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Abstract 

In this paper we make a preliminary investigation of the nonlinear equations of compressible 
convection under the influence of solar-type magnetic fields. A polytropic model of the basic 
structure is used and, although the model is somewhat restrictive, good agreement is obtained 
with general observations in both strong and weak field cases. The value and influence of the 
turbulent magnetic resistivity is investigated and the depth dependence of the vertical velocity 
within a given period is used to study the way in which the overstable oscillations change their 
direction of flow from positive to negative. 

1. Introduction 

Convective motions occur somewhere in most stars and considerable uncertainty 
exists about the accuracy of the transport equation when the temperature gradient 
is super-adiabatic. The mixing-length formalism (Vitense 1953; Bohm-Vitense 1958) 
or its non-local extensions (Parsons 1969; Nordlund 1974) are generally used, but 
the formulation of the convective processes has unfortunately not reached the degree 
of sophistication of radiative transfer theory. It would therefore be of considerable 
interest to obtain additional information about the structure of such a convective layer 
and ultimately test the validity and accuracy of the various theoretical models that 
have been proposed. The outer layers of the Sun form such a region and can therefore 
be used to gather information about the physical characteristics and structure of 
the layer from detailed observations of surface motions such as the 3 and 5 minute 
oscillations, granular and supergranular motions, overstable motions in the umbra of 
sunspots, and so on (Moore 1981; Bray et al. 1984). 

In recent years the theory of non-radial oscillations has been used to interpret 
the various oscillatory motions that have been observed, in particular the 5 minute 
oscillation, and this has given rise to solar seismology which has yielded some very 
important information about the structure of the Sun's outer layers (Gough 1983; 
Provost 1984). 

Details are also available about other phenomena such as granulation and 
supergranulation in non-active regions and the 3 minute oscillations in active regions. 

* Paper presented at the R. G. Giovanelli Commemorative Colloquium, Part I, Sydney, 26-29 
November 1984. 
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If it were possible to develop a satisfactory hydrodynamic model of these motions 
additional information about the structure and hydrodynamic properties of the 
convective region could be obtained by comparing the theoretical predictions with 
observations. 

Solar seismology has made much progress in recent years as the theory of small 
non-radial oscillations is well understood and, since periods of oscillation are only 
marginally affected by nonlinear effects, a linear theory is likely to yield some fairly 
accurate estimates. On the other hand, the theory of deep convection in a highly 
stratified and turbulent medium is still in its early stages of development mainly due to 
our inadequate understanding of turbulent processes under stellar conditions and the 
difficulty in solving numerically complicated systems of highly nonlinear differential 
equations. 

To solve the basic hydrodynamic equations some information is required regarding 
the thermal diffusivity K, the eddy viscosity v, the molecular weight JI, the specific 
heat at constant pressure C p' the internal energy per unit volume E and, if a magnetic 
field is present, the eddy resistivity 'Y} and the permeability I.L * of the medium. Some 
of these quantities such as JI, C p and E can be computed at each level by including 
the effects of ionization but others, such as K, v and 'Y}, could only be determined if 
an adequate and generally accepted theory of turbulence were available. 

In the absence of a magnetic field some progress has been made in the development 
of a hydrodynamical model of solar granulation. In an earlier study (Van der 
Borght and Fox 1983 a) the basic characteristics of the solar convection zone were 
approximated by a polytropic model in which the various constants such as ratio of 
specific heats 'Y, C P' JI and K were chosen in such a way as to yield a model as 
close as possible to the mixing-length model. This allowed us to obtain an estimate 
of the average Prandtl number cr in the Sun's outer layers and it was shown that 
for cr = 0·24 the theoretical values of the velocities, flux modulation and e-folding 
time were close to those observed. It was also shown that the value of cr = O· 5 was 
an upper limit since convective motions ceased for such a high value of the eddy 
viscosity. A better attempt, in which C P' K, JI and E were allowed to be depth 
dependent, confirmed the results of previous investigations and, in addition, gave 
information about the turbulent properties of the convective layers and the degree of 
overshooting into the upper stable layer (Van der Borght and Fox 1984). 

When a magnetic field is present additional parameters enter the problem such as 
'Y} and I.L *, although the latter is usually assumed to be close to unity. In this paper 
we shall consider both the action of a weak field and of a strong field on convective 
cells of granular size. 

Outside active regions a mean magnetic field of about 2-10 G (1 G = 10-4 T) 
seems to exist (Stenflo 1976), but does not appear to influence to any great extent 
the observed granular motions. This can only be the case if'Y} is fairly large. Within 
active regions, in particular the umbra of sunspots, strong magnetic fields of the 
order of 2-3 kG exist and the granular convective pattern may become oscillatory 
providing evidence for the existence of overstable motions (Giovanelli 1972; Moore 
1981; Thomas 1981). 

2. Basic Equations and Boundary Conditions 

In this first attempt at investigating the effects of a magnetic field on deep convection 
in a compressible medium we shall again approximate the basic characteristics of 
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the solar convection zone by a polytropic model and select the various constants y, 
C P' ]I and K to yield a model as close as possible to the mixing-length model of 
Bohm-Vitense (1958). We shall also assume that the two free parameters 'YJ and 1L * 
are not depth dependent. In what follows 1L * will be taken equal to unity. This model 
is then placed under the influence of an initially uniform vertical magnetic field. 

The averaging process involved in the modal analysis has been outlined elsewhere 
(Van der Borght 1977) and the basic equations, when a vertical uniform magnetic 
field is present, can be written as 

aat ( Pl/J)+ HerD(Po TO+ P F)+D(l/J2po +2 Cl/J2 P) 

+ Herpo+(erTQDhla2)(D2- ~)h = 0, 

aat (pol/J + 2 C Pl/J) - C W(l/Jpo) - E Pl/J W + er a2l/J 

+jerD W + HerD(PoF+ TOP+2CPF)+D(2Cl/J2PO +3El/J2 P) 

- jerD2l/J+HerP+(erTCQDhl a2)(D2 - a2)h = 0, 

:t(po W + CP W)+Hera\TOP+poF+2CPF) 

1 2- - 1 2 1 2 +"iP W (H-E)-"i C W pO-"jera Dl/J 

(1) 

(2) 

(3) 

_erD2 W +ja2er W +D(C WPol/J+E Wl/JP)-erTQ(1 + Ch)(D2- ~)h = 0, (4) 

a ( Her Po W2 C P W2 1 2 2) 
- --1 (TO Po +PF) + -2 2 + 2 2 + "iPO l/J + CPl/J at y- a a 

Hery 
+ -- D(TO Pl/J +Po l/JF +2 C Pl/J F) 

y-l 

+D + + Cp ,/,3 +3Cp,/,2 Wr ( 
E W2 Pl/J 3 E pl/J3 ) 

2a2 2 0'1' 'I' 0 

C 2 Her 2 
+ Her Pl/J + 2a2 D(po l/J W ) - y -1 D TO 

+erTQ{W(1+Ch)-Cl/JDh}(D2-a2)hla2 = 0, (5) 



848 R. Van der Borght and P. Fox 

a ( Her Cpo W2 E P W2 
- --(PoF+2CPF+ToP)+ 2 + 2 
at y-l 2a 2a 

+ -- - WPo To +D(po lji 10) - C W(To P +Po F) +2CD(lji1O P +Po ljiF) Hery ( 
y-l 

Hpo w3 J P w3 Her 2 2 
2a2 -~ + y_l(-D +a )F+2CHerPlji+Herpolji 

-erTQ! W(C+E h)-ljiEDhJ(a2-D2)h/a2 = 0, (6) 

(7) 

Dm = Po, (8) 

where D = a/az. We note that in these equations the viscous dissipation terms have 
been neglected but all nonlinear terms have been retained since it was shown elsewhere 
(Van der Borght and Fox 1983b) that the use of the anelastic approximation could 
lead to inaccurate values of some flux variables at the upper boundary. 

In deriving the equations the following expansions for density p, temperature T, 
velocity u and scaled magnetic field strength H' were used, and m is the mass 
contained within the layer: 

p(x, y, z, t) = Po(z, t) + P(z, t)f(x, y), 

T = 1O+Ff, 

u = (~ :~, ~ :~, ljif), 

H' = (Dh af, Dh af, l+hf ), 
a2 ax a2 ay 

(9) 

(10) 

(11) 

(12) 

where Po, P, To, F, W, lji and h are functions of z and t which, together with m, are 
to be determined by numerical integration of equations (1)-(8). In these equations: 

(i) C = V h E = t, H = ~ and J = V 1 are constants resulting from the 
averaging process; 
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(ii) (T = V/K and T = TJ/K are the Prandtl and magnetic Prandtl numbers 
respectively; 

(iii) Q = H5/L*d2/47TTJ/L is the Chandrasekhar number, where /L is the viscosity 
and H 0 the imposed vertical magnetic field; 

(iv) H = gd3/KO Vo is the Rayleigh parameter, where Vo = /Lo/Poo is the kinematic 
viscosity, Poo the density and KO the thermal diffusivity at the top of the 
convective layer; 

(v) the planform function f(x, y) may represent rolls, squares, hexagons or other 
geometric shapes. In this paper only hexagons will be considered due to the 
three-dimensional nature of the flow and the similarity of convective patterns 
on the Sun with hexagons/polygons. For hexagonal cells 

f(x, y) = (j)t [cos ay + cos a(~v3x+ ~y) + cos a(~v3x- ~y) J , 

a = ~7T(depth/width). 

Some of the parameters appearing in equations (1)--(8) have been chosen to give 
the closest possible fit between the polytropic model, considered in this study, and 
the mixing-length model (Bohm 1963; Kohl 1966): 

(i) The ratios of mean temperature and mean density at the upper and lower part 
of the convective layer, in the polytropic model, are given by 

(10)/( lO)u = 1 + 11</>0' 

(PO)l/(PO)u = (1 + 11</>0)" 

where s is the polytropic index. The best fit is obtained by choosing 

s = 1·409, </>0 = 0·597 . 

(ii) The ratio of specific heats is given by 

and must lie between the limits 

1 < Y < (1 + s)/ s = 1· 7097. 

(13) 

(14) 

(15a, b) 

(16) 

(17) 

We have chosen y = 1·25 which corresponds to the value \1- \1 ad = 0·21511 
which, according to the mixing-length theory, occurs at a depth of 150 km. 

(iii) The thermal diffusivity at the top KO is given by 

KO = flux x (y-l)(s+ l)1poo 9 = 4.64x 1012 (18) 

in this formulation. 

(iv) The horizontal wave number a has been set equal to 7T /V2. This corresponds 
to maximum instability and maximum efficiency in convective energy transport. 
With an average extent of 2000 km for the granules this corresponds to a 
depth of 530 km. 
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(v) The Prandtl number cr = volKo and the eddy resistivity are to a certain extent 
free parameters which can be chosen to give the best possible fit to the observed 
granular motions but it should be kept in mind that: (a) Theoretical studies, 
as mentioned earlier, have already given an average value of cr = 0·24 outside 
active regions; (b) 1/ should lie between well defined limits-an upper limit 
which ensures the existence of overstable motions in strong fields and a lower 
limit if granular motions are not to be interfered with by small magnetic fields 
outside active regions. 

The numerical results depend of course to a certain extent on the assumed boundary 
conditions. In this study we have applied the following boundary conditions: 

z=O 

ljJ=O 
W= 0 

To = (<1>0+ l)/(s+ 1) 
F=O 
m=O 

Dh-ah=O 

We have therefore assumed: 

z = 1 (top) 

ljJ=O 
DW=O 

To = <l>o/(s+ 1) 
DF + F/<I>o = 0 

m= M= «<I>o+l)S+I_<I>~+ll/(S+l)<I>o 
Dh+ah=O 

(i) No overshooting at the boundaries. 

(ii) A free boundary at the top and a rigid one at the bottom. This will leave a 
residual horizontal stress at the bottom and perhaps the formation of a counter 
cell. 

(iii) Average temperatures at top and bottom as close as possible to those given by 
the mixing-length formalism. 

(iv) No temperature fluctuation at the lower boundary but a Newton law of cooling 
at the top as suggested by the polytropic law. 

(v) Conservation of mass during the convective process. 

3. Results 

The basic equations have been integrated, by means of a method outlined elsewhere 
(Van der Borght 1980), for various values of Ho and 1/ with cr being set to 0·2 to 
facilitate comparison with the results in the absence of a magnetic field (Van der 
Borght and Fox 1983 a). 

A linear analysis, over the parameter space (Ho, 1/ and cr), is essential for a detailed 
investigation of the various types of instability which may occur and may give a good 
first approximation of the period of oscillation of overstable motions. On the other 
hand, a nonlinear analysis is required to evaluate, in addition to the true period, the 
other characteristics such as velocity amplitudes and flux modulation. In the present 
paper we give some results of the nonlinear integrations to illustrate the dynamic 
effects of magnetic field interaction with convection. 

Firstly, in the weak field case where convection is purely unstable and growing 
with this choice of cr, we may determine some range on 1/ so that the normal granular 
pattern is left mostly unaffected. The field strength Ho is taken as 10 G. Table 1 gives 
the characteristics of granulation for the weak field case for various values of 1/. Also 
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shown are our previous results in the absence of a magnetic field. Recalling that the 
molecular value of 7) is 7)m ::::; 4x106 cm2 s- 1 (Danielson 1963) and that the turbulent 
value 7)t is less than K (::::4.64xlOI2 cm2 s- l ) for overstable motions to occur, we 
can see a relative insensitivity to the value of 7) down to about 3 x 109 cm2 s -I. Below 
this value, changes in the time development of the system occur. 

Table 1. Comparison of granular characteristics for values of 'rj for the 
weak field case 

4x lOll 

3 x 1010 

3x 109 

cr=0·2, t;::: 1135s 

Max. vert. vel. 
(kms-I) 

1·200 
1·198 
1·202 

1·208 

r.m.s. hor. vel. 
(km s-I) 

Ho=IOG 
0·9345 
0·9319 
0·9354 

Ho = OA 

0·9416 

A From Van der Borght and Fox (1983a). 

Int. fluctuation 
(%) 

15·316 
15·218 
15·345 

15·427 

In the strong field case (flo ;;;. 2000 G), where motions are usually overs table 
(oscillatory), the growth (or decay) of any disturbance depends on the properties of 
the medium, such as buoyancy, and the ability to combine with a given magnetic 
field to produce oscillations. The value of 7) can greatly affect the rate of growth 
(or decay) once the motion is established. The characteristics are now of a different 
nature, the intensity fluctuation and energy carried are usually lower but the velocities 
can become quite high, oscillating with small periods. Small time steps are often 
required to resolve these rapid changes. The field strengths of 2000 and 3000 G, which 
largely determine the periods of oscillation, are a good representation of typical fields 
encountered in sunspot umbrae. Values of 7), which are quite uncertain, range between 
the limits as suggested by the weak field case, i.e. between 3 x 109 and 3 x lOll cm2 s -I. 

Table 2. Characteristics of strong magnetic field interaction with convection 

')' = 1.25, cr = 0·2 

Ho 
(G) 

2000 
3000 

Av. period of 
oscillation (s) 

68·0 
48·0 

Vert./hor. vel. amp. 
(kms- I) 

±0·3/±0·25 
±0·5/±0·4 

Since we are using a polytropic model we will not attempt to model in detail 
features such as the 3 minute oscillation, but merely demonstrate how the interaction 
of magnetic fields and convection on the granular scale can model the observed 
characteristics to a fair degree. Table 2 contains the relevant characteristics for strong 
field cases, while Figs 1 a-d show some of the time evolution of vertical and horizontal 
velocities. 

The oscillatory motions reverse their direction of flow within one period so it is of 
some interest to investigate the depth dependence of the vertical velocity as a function 
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of time. This is illustrated in Fig. 2 in the case of a magnetic field Ho = 2000 G and 
7j = 3 X 1010 cm2 s -I, for a number of time steps. It can be seen that a reversal in the 
vertical velocity starts as a small counter cell at the bottom of the convective layer 
(z = 0) which gradually grows in vertical extent over half a period; the process is 
then repeated from the bottom of the layer again but in the opposite direction (i.e. 
positive amplitude of the counter cell instead of negative). Two other points are: 
(a) Until the velocity becomes significant (>0. 1 km s -I) the magnetic field oscillates 
about its initial value with small amplitude. (b) The periods of oscillation tend to 
increase slightly as the motions develop. 
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'" 0·04 
S 
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~ 
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Ol 
" 0 .€ 
" :> 

-0·02 

-0·04 
-0·2 0 0·2 0·4 0·6 0·8 1·0 1·2 

z 

Fig. 2. Depth dependence of vertical velocity at various times (s) labelled 
by I (1783.47), II (1784.68), III (1786·19), IV (1788.91), V (1791.94), VI 
(1795·27), VII (1798·29) and VIII (1800·0) for the case Hu = 2000 G and 
7j = 3xl010 cm2 s- l . Note how the nodal point moves in time. 

It can be seen from Table 1 that the convective motions in non-active regions, i.e. 
for small mean magnetic fields of the order of 10 G, are fairly insensitive to the value 
of 1] over a fairly large range (3 x 109-3 X lOll cm2 s -I). In active regions where the 
magnetic field is of the order of 2000--3000 G, the motions are periodic and much 
more sensitive to the value of 1]. In fact smaller values of 1] than those given in Table 
2 produce very rapidly growing oscillations that were difficult to resolve accurately 
and have been omitted in this preliminary study. 

4. Conclusions 

Even with the restriction of a basic polytropic model using constant parameters 
such as y = 1·25 and average Prandtl number cr = 0·2, it can be seen how the 
equations of compressible convection under the influence of varying magnetic fields 
may be used to model various phenomena observed in the Sun's outer layers. The 
convective motions have a complex dependence on magnetic field strength, resistivity 
and the general properties of the layer. Although not complete, these integrations 
indicate that (i) in the weak mean field case, limits may be obtained on the eddy 
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resistivity Tj, and (ii) in the strong mean field case, the field strength influences the 
period of oscillation whilst Tj may be adjusted within limits as given in (i) to study 
the rate of growth or decay of the motions. 

Detailed numerical integrations of more general equations based on a more accurate 
model of the Sun's outer layers are currently in progress. This will generalize previous 
work (Van der Borght and Fox 1984) to the case where strong magnetic fields are 
present. 

These nonlinear calculations should provide valuable information for interpreting 
and modelling phenomena associated with magnetic fields in the Sun's outer layers 
and permit an investigation of the role that overstable oscillations play in relation to 
the 3 minute and other umbral oscillations present in strong solar magnetic fields. 
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