was to crimp down the copper tubing around a steel
rod, giving a pipe profile only approximately like the idealized form of Fig. 4.

Flow rate (L min—1)

Fig. 6. As for Fig. 5, but with the theoretical curves for D; = 1.03
cm, and with experimental points for D3 = 1.0 cm (squares) and for
D3 = 1-2 cm (circles).

Table 2. Theoretical (t) and experimental (e) flow rates
for refilling and pressure-advantage factors 3 as a function
of D3, with D; = 17 mm

D, Starting flow B8

(mm) rate (L min —1)

6-4 (t) 8.1 2-11
6 (e) 7-9 1-6
7-9 () 12.5 2.74
8 (e) 12-6 2.0
10 (e) 18.3 1-8
10-3 (v) 22-4 4.18
12 (e) 276 3-1
12 (e) 22.5 3.6
10 (e) 17.2 2.0

All theoretical and experimental curves of head loss against flow rate are roughly
parabolic, so that the pressure-advantage ratio B is effectively independent of flow
rate. In Table 2 we show how 8 varies with D;: both theoretically and experimentally,
as Dj increases (i.e. as the constriction becomes more gradual), 8 increases. We note
the low value of 8 for the 10 mm experimental manifold, which is probably associated
with imperfections in the construction (e.g. increased wall roughness introduced
during the crimping process). Of course, the starting flow rate associated with A
reaching 1-03 m increases with D;. The trade-off between larger starting flow rates
and reduced manifold head loss would be decided by practical considerations (such
as the characteristics of available pumps).
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Experimental Studies of Alternative Single-header Manifolds

Having seen that the manifold of Fig. 3 b can provide satisfactory flow characteristics,
let us see whether these can also be provided by other designs more easily constructed.
The simplest possible design (Fig. 3@) has already been dismissed, in that it provides
riser heads at practicable flow rates which are too small to permit self-draining action.
The design of Fig. 3¢ shares the advantage of a uniform header pipe diameter with the
design of Fig. 3a. It was constructed and tested to determine whether the difference
in riser penetration distance x gave an enhanced riser head. As Table 3 shows, the
riser head increases with x but remains well below the values for the manifold of Fig.
3b. Note that the riser head and riser volume flow rate for the manifold of Fig. 3¢
are roughly independent of the direction of the header flow stream.

Table 3. Static riser heads for various manifolds (D; = 17 mm) for two flow rates

Manifold Head (m)
type Qn = 16-6 Lmin—! O, = 8-8 Lmin !
Fig. 3b D3 = 12 mm 0-40 0-13
=10 0-90 0.26
=38 Flowing 0-.55
=6 Flowing Flowing
Fig. 3¢ x = 10 mm 0.-17 0.04
=15 0.27 0-06
Fig. 3d 0.29 0.04
Fig. 3e D3 = 12 mm 0.67 0-33
=10 1.00 0-46

The design of Fig. 3d generates similar values of riser head to those of Fig.
3¢, but would be more difficult to construct. For both types of manifold, the
pressure-advantage factors are close to unity.

Hybrid designs such as that of Fig. 3e combine header constrictions with
modifications of the riser geometry. In this way, riser heads and 8 values may both
be increased. The largest B value we have measured of 3-6 was for a manifold of the
type Fig. 3e (see Table 2).

4. Conclusions

We have considered two different types of self-draining manifold for solar collectors.
We have presented simple theoretical models for both types of manifold and shown
them to be in general agreement with experimental results. As Table 1 shows, the
parallel geometry of the double-header manifold permits smaller refilling heads and
operating power losses than the series geometry of the single-header manifold. The
latter design offers the compensating advantages of lower materials costs and a priori
flow balancing in the sense discussed above. Both designs are practical alternatives as
self-draining manifolds, with the choice between them depending on factors specific
to the site.
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Appendix 1. Flow Properties of the Double-header Manifold

We consider fluid entering the manifold of Fig. 1 in the header of internal diameter
D,. We are given the initial header flow rate Q,ll, so the flow speed v%l before the
junction with riser 1 can be found from

v = 4Qi/7D?. (A1)

If we assume a value for the temperature rise AT, of fluid in its passage between
points (i) and (ii) of Fig. 1, we can find the flow speed v! in riser 1 from

vl = 4P /mpCy, D*AT,, (A2)

where Py is the flow of thermal energy per unit time in the fluid between points (i)
and (i), p is its density and Cj, its specific heat. The header flow speed V] after the
junction with riser 1 is then

Vi = vl —v! D*/D?. (A3)

Next, we calculate the fluid pressure P, and the dynamic pressure head #; at the
point (i). To do this, we assume that the pressure P, at the point (ii) is equal to the
atmospheric pressure P, and relate P, and P, as given by McPhedran ez al. (1983):

P/p = B/p +1(0)(1 + Crp +f; L/ D) + gL, cos 6, )

where we assume laminar riser flow to calculate f, and take the flow-independent
estimate of 0.40 for Cyp. The dynamic pressure head 2, is

Z, = (P—P)/pg — L, cos 0 (A5)
or
1+ Crp | 320l
— 152 D T 1’ A6
52')1 (vr) 2g + PgD% Uy ‘ ( )

with u denoting the fluid viscosity.
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Having calculated 2, v}, v} and V] for riser 1, we proceed with the corresponding
quantities for riser 2. The pressure difference #,— 2| receives a contribution
from frictional losses associated with the header flow (which is assumed completely
turbulent), and a second contribution which is a regain term associated with the
decrease in header flow speed from vy to V}:

fL(VY?

Z2= 71— 29D
1

+3{() = (V) (A7)

where f is the header friction factor, for which we use the estimate 0-055. Let us
define the two constants for the manifold :

a = (14 Crp)/2g, (A8)
B = 32uL/pgD?. (A9)

Using the analogue of (A6) for riser 2, we find that
¥ = {—B+(B*+4a?,)1}/2a. (A10)

We continue this process by calculating #5, v}, v3 and V3, stepping along the
header until we:

(a) reach the end of the header with a flow speed which differs significantly from
zero—this indicates our estimate for A T} is too large;

(b) fail to reach the end of the header before our flow speed becomes negative—this
indicates we should increase A T}; or

(c) we reach the end of the header with a flow speed essentially equal to zero—this
indicates the iteration may be terminated, with the calculation of flow properties
being complete.

Appendix 2. Flow Properties of a Single-header Manifold

The flow properties of the manifold shown in Fig. 4 are obtained by equating two
expressions for the pressure difference P;— F; between x = L; and Lg. The first of
these is obtained by going along the header and, written in terms of known 7, and
unknown 7; flow speeds, this is

AP = %p(TJ% +2T,7%, T3 + T,73), (A1D)

where, as a consequence of arguments given by McPhedran (1983), the coefficients
T,, T, and T; are

Ty = 2y, —1+(1=2y,)(Dy/ Dy)*, (A12)

T, = yy(Dy/ D)) —y,, (A13)
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L
Ty=f—

4
— D —
L +( b, ) ( Pt
D, D, D,
Expressions for the flow coefficients v, and vy,, friction coefficients f; and f, and the

pressure correction coefficient Ky K- have been given by McPhedran (1983).
The expression for P;— F; based on riser flow is

+ Ksc KC) . (A14)

AP, = 1pH 7, (A15)

r
where
H =14+Cp+Crc+K. +f,L/D,=M+f L/D,, (A16)

and where the quantity M is not strongly dependent on the flow speed T,. The
equation for continuity of flow is

T, = (3,—7;) D/ D?. (A17)
Equating (A11) and (A15) and using (A17), we obtain an equation linking 7; and

D,, which can be solved by a bisection method. Given 73, it is a straightforward
matter to evaluate AP, and A P, (McPhedran 1983).
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