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Abstract 

Aust. J. Phys., 1985,38,687-704 

Calculations ofthe relative magnitudes of the four secondary waves produced when a magneto ionic 
wave encounters an electron density discontinuity within an anisotropic plasma are presented. 
We identify the different conditions under which each of the secondary waves is the dominant 
mode, and determine some general properties of the reflection process. 

1. Introduction 

In recent years, little attention has been paid to the effect of sharp electron density 
gradients on the propagation of waves within a plasma. Most of the literature on 
this subject comes from the 1950's and deals with one specific application, that of 
radio waves reflected from the ionosphere. Bremmer (1949) derived the reflection and 
transmission coefficients for linearly polarized radio waves striking a sharp boundary 
between free space and a homogeneous, isotropic ionosphere. This model neglected 
the Earth's magnetic field, which was first incorporated by Budden (1951) and later 
by Wait (1957) and Yabroff (1957). The inclusion of an external magnetic field 
leads to relatively complicated dispersion relations for waves within the ionosphere, 
and analytic expressions for the reflection and transmission coefficients were obtained 
by both Budden and Wait only in a special case-specifically the quasi-longitudinal 
approximation (Budden 1951). Yabroff's description of the phase and magnitude of 
the reflection and transmission coefficients of radio waves incident upon a sharply 
bounded ionosphere Was exact, but was based on numerical results rather than an 
analysis of explicit expressions for the reflection coefficients. 

Previous calculations of reflection of radio waves from density discontinuities have 
the advantage that the incident wave is a plane wave propagating in free space and 
only the transmitted waves are governed by the more complicated plasma dispersion 
relation. In the present paper, we relax this restriction and consider the general case 
of an anisotropic plasma comprising two homogeneous regions, each with different 
electron densities, and a sharp boundary between the regions. The relative magnitudes 
of the secondary waves generated when a magnetoionic wave encounters such a 
boundary are calculated, and we determine where significant transfer of energy occurs 
from the incident wave mode into other modes. 
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The generation of a weak ordinary mode from an incident extraordinary mode is 
of particular interest. Auroral kilometric radiation, AKR (Gurnett 1974), which is 
produced predominantly in the x mode also has a weak 0 mode component (Benson 
1984). Reflection of x mode waves from steep density gradients within the AKR 
generation region is a possible source of the parasitic 0 mode. This application is the 
primary motivation for the present paper; a detailed discussion of it will be presented 
elsewhere. 

The theory of magnetoionic waves is summarized in Section 2, and a brief discussion 
of the boundary conditions on the wave fields which apply at a sharp density gradient 
is also given. We comment on the quantity chosen to represent the energy in a 
plasma wave, and write down the expressions to be included in a numerical code for 
calculating the reflected and transmitted energy. 

In Section 3 we consider the likely effects of the physical parameters of the 
plasma (e.g. electron density, magnetic field strength and direction) and the wave (e.g. 
frequency, angle of propagation) on the reflection process, and discuss limitations 
which are imposed on the analysis by the large number of variables in the problem. 
We indicate how the results of numerical calculations may be presented to yield the 
maximum amount of information. 

In Section 4 the results for different parameter regions are presented. These apply 
when the incident wave is in the extraordinary mode-results for the ordinary mode 
will be given in a later paper. 

2. Dispersion Relations and Boundary Conditions 

The magnetoionic theory describes cold plasma waves in a homogeneous, anisotropic 
medium, where the anisotropy is produced by an external magnetic field. The 
dispersion relation for these waves (known as the Appleton-Hartree formula) was 
derived by Hartree (1931) and Appleton (1932). Booker (1936) extended this work 
to include the case of a radio wave obliquely (rather than vertically) incident upon a 
horizontally stratified ionosphere. 

In the present paper we follow the derivation of the magnetoionic dispersion relation 
given by Budden (1961). Subject to slight changes in notation, the susceptibility matrix 
in equation (3.24) of Budden (1961) may be substituted into Maxwell's equations to 
give the following matrix equation for the electric field in the plasma: 

where 

Mil M12 M13 

M21 M22 M23 

M31 M32 M33 

Mll = (1-n2 cos2 fJ)U(U2- y2)_X(U2 -Ii y2), 

M12 = X( -i 13 Y U + II lz y2), 

M21 = XCi 13 Y U + II lz y2), 

M13 = n2 sin fJ cos fJ U( U2 - y2) - X( -i 12 Y U -II 13 y2), 

(1) 
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M31 = n2 sin 0 cos 0 U(U2_ y2) -X(i 12 YU -/1/3 y2), 

~2 = (1- n2) U( U 2_ y2) -X( U 2 _/~ y2), 

M 23 = X(-i/1 YU+/2 / 3 y2), 

M32 = X(i II Y U + ~ 13 y2), 

M33 = (1 - n2 sin2 0) U( U 2 - y2)_X( U 2 _/~ y2). 
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Here X = w~/w2, Y = f1e/w, U = 1 -i v/w where v is the collision frequency 
(assumed small), and the refractive index n is defined as I kl c/w. The coordinate 
system used in (1) is chosen as follows. If Ii is the unit vector normal to the surface 
separating two media of different densities, then let the z axis be in the direction 
of Ii and let the x and y axes be in the plane of the surface, with the wavevectors 
of the plasma waves lying in the x-z plane. The direction cosines of the external 
magnetic field in this coordinate system are II' 12 and 13, and 0 is the angle between 
the wavevector and the z axis (see Fig. 1). 

to. 
n 

z 
(a) II = cos<f> sinljl 

12 = sin<f> sinljl 

13 = cosljl 

z 
(b) 

----,l~--- x 

Fig.1. Diagrams of (a) the external magnetic field in the coordinate system chosen, and (b) 
the incident, transmitted and reflected wavevectors. 

Evaluating the determinant of the 3 x 3 matrix in (1) and setting it equal to zero 
gives the dispersion relation 

n4 { U( U 2 - y2 - U X) + X y2( 13 cos 0 + II sin 0)2} 

- n2{2( U -X)( U 2_ y2_ U X)-X y2+X y 2U3 cos 0 + II sin 0)2} 

+(U-X){(U-X)2- y2) = o. (2) 

The solutions of (2) have two branches, the 0 and whistler modes, and the x and z 
modes [see Melrose (1980), § 12.1 ]. We are only interested in the higher frequency 
branches, i.e. the 0, x and z modes. If we define q = n cos 0, the normal component 
of the refractive index, and r = n sin 0, which.is simply Snell's constant, (2) becomes 

l{ U(U2_ y2_ UX)+Xy2/~} +l2Xy2/1 / 3 r 

+q2{Xy2ui +r2 +/~ _/~ r2)_2(U2_ y2_ UX)(U-X- Ur2)} 

-q2Xy2/ 1 / 3 r(1-r2)+{(U-X)(U-X- Ur2)2 

- y2(1-r2)(U_X_ Ur2) -Xy2/i r2(1_r2)} = 0, (3) 
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which was first introduced by Booker (1936) and is known as the Booker quartic. 
We may solve either (2) or (3) to find the refractive indices of the magnetoionic 

waves. Equation (2) is a function of wave angle whereas solutions of (3) depend 
on Snell's constant. In an inhomogeneous medium r, rather than the wave angle, 
is constant. Hence we use (3) to find the refractive indices [n = (q2+ r2)!] of the 
secondary waves produced at the density discontinuity. 

Equation (3) has four solutions; two which travel in the positive z direction and 
are referred to as upgoing waves, and two which travel in the negative z direction 
and are referred to as down going waves. If U has a small imaginary part (implying 
that the waves are weakly collision ally damped), then the solutions of (3) are all 
complex; two have positive imaginary parts and two have negative imaginary parts. 
By hypothesis the wave fields are of the form 

F = Fo exp[ -iw(rx+qz-ct)/cJ, (4) 

so a wave with negative imaginary part of q is only damped if it travels in the positive 
z direction. The appropriate definition of an up going wave is therefore one with 
negative imaginary part of q and a downgoing wave has positive imaginary part of q. 

The x, y and z components of the electric field are related by the matrix equation 
(1), and the magnetic field is given in terms of the electric field by Maxwell's equations. 
In terms of the x component of the electric field one finds 

-i/2(I-X -/~)-/~qr Y -1)/3 Y(1- n2)_ qr[ (1- y2)(1- n2)_ XJI X Y' 
(5) 

Ez ip)(1-X- q2)+/3 qrJ +/2 yt I3(1-q2)-/)qrJ 

Ex = pz = -iP3(I-X-r2)+/) qrJ +/2 Yp)(I-r2)-/3 qrJ' 
(6) 

(7a, b, c) 

where we have dropped the terms due to collisional damping, i.e. we have set U = 1. 
The field ratios in (5), (6) and (7) may still be complex numbers and it is necessary to 
take the complex nature of the wave fields into account when the energy and energy 
flux in the wave are calculated. 

Boundary Conditions 

Now let us consider what happens when a cold plasma wave travelling in a medium 
with plasma frequency wp) strikes a density discontinuity at an angle e to the normal. 
A magnetized plasma supports four different wave modes. Therefore one incident 
wave may generate two reflected and two transmitted waves (see Fig. 1 b). The electric 
and magnetic fields of all five waves need to be included in the boundary conditions, 
which are obtained in the usual way (Jackson 1962). Assuming /-t has its free space 
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value J.to on both sides of the boundary, we find that the tangential components of E 
and B must be continuous across the boundary. If we denote the incident wave by the 
subscript 'in', the two reflected waves by subscripts 'rI' and 'r2', and the transmitted 
waves by subscripts 't I' and 't2', the boundary conditions take the form of the matrix 
equation: 

-1 -1 Exrl 

-Pyrl -Pyr2 Pyu P yt2 Exr2 

qrl Pyrl qr2 P yr2 - qu Pyu - qt2P yt2 Ext! 

- qrl + rpzrl - qr2+ rpzr2 qu- rpzt! qt2- rpzt2 Ext2 

Pyin 
(8) 

-qinPyin 

qin- rpzin 

This must be solved to determine the four ratios Exr!! E xin' Exr2! E xin' Ext!! E xin and 
E xt2! E xin of the x components of the secondary electric fields with respect to the 
incident field. With (5), (6) and (7), and the solutions of (2) or (3), this completely 
specifies the four waves generated at the density discontinuity. 

Validity of the' Sharp' Boundary Assumption 

An infinite density gradient is of course unphysical, so we should determine how 
steep a density gradient must be for the boundary conditions assumed above to 
be valid. Since this is only an order of magnitUde calculation, several simplifying 
assumptions are made: 

(1) The incident wavevector is normal to the boundary. 
(2) The external magnetic field lies along the boundary and in the plane of 

incidence. 

(3) The electron density within the transition region varies linearly with distance 
and the electric fields are functions of z only. 

The first two assumptions imply that one mode has an electric field lying in 
the plane of incidence while the other mode's electric field is perpendicular to the 
plane of incidence; hence the equations describing the variation of the electric fields 
with distance separate into two independent second order differential equations. In 
the uniform plasma on either side of the boundary the solutions of these equations 
are plane waves, while within the boundary series solutions may be found for the 
differential equations. By matching the plane waves to the series solutions at both 
edges of the transition region, expressions for the electric fields on either side of the 
boundary may be obtained. Details of the calculation of these fields are given in the 
Appendix. 

In the limit of an infinitely thin transition region the tangential electric fields 
on either side of the boundary are equal. Let us assume that we may make this 
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approximation if the electric fields (AI2a) and (AI2b) in the Appendix differ by no 
more than 10%, i.e. 

1 E 1 (incident region) - 1 E 1 (final region) < O· liE 1 (incident region) . (9) 

Then from the Appendix the maximum boundary width d satisfies the condition 

(10) 

Hence the boundary is of the order of a wavelength "'2 thick. 

Estimation of Wave Energy 

Finally, we must determine the most appropriate way to estimate the relative 
amount of energy in plasma waves. One simple choice would be the energy in the 
electric field 1 E 12. Another possibility is the component of the Poynting vector 
normal to the boundary Sz. This has the advantage that it is always zero when the 
wave is evanescent and Sz calculated at the boundary gives an estimate of the energy 
flux a distant observer would see. However, for an evanescent wave 1 E 12 is not 
zero at the boundary and must be calculated at large distances from the boundary. 
Furthermore, Sz must be continuous across the boundary and this condition may be 
used to check the accuracy of numerical calculations. For these reasons Sz rather 
than 1 E 12 is used as a measure of the energy in each wave and henceforth the 
term 'energy' refers to the energy flux normal to the boundary. In fact numerical 
calculations indicate that, for propagating waves, Sz is roughly proportional to 1 E 12. 

By using the definition of the Poynting vector for complex wave fields, 

S = Re(E) X Re(H) , (11) 

the time-averaged component of S normal to the boundary for anyone wave is given 
by 

(12) 

where q is one of the solutions of (3), Py and pz are given by (5) and (6), r is Snell's 
constant, and Ex is found by solving (8). 

The fraction of energy going into each wave is taken to be S/ Szin and it is this 
quantity (referred to simply as Sz)' evaluated for each of the two reflected and two 
transmitted waves, which we study. The refractive indices of the transmitted waves 
may be complex even though the incident wave has a real refractive index. Let us 
consider the solution of (3) for the special case of the magnetic field in the x-y plane 
(and U = 1): 

q2 = I-X _ r2_X y2(1 + Ii r2)/2(I-X _ y2) 

±x Ylli r2(I-X) + i y2(1 -Ii r2)2 J ~/(1-X - y2). (13) 

Snell's constant must be real for both incident and transmitted waves, so the values 
of q2 for the transmitted waves are complex conjugates when the expression within 
the square root in (13) is negative, i.e. 
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(14) 

where wp2 refers to the plasma frequency in the second medium, and r is a function 
of fle' W, II and wpl' Since tanO= rlq, these waves propagate at complex angles. 
However, Sz for each wave is zero and there is no net energy flux across the boundary 
in this case. 

3. Presentation of Data 

There are two main problems associated with describing the waves that are 
transmitted through or reflected from a density discontinuity within a plasma. The 
first arises from the complicated forms not only of the dispersion relations but also 
of the expressions for the reflection coefficients. In general, it is not possible to 
analytically determine the relative amounts of energy in the secondary waves produced 
by the reflection, and so the problem must be studied numerically. However, this is 
also difficult because there are so many physical parameters on which the reflection 
and transmission coefficients depend that any numerical analysis cannot completely 
determine the effect on the coefficients as these parameters vary. 

The results we obtain are in the form of graphs of the z component of the Poynting 
vector against one of the variable parameters. The possible physical variables in this 
problem are W, wpl' w p2 ' fle' II' 12, 13' sinOin and the type of incident mode which 
may be 0 or x. In this paper we concentrate on the case of an incident x mode. 

In most physical applications of this reflection theory one would expect the external 
magnetic field to be in the plane of the boundary between the two different density 
regions. This corresponds to 13 = 0, and with this assumption only one parameter 
II is needed to describe the direction of the magnetic field. The choice 13 = 0 also 
has the advantage that the quartic equation for q reduces to a quadratic in q2 which 
may be solved simply. 

We have chosen to normalize all frequencies with respect to wpl so there are five 
quantities to be considered in numerical calculations: WIWpl' wp2lwpl' flelwpl' II 
and sinOin' 

The variation of Sz with wi wpl is much more complicated than its variation with 
any of the other parameters (which is not surprising when the behaviour of the 
refractive index as a function of frequency is considered), and since this can only be 
described adequately by taking a large number of examples, we have chosen to plot 
Sz as a continuous function of wlwpl' The effect of varying the other parameters 
must then be determined by comparing many different graphs of Sz against wlw pl ' 

where one of the other parameters varies from graph to graph and the remaining 
quantities stay the same. If the trends caused by varying the other parameters are 
smooth enough then this analysis gives an adequate indication of those trends. 

Even after setting 13 = 0 we are still left with five free parameters, three of which 
are between 0 and 00, and the remaining two are between - 1 and 1. After considering 
what parameter ranges are likely to have specific applications and what ranges are 
logistically feasible to study, the following choices were made: 

1 < wlwpi < 20. The 0 mode cut-off occurs at W = wpl and we are only 
interested in magnetoionic modes at frequencies above this. For large frequencies the 
refractive indices for the different modes approach limiting values and the four Sz 
ratios also approach asymptotic limits, so it is not necessary to take wlwpi much 
larger than 20. Often we only consider wlwpi < 10. However, for this to be an 
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adequate representation of frequency space, the upper limits of both wp2lwp) and 
fle1wpl must also be less than 20. 

1 < Wp21wpl < 10. When w p2 is less than wpl the energy in the incident wave 
is transferred almost completely to the transmitted wave in the same mode. The 
reflection and transmission coefficients only begin to show interesting behaviour for 
wp2lwp) > 1 (i.e. when the second medium has a higher electron density than the 
first medium). The upper limit of the plasma frequency ratio has been chosen to be 
less than 20, but still corresponds to a density jump of two orders of magnitude. 

0< fle1wpi <1. In most physical situations the magnetic field is relatively weak 
and fle1wp is less than I in both media. This case will be considered first. 

I < fle1wp) < 10. This limit occurs in at least one important example-the 
generation of AKR. An upper limit of 10, which seems to be fairly typical of the 
AKR generation region, has been chosen. 

o < I) < 1. When 13 equals zero, the reflection and transmission coefficients are 
symmetric in both I) and 12 , so it is only necessary to consider the magnetic field 
lying in one quadrant of the x-y plane; I) = 0 corresponds to the magnetic field 
perpendicular to the plane of incidence, and II = 1 corresponds to the magnetic field 
in the plane of incidence. 

o < sin () in < 1. Again because of the symmetry of the problem, only angles of 
incidence between 00 and 900 need be considered. 

4. Results 

Some of the results in this section are illustrated by graphs of Sz against frequency. 
The examples chosen are all for the case fle1wpl > 1, and in a later paper these results 
will be used to study the polarization of AKR. The graphs should be interpreted as 
follows. The upper graphs in each figure give the fraction of energy going into the 
two reflected modes while the lower graphs show the transmitted modes. The 0 mode 
is represented by a dashed curve and the x mode by a solid curve. Each pair of upper 
and lower graphs in Figs 4-7 forms part of a series of graphs, and one of the four 
parameters Wp2lwpl' fle1wp), II or sin ()in varies for each pair of graphs in the series, 
while the remaining three parameters are the same. Before presenting detailed results 
we discuss several features common to all the graphs of Sz obtained. 

Our choice of 13 = 0 for the external magnetic field implies that the regions where 
the normal energy flux of a mode is zero are regions where the normal component 
q of the refractive index is imaginary. (We exclude the case of q components with 
real and imaginary parts which was considered in the previous section.) To see this, 
consider the expression for Sz when 13 = 0: 

(15) 

where 
(16) 

If q is real then p z has a non-zero real part, and in general Sz is non-zero. However, 
if q is imaginary so is p z' and Sz must then be zero. The close relation between q2 
and Sz is illustrated in Fig. 2. 

The x mode cut-off frequencies (i.e. where q2 = 0) in both the incident and final 
plasma are important in determining the boundaries of frequency regions in which 
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Fig. 2. Graphs showing rl (solid curve) and the corresponding normal Poynting flux Sz (dashed 
curve) for (a) the reflected x mode, (b) the reflected 0 mode, (c) the transmitted x mode and (d) 
the transmitted 0 mode. Graphs are for Wp2/Wpl = 4, fle/Wpl = 0·2, II = land 6in = 30·. 

different types of reflected and transmitted modes occur. From (3) the x mode cut-off 
occurs when 

For the simple case II = 1, the cut-off frequency is 

- In {ln2 2/(1 2)1~ wCi - 2 e+"4 e+Wpi -r , i = 1,2, (18) 

where r is sin (J in multiplied by one of the solutions of (2), which is a function of wpl' 

ne and (Jin' Because (2) and (3) must give consistent results, in the first region the 
incident mode cut-off is simply 

(19) 

which increases with increasing magnetic field strength. In the second region the 
cut-off is 

(20) 

which is a function of the density change and angle of incidence as well as the magnetic 
field. While wc2 obviously increases with increasing density change, its dependence 
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on the other parameters is not as clear. However, in general wc2 increases with 
increasing angle of incidence and magnetic field strength, and is almost independent 
of the magnetic field direction. 

One would expect the shapes of the graphs of Sz as a function of frequency for 
different modes to be related-the transfer of most of the energy into one of the 
modes means that little energy is transferred to the other modes. It is nevertheless 
interesting that at higher frequencies the reflected and transmitted 0 mode curves are 
similar, although both are weak modes (see Figs 2b and 2d). 

With these preliminary remarks let us consider the effect of different parameters 
on the reflection coefficients. 

Summary of Results-Small Magnetic Field 

The general characteristics of the reflected and transmitted modes when fJelwpl < 1 
are summarized: 

(a) The transmitted x mode is dominant (Le. the density gradient has very little 
effect) for small and moderate angles of incidence and at frequencies higher 
than the x mode cut-off in the second region. 

(b) An incident x mode may produce a transmitted z mode at frequencies below 
wc2. The strength of this mode decreases as the angle of incidence increases, 
as the magnetic field strength decreases, or as the density ratio increases. 

(c) There is little transmitted 0 mode generated, with the maximum transfer of 
energy into this mode occurring when there is no transmitted x or z mode. 
This mode is strongest when the magnetic field is weak or is near the plane of 
incidence, or when the density ratio is large. 

(d) Significant reflection only occurs below wc2 or at large angles of incidence. The 
reflected wave may be predominantly 0 or x mode, with the ratio of reflected 
o to reflected x mode increasing as the density ratio increases, the magnetic 
field strength decreases or it becomes aligned with the plane of incidence, or 
as angles of incidence around 45° are reached. 

Summary of Results-Large Magnetic Field or Small Initial Plasma Density 

This is the parameter region which is relevant to the study of AKR, and the effects 
on Sz of varying each of the five plasma or wave parameters when fJelWPl > 1 are 
illustrated in Figs 3-7. As one would expect, many of the results for fJelwpl > 1 
are similar to results when fJelwpl < 1. The frequencies where Sz is zero are still 
determined by zeros and infinities of q2. There is an even closer correspondence 
between the behaviour of the reflected and transmitted 0 modes. The results for the 
transmitted modes when fJelWpl < 1 [Le. (a), (b) and (c) above] are valid for all 
values of fJelWpl. The only further comment which can be made is that the size of 
the 0 modes depends more strongly on the ratio fJelwpl when it is greater than one. 

However, the behaviour ofthe reflected modes is slightly different for large magnetic 
fields, and is summarized below. 

(a ') The reflected waves produced are different above and below the incident x 
mode cut-off Wcl' although the x mode is usually the stronger mode at all 
frequencies. 
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Fig. 3. Graphs of Sz against frequency for the two reflected modes (upper) and 
the two transmitted modes (lower). Dashed curves correspond to 0 modes and 
solid curves to x modes. Graphs are for ClIp2tCllpi = 2, netCllpl = 2, 11 = 1 and 
6in = 45°. The following observations are noted: (i) The asymptotic behaviour at 
large frequencies and the dependence of all the transmitted modes on frequency 
are the same as for net ClIp l < 1. (ii) Again significant reflection only occurs 
below the x mode cut-off in the denser region ClIe2 but the reflected 0 mode 
is almost invariably weaker than the reflected x mode, unless the frequency is 
low and the incident mode is z rather than x. (iii) The incident mode is in 
fact a z mode over a much wider range of frequencies above ClI p l than when 
netCllpl < 1. 
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(b') Between Wei and we2 the reflected 0 mode becomes stronger if the density 
ratio increases, the magnetic field decreases or lies in the plane of incidence, 
or the angle of incidence increases. 

(c') Below Wet' the reflected z mode is weaker at small angles of incidence or for 
large magnetic fields, and may be weaker for smaller density ratios. There 
mayor may not be a reflected 0 mode. 

S. Discussion 

Although the behaviour of waves reflected from and transmitted through a sharp 
density change is difficult to study analytically, careful examination of numerical 
calculations allows one to identify several important features of the reflection process. 
For the case considered here of an incident extraordinary mode and the magnetic field 
in the plane of the boundary between the two regions of different density, we have 
shown that the reflected modes may be dominated by the 0 rather than the x mode, 
particularly at frequencies just above the plasma frequency of the incident region. 
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We have also found that strong transmitted z modes occur, and of course under many 
conditions the incident wave is almost completely reflected. Parasitic 0 modes are 
invariably present, although they may be many orders of magnitude weaker than the 
x mode. In general they become stronger with increasing density ratio, decreasing 
magnetic field strength, or for incident angles around 45°. 

The generation of secondary modes in plasmas is usually considered to be the 
result of wave interactions, or mode coupling in a slowly varying medium. Steeper 
density gradients, when invoked, have been used to account for wave ducting or 
confinement (Duncan 1979; Calvert 1982). However, we have seen that they also 
produce radiation propagating in a different mode from the incident wave, and under 
appropriate physical conditions reflections from these gradients may be the dominant 
mechanism generating secondary modes. 

Abrupt density changes have been observed in the source region of AKR (Benson 
and Akasofu 1984), and it is likely they also exist in the solar corona (Pick et 
a/. 1979). Since the fraction of incident energy going into secondary reflected and 
transmitted modes is relatively sensitive to some of the plasma and wave parameters, 
from observations of these regions it should be possible to determine if some of the 
magnetoionic waves which are seen are the result of a sharp density gradient within 
that region. 
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Appendix 

The equations relating the electric and magnetic fields of a plasma wave in the 
coordinate system of Fig. 1 a are 

(Ala, b) 



Reflection of Magnetoionic Waves. I 

where 

1 -Ii y2 i YI 3 - y2/l/2 

I-/~ y2 

-i Y/ l - y2/3/2 

-i YI2 - y2/l 13 

i Y/ l - y2 ~ 12 

I-/~ y2 

and we have used the fact that the plasma varies only in the z direction. 
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(A2a) 

(A2b) 

(A3a, b) 

(A4) 

Under the assumption of vertical incidence (kx = 0), and with 11 = 1, ~ = 13 = 0, 
(A3) and (A4) reduce to two independent second order differential equations: 

c2 il Ex/az2 +w2(I-X)Ex = 0, 

c2 a2 Eylaz2 +w2{ 1 -X -Xy2/(I-X - y2)J Ey = O. 

Now let us assume the density profile is described by 

X = AI +!1Xz/d, 

(A5a) 

(A5b) 

where Xi = W~/W2, !1X = X2-Xl (typically between 1 and 10), and d is the width 
of the boundary region. Changing the variable z in (A5a) to a = I-X, and in (A5b) 
to 13 = 1-X - y2, we find 

a2 Ex/aa2 +(wd/c!1X)2a Ex = 0, 

a2 Eylaf32 +(Wd/c!1X)2(f3 +PJ. +P1//3)Ey = 0, 

where PJ. = 2 y2 and P2 = y2( y2 -1). 

(A6a) 

(A6b) 

In the boundary area, the series solutions of (A6a) are related to the Airy function 
(Abramowicz and Stegun 1972, §1O.4), and have the forms 

Exl(a) == 1 -i(wd/c!1X)2a 3 +rto(wd/c!1X)4a6 + ... , (A7a) 

Series solutions for (A6b) have the more complicated forms 

Eyl (/3) = f3-(wd/c!1Xi(!P2f32 +~PJ.f33 +bf34) 

+(wd/c!1xt(bp~f33 + ... ) + ... , 

Ey2(f3) = -(wd/ c!1X)2 P2 10g(f3)EYl (/3) 

+ 1 +(wd/ c!1X)2(P2 13 -!PJ. 132 - if33) 

-(wd/c!1X)4(~p~ 132 + ... ) + .... 

(A7b) 

(ASa) 

(ASb) 
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The tangential electric and magnetic fields must be continuous at the edges of the 
boundary region, z = 0 and z = d. From (Ala) and (A2a) we have 

(A9a,b) 

Hence we require the fields (A 7) and (AS) and their derivatives to be continuous 
at the boundary edges. The tangential electric fields on either side of the boundary 
region may be written 

Incident region 

Final region 

E = Edexp(-i nl z) +R exp(i nl z)}, 

E = E; T exp(-i ~z), 

(A 10) 

(All) 

where n1 and n2 are the refractive indices in the two regions, Rand T are complex 
reflection and transmission coefficients, and we have temporarily dropped the x and 
y sUbscripts. The boundary conditions become 

Ell+R) = A E1(z=0) +B E;(z=O) , 

A E1(z= d) +B E;(z= d) = E; T exp(--':'i ~ d), 

-i nl E;(l- R) = A E{(z=O) + B E~(z=O), 

A E{(z= d) +B E~(z= d) = -i ~ E; T exp( -i ~ d), 

where f' = df /dz. 

(A 1 2a) 

(A12b) 

(A 13 a) 

(A13b) 

We assume that the boundary conditions may be approximated by those at a sharp 
density change if the difference in the fields outside the boundary region is less than 
10%, i.e. 

{ E;(1 + R) - E; T exp( - i ~ d)} / E;(1 + R) < O· 1 . (A14) 

Solving (A12) and (A13) for Rand T, then substituting them into (A14) we get 

1- E~(z=d)El(z=d)-El(z=d)E;(z=d) <0-1, 
~ E1(z=0) -Dl E;(z=O) 

where Dl = E 1(z= d) +i ~ E1(z= d) and ~ = E~(z= d) +i ~E;(z= d). 

(A15) 

We are interested in the limit of a narrow boundary, so we retain only terms of 
lowest order in din (A7) or (AS). Substituting these terms into (A15) gives 

d < caX/lO~ Ctl (A16) 

for both the x and y fields. We have c/ ~ Ctl = A2/27r, so the maximum boundary 
width for which the approximation of a sharp boundary is valid is 

(A17) 

Manuscript received 30 January, accepted 1 July 1985 




