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Abstract 

Simple calculations have been made of the formation energy of different types of defect centres 
such as those formed by hexavalent uranium introduced into lithium fluoride in an oxygen 
atmosphere. The Coulomb energies are compared for different configurations of the same defects. 
The method of calculation is described and results quoted for configurations including, in addition 
to oxygen ions, (a) a uranium ion and a divalent positive ion, (b) a uranium ion and a negative-ion 
vacancy and (c) two uranium ions. 

1. Introduction 

Some time ago one of us (Runciman 1955) discussed atomic configurations in 
luminescent centres in which small clusters of defects formed charge-compensated 
centres. A particular study was then made of uranium-activated sodium fluoride and 
models were proposed for the observed luminescent centres (Runciman 1956). No 
firm identifications were made and progress has been slow for all centres other than 
the principal centres which have been ascribed to D05 groups (Feofilov 1959). Similar 
centres occur in lithium fluoride (Runcimafi and Wong 1979). When single crystals 
are available the symmetry of the centres can be established by means of polarized 
luminescence (Runciman et al. 1981), uniaxial stress (Kaplyanskii and Moskvin 1962) 
and electric field measurements (Kaplyanskii et al. 1970). The symmetry of the 
principal centres is C4v and, even in this case, an alternative to the D05 model has 
been proposed comprising a D060 F group with the fluorine vacancy in a crystal-axis 
direction relative to the uranium ion (Bleijenberg and Timmermans 1978). Symmetry 
considerations do not distinguish between the alternatives. Hence it is attractive to 
consider whether energy calculations can assist in the task of assigning atomic models 
to observed centres. In the present paper we restrict ourselves to comparisons of 
centres containing different configurations of the same defects, as the energy differences 
found in our calculations are likely to be more reliable in such cases. 

Calculations were made for many other centres, such as those containing trivalent 
and tetravalent ions in addition to the uranium ion, but they are not reported as 
they do not illustrate any novel features. Since negative ion vacancies predominate in 
defect studies of the alkali halides, results for centres with positive ion vacancies are 
also omitted. 
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Simpler calculations were also made in which the Coulomb energies were estimated 
on the basis of the excess charges compared with the perfect lattice, when it is assumed 
that the defect ions replace lattice ions of similar sign of charge. The hexavalent 
uranium and the divalent oxygen ions have excess charges of + 5 and - 1 respectively. 
These calculations were useful in (i) clarifying thoughts on the number of possible 
atomic configurations, (ii) forming simple physical ideas of the terms responsible for 
the energy differences between configurations, and (iii) checking the more rigorous, 
but relatively complex, computer calculations. Comparison of the total Coulomb 
energies between configurations is meaningless, but there is good agreement with the 
relative energies of the rigorous Coulomb calculations performed according to the 
procedure described in the next section and in Appendix 1. A justification of the 
excess charge model is given in Appendix 2. 

2. Procedure 

We have based our calculations of defect energies on several assumptions. We have 
assumed that the effect of crystal relaxation, both displacement and polarization, is 
negligible within a class of defect structures. We feel that this is probably not usually 
true when comparing different classes, although each case should be considered 
specificall y. 

It is possible to perform detailed displacement relaxation calculations (Norgett 1974; 
Richardson 1982) although these are very complex and consume computer resources. 
Polarization relaxation can also be accounted for, by shell model calculations or 
otherwise (Richardson and Mahanty 1983), and is likewise very involved, properly 
requiring a detailed study of electronic structure. Fortunately, polarization effects are 
smaller for lithium fluoride (LiF) than for other alkali halides. 

In order to perform more detailed estimates, it is necessary to account for both 
short-range and Coulomb potentials in describing the interactions between ions in 
the system. For our particular problem short-range potentials are not available for 
the defect clusters in LiF, although potentials for LiF itself are well known (Catlow 
et al. 1977). Approximations could be made based on iso-electronic analogues. For 
example, the short-range interaction of 0 2 - with other ions has been treated as 
equivalent to that of F- (Catlow 1977). The situation for hexavalent uranium is 
more complicated, however, and we know of no suitable substitute. 

The relative contribution of short-range and Coulomb potentials to defect and 
lattice energies is of interest. In estimating lattice energies, the short-range potential 
is typically only 10% of the total. In the case of point defects this contribution to the 
energy can be even smaller (Richardson 1982), although short-range potentials can 
dramatically affect displacement relaxations (Hardy and Karo 1979). 

Because of these problems and the desire to keep our calculations simple, we have 
assumed that both relaxation and short-range effects are unimportant for studying the 
relative stability of uranium oxide complexes in LiF, but that Coulomb effects arising 
from changes to the ionic charges at the defect sites are the major contributors to 
stability. We discuss below, on the basis of our results, the validity of this assumption. 

We present the method for calculating the Coulomb contribution to unrelaxed 
defect energies in Appendix 1. The method used is very simple and gives accurate 
results. Accuracy is important with such large defect clusters, as total energies are 
large in magnitude while energy differences between structures may be only a few per 
cent (and of order 1 eV). 
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Our calculations are performed by using Madelung constants for alkali halide 
crystals, and account for the changes of some terms in the lattice sums due to 
the presence of vacancies or substitutional ions. The accuracy depends only on 
the accuracy of the Madelung constants and on the lattice parameter. With this 
technique, clusters of large size can be studied. We have considered clusters of up to 
12 ions. 

3. Results 

Coulomb energies are inversely proportional to the lattice parameter which is twice 
the nearest neighbour distance between positive and negative ions in the lattice. The 
lattice parameters for LiF and NaF, extrapolated to 0 K, are 3·992 and 4·590 A 

. respectively (Catlow et al. 1977). Previous work by one of us (Srinivasan 1982) gave 
results for a lattice parameter of 3·97 A for LiF. 
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Fig. 1. Atomic configurations ofU06M centres showing (a) tetragonal 
and (b) orthorhombic structures. 

Table 1. Total Coulomb energy and relative energy (in eV) of defect centres 
calculated both rigorously and using the excess charge approximation 

Centre Symmetry Energy Relative energy 
Rig. calc. Rig. calc. Excess charge 

U06M Tetragonal - 300·15 0·00 0·00 
Orthorhombic -299·37 0·78 0·78 

U06DF Trigonal -273·77 0·00 0·00 
Monoclinic -273·75 0·02 -0·01 
Tetragonal -272·97 0·80 0·79 

U2O lO Tetragonal A -522·43 0·00 0·00 
Monoclinic -521·72 0·71 0·70 
Orthorhombic - 516·99 5·44 5·38 
Tetragonal B - 511·46 10·97 10·88 

(aJ U06M Centres 

The U06 complex has an excess charge relative to the lattice of - 1 and this 
can be compensated by a divalent ion M replacing a monovalent lithium ion. The 
two likely centres are shown in Fig. 1, and the energies (and energies relative to 
the lowest energy found) of these centres calculated by both the rigorous and excess 
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charge methods are listed in Table 1. The relevant experimental information has been 
described elsewhere (Runciman et al. 1984). 
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Fig. 2. Atomic configurations of U06DF centres showing (a) trigonal, (b) 
monoclinic and (c) tetragonal structures. 

(b) V06 DF Centres 

The V06 complex can also be charge-compensated by a fluorine vacancy yielding 
a V06DF centre. Three possible atomic configurations are shown in Fig. 2. The 
rigorous Coulomb calculations given in Table 1 suggest that the trigonal centre 
is at slightly lower energy than the monoclinic centre. The tetragonal centre has 
a higher energy. Many fluorescent centres have been detected and seven have 
fluorescent line pairs of electric and magnetic dipole character (Runciman and Wong 
1979). However, none of these centres have trigonal symmetry and there is no firm 
experimental evidence for any V06DF centres. 

(c) V 20 lO Centres 

It is tempting to think that the VOs centres might pair to form V20 lO dimers. 
However, it may be noted that it appears impossible to get more than 0·03 at. % V 
into LiF and 0·2 at. % V into N aF. Hence it is possible that the formation of uranium 
ion pairs is not favoured. Four possible configurations are shown in Fig. 3, and the 
relative energies are listed in Table 1. There is no experimental evidence for these 
centres, although calculations favour the formation of the tetragonal A configuration 
of all the V20 lO dimers considered. 

4. Conclusions 

Simple Coulomb calculations are a useful first step in listing likely defect centres 
and in giving an indication of relative energies of different configurations of centres 
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Fig. 3. Atomic configurations of U20 lO centres showing (a) tetragonal A, 

(b) monoclinic, (c) orthorhombic and (d) tetragonal B structures. 
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with the same composition of defects. The excess charge approximation works 
surprisingly well in providing relative energies. Few experimental results are available 
for comparison with theory. However, LiF containing uranium, magnesium and 
oxygen provides the best example to date for more detailed investigation. A complete 
theoretical study would require all the relevant pair potentials and would include 
both polarization and lattice relaxation effects. In view of the small energy differences 
which have been found, it would appear to be necessary to develop such a program if 
the precise structures of these complex defects are to be determined. The work would 
be along similar lines to that formulated for simpler defect structures (Norgett 1974; 
Richardson 1982). 
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Appendix 1. Unrelaxed Coulomb-potential Defect Calculations 

The Coulomb energy of a single (point) defect in a crystal can be estimated by 
the Madelung constant, as is well known. The resultant energy is for a crystal with 
a single defect and is unrelaxed: no account is taken of either displacement of ions 
around the defect, or the changes in the state of polarization of the crystal. 

We have extended this concept to encompass charge-compensated defects which are 
composed of many ions situated substitutionally in an otherwise perfect crystal. Such 
calculations have been considered indirectly elsewhere (Norgett 1974; Richardson 
1982) in studies of the energies of defects in relaxed crystals with shell-model 
potentials. We present here a description of a simplified calculation suitable for the 
defect clusters discussed in this paper. Our nomenclature follows that of Norgett 
(1974) and Richardson (1982). 

The calculation can be divided into two parts-a contribution to the defect energy 
as a result of the interaction of defect ions with the host lattice ions, and a contribution 
arising from the interactions between defect ions. We consider each part in turn. 

The interaction of defect ions with the host crystal is given by the sum of all 
Madelung energies for each individual defect ion i, less the Madelung energy for the 
ideal crystal, 

EMad = ~ a i qi - ~ a v q~ , (AI) 
v 

where the sum i is over all defect ions and the sum v over all defect sites (including 
vacancies), a i is the Madelung constant for site i, and qi is the defect (substitutional 
ion) ion charge at site i, while q~ is the original ionic charge at site v. As is always 
the convention in calculations of this nature, the reference state from which defect 
ions are drawn, and to which removed ions are taken, is a state of ionic dispersal 
at infinity. The sums are only over the same sites if the final defect crystal has no 
vacancies. 

For the contribution arising from the interactions between defect ions there are 
terms arising from vacancies, Evac ' and terms from the substitutional ions, E int . By 
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terms arising from vacancies we mean those terms which were there before the ions 
were removed, but which will now be absent. 

The total energy term arising from vacancy effects is derived as follows. We need to 
include the interaction energies of all vacancies introduced with all the substitutional 
ions, and at the same time remove from the Madelung sum those terms arising from 
the interaCtion of ions which have been removed from the lattice to be replaced either 
by vacancies or foreign ions. This gives us the vacancy contribution to the defect 
energy as 

(A2) 
v'::::t:.v 

where the sums are over defect sites, as for (A 1). The separation of sites is represented 
by rvi and rvv '. The constant k is unity if site v has no substitutional ion and is 
one-half if v is a substitutional site. 

The contribution from substitutional defects is similar. We need to add in the 
interactions between the defect ions themselves and subtract from the Madelung sum 
the spurious terms arising from the interactions of the defect (substitutional) ions 
with host lattice ions which have been removed, to be replaced by defects. The result 
is the interstitial contribution 

o 
E =! 1: 1: qi qi' _ k 1: 1: qi q v 

mt 2 
i ;'=f:.i rill i v=;:.; riv 

(A3) 

Therefore the energy of the entire defect cluster is obtained from equations 
(Al)-(A3) as 

Edef = ~ad + Eint - Evac . (A4) 

If the charges of ions are given in e.s.u. and the distances are in multiples of the 
lattice parameter, then all energies can be converted to eV by multiplying by 14·399 
and dividing by the lattice parameter in A (10- 10 m). 

B 

D A E 

Fig. 4. Calculation of pair interactions. 

Appendix 2. Justification for Excess Charge Calculations 

We consider the change in Coulomb energy when a pair of ions in a configuration 
1 with charges q' and Q' respectively on sites AB changes to a configuration 2 with 
the ions on sites AC (see Fig. 4). The normal charges of the ions in the perfect lattice 
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are q and Q respectively. Consider the pair interaction of ions A, B, C, D and E, 

where D and E are located as indicated in Fig. 4: 

= q' Q' + qQ' + q' Q + qQ - q' Q - qQ - q' Q' - qQ' 
r1 r2 r2 r1 r1 r2 r2 r1 

(q' - q)(Q' - Q) (q' - q)(Q' - Q) 

This is the predicted difference on the excess charge model, which has been shown 
to be exact in this simple case. When only one ion is moved in more complex 
configurations, the excess charge calculation of the change in Coulomb energy may 
still be exact, for example the configurations of U06M in Fig. 1. This result is 
obtained by summing interactions for the mobile ion with each of the fixed ions. In 
other cases the excess charge method is a good approximation. 
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