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A formalism introduced by Mestel, Robertson, Wang and Westfold for the description of electron 
outflow in axisymmetric pulsar magnetospheres, following injection with non-negligible speeds 
from the stellar surface, is extended here to incorporate emission with relativistic speeds. The 
formalism is then used to study the possible kinds of outflow. They are organized into five types, 
corresponding to differences in the emission speed and its variation with latitude, and into two 
classes according to whether or not they reach a region of rapid acceleration. 

1. Introduction 

Mestel, Robertson, Wang and Westfold (1985; 'henceforth denoted by MRW2) 
recently introduced an axisymmetric pulsar magnetosphere model in which electrons 
leave the star with speeds that are non-negligible, but not very relativistic, and 
flow with moderate acceleration, and with poloidal motion that is closely tied to 
poloidal magnetic field lines, before reaching S I' a limiting surface near which rapid 
acceleration occurs. The formalism they introduced to describe these flows can be 
interpreted in terms of a plasma drift across the magnetic field, following injection 
along it (Burman 1985 a). I presented an analysis of such mOderately accelerated 
outflows (Burman 1984), showing that there is a second class of flows-ones which 
do not encounter a region of rapid acceleration. 

I shall now extend the basic MR W2 formalism, and my earlier analysis, so as to 
incorporate emission from the stellar surface with relativistic speeds. The need for 
this extension has arisen as the result of study (Burman 1985b) of the solutions which 
represent flows that either encounter S 1 beyond the light cylinder (the surface on 
which the speed of corotation with the star equals 'c, the vacuum speed of light) or 
not at all: I found that outflow from tiny inner cores of the polar caps is either not of 
this kind, or, if it is, then the formalism to be developed here will be needed in order 
to treat it. 

2. MRW2 Formalism 

In this section, the basic formalism developed by MR W2 for the analysis of their 
model will be extended so as to incorporate relativistic emission. The system is taken 
to be axisymmetric and steadily rotating at angular frequency fl. The dimensionless 
cylindrical radial coordinate X is unity on the light cylinder, which has radius c/ fl. 

0004-9506/86/030421 $02.00 



422 R. R. Burman 

The unit toroidal vector is denoted by t. It follows from Faraday's law and \l.B = 0 
that the electric field can be written as the sum of a part X B X t, associated with 
rotation of the magnetic field structure, and a non-corotational part - \l (/J, with (/J 
a gauge-independent potential. 

MR W2 developed their equations in dimensionless form by expressing distances and 
the flow velocity V in units of c/ 11 and c, and normalizing field variables in terms of 
the equatorial dipolar magnetic field strength at the light cylinder: B I == i (11 r.l C)3 Bo 
where r s is the stellar radius and Bo is the polar surface magnetic field strength. The 
magnetic field and the charge density Pe are expressed in units of BI and B I /4'1Tc. 

The poloidal parts of the magnetic field and electric current density are expressed 
in terms of Stokes stream functions: Bp = X-I t X \l P and jp = X-I t X \l S, with 
P and S measured in units of (c/ 11) 2 Bland c2 BI I 4rr 11 respectively. The electric 
field is \l(P- (/J). Charge separation is assumed, so jp = Pe V p' The poloidal part of 
Ampere's law reduces to B <j> = - SIX. It follows from Gauss's law and the toroidal 
part of Ampere's law that (Mestel et al. 1979; eq. 2.8) 

\l2(/J+2Bz = -(I-XV<j»Pe' (1) 

with (/J expressed in units of cBI /I1. The subscripts <p and z denote toroidal and 
axial components. 

In the domain under consideration, the flow is taken to be dissipation-free: the 
equation of motion represents balance of the Lorentz force by relativistic inertia. 
The inertial effects manifest themselves in two ways: through the existence of the 
non-corotational electric potential (/J and through inertial drift of the flow across 
magnetic field lines. 

The steady rotation constraint implies the existence of an integral of the motion 
(Endean 1972) which (for electrons) has the dimensionless form (MRW2) 

G = 1'(1- X V<j» - (/J IE; (2) 

the Lorentz factor is denoted by l' and the small parameter E represents I1lw g , with 
W g denoting the nonrelativistic electron gyrofrequency in the fiducial field B I' 

In this domain, inertial drift is neglected, so the poloidal flow is along the poloidal 
magnetic field lines, meaning that S is a function of P only. The electrons' equation 
of motion (cf. Burman and Mestel 1978) can now be written as 

(V-Xt)XB= -E\lG. (3) 

Axisymmetry and neglect of inertial drift imply that G is a function of S, or P, only. 
Taking the vector product of equation (3) with t and using Bp = X-I t X \l P shows 
that the flow velocity is related to the magnetic field by 

V = KB+K(P)Xt, (3') 

where K is a scalar and K denotes 1 +EG'(P), with G' representing dG/dP; this 
is equation (2.27) of Mestel et al. (1979), with inertial drift neglected and with 
dimensionless variables. It follows from V p = KBp and jp = Pe V p that Pe K 

=dS/dP (MRW2), which is constant on the poloidal magnetic field lines, which are 
also streamlines of the poloidal flow. 
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MRW2 wrote dS/dP as -2 Vo(P), so Pe K = -2 Vo. At least near the star, the 
\12 <P contribution to (1) can be neglected, leaving Pe = -2B z/(l- xv <1»; hence 
V pi Bp = (1- XV <1» Vol B z' But near the star, XV <I> < 1 and, provided the outflow 
emanates from a small polar cap, Bp :::::: B z ; thus MRW2 identified Vo(P) with the 
speed at which the electrons, travelling along the lines of constant P, leave the star. 
This allowance for a significant emission speed is one of the key new features of their 
work. 

The perfect conductivity boundary condition on the stellar surface means that <P 
has there a constant value, which can be taken to be zero. Hence, since XV <I> < 1, 
V p:::::: V 0 and V~ < 1- V5 at the polar cap, G( S) may be approximated very closely 
by Yo(P), the Lorentz factor corresponding to Vo. Because there is a degree of 
approximation, though slight, in the identification of G(S) with the more directly 
physical quantity yo(P), I shall continue to write the general theory in terms of G(S). 

When the emission speed is nonrelativistic, G has a constant value, namely one, 
across the flow, and equation (3') reduces to the statement that the flow velocity, 
reduced by the local velocity of corotation with the star, is parallel to the magnetic 
field: V-XI = KB. Earlier calculations (MRW2; Burman 1984) based on this 
relation will be extended here, by using the fuller relation (3 '), to incorporate the 
possibility of relativistic injection. 

Following the procedure of MRW2, elimination of the velocity between (3') and 
the definition of the Lorentz factor, together with use of B<I> = - Sf X, leads to a 
quadratic equation for K, yielding 

K = (D+K)SI B2, (4) 

where 
D ~ (y;;/ _y-2)i BI S, (5) 

with 
y;;;2 ~ 1 _ K2 X2 + K2 S2 I B2 = 1 _ K2 X2 B;I B2 . (6,6') 

Near the emission regions, V p :::::: Vo and V<I> ~ X so D:::::: 1'0 BISso long as 
V5 > X2max(K2,1); hence, for S > 0 and outflow, the positive sign before the 
radical has been taken (MR W2). 

The quantity Ym is the minimum value of 'Y for the radical to be real (cf. 
MRW2). For I KI X .;;; 1, Y m is always real; it is real for I KI X > 1 provided 
B~ > (K2 X2 -1)B; [cf. the condition B~ > (X2 -1)B; obtained by Goldreich and 
Julian (1969) for their flow to have a real Lorentz factor outside X = 1]. 

On using (4), the relation Pe K = -2 Vo takes the form 

-2 VC/Pe = (D+K)SI B2. (7) 

On substituting K from (4) into V <I> obtained from the toroidal part of (3'), replacing 
B<I> by - SIX and using (7) for Pe' equation (1) becomes 

\12<p+2Bz = 21'oSF, (8) 

where 

F ~ 1 +(B2/S2)(I-KX2)/(D+K). (9) 
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Since D 00' the quantity D for "I infinite, is Bly m S, it follows that 

Doo = I K2 +(1- K2 X2)B2 I S2) ~ = (1 - K2 X2 B~I B2)~ BI S. (10, 10') 

Hence D itself is (1 _Y::n/y2)~ Doo' The MRW2 formalism expresses flow variables 
in terms of "I, which is bounded below by "1m' The basic MRW2 flow equations 
above show that, as functions of "I, the variables K, P e and F are actually functions 
of y/Ym' 

On using (10) for D 00' the definition (9) of F can be rearranged into the form 

F = 1+I<D~-K2)/(D+K)}!(1-KX2)/(I-K2X2)}. (9') 

Hence the function F for "I infinite is given by 

Foo = 1-(K-Doo )(1-KX2)/(1-K2X 2). (11) 

Equations (4)-(11) are the fundamental equations of the MRW2 formalism for a 
domain with relativistic injection. 

Goldreich-Julian (GJ) flow is now defined as flow satisfying the equations of the 
MR W 2 formalism, subject to the additional restriction that the term \12 <I> in (8)-the 
MR W2 version of the Gauss-toroidal Ampere law-be negligible. Putting \12 <I> = 0 
there and writing Bz for BzI Vo S yields Bz = F which, after using the definition (9) 
of F, together with (5) for D and (6) for "I m' may be solved for the Lorentz factor: 

"1-2 = l_K2X2 + I-:KX2(2K _ I-:KX2 B:), (12) 
Bz-l Bz-l S 

which may be expressed as 

"1-2 = (1- K 2 X 2)CIA, (12') 

with 

A = (Bz -l)2 , C = (Bz- f+)(Bz- f-), (13a, b) 

where 

f± = 1 -(K+=Doo )(I-KX2)/(I-K2 X 2), (14) 

in which (10) for D 00 has been used; comparison of (14) with (11) shows that f+ is 
in fact F 00' Equation (12') may be written as 

"1-2 = (1- K2 X 2)(Bz- f+)(Bz- f-)I(Bz-l)2 . (12") 

The equations PeK = -2Vo, V<I>-KX = -KSIX and Pe = -2B/(I-XV<I» 
for GJ flow yield, on eliminating Pe' V <I> and K in pairs, 

KS = (1- KX2)/(Bz-l), Pe = -2VoS(Bz-l)/(I-KX2), (15a,b) 

V<I> = KX -(1-KX2)IX(Bz-l). (15c) 

MR W2 introduced the surface S /> defined by putting \12 <I> = 0 and "I = 00 in 
(8), yielding Bz = F oo ' as an outer limit for possible GJ, moderately accelerated, flow: 
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inside S" neglect of '\12 <I> in (8) is consistent with a finite Lorentz factor. In the 
vicinity of S" the GJ flow approximation must fail: the actual flow will be rapidly 
accelerated there, its Lorentz factor becoming large but remaining finite; dissipation 
or inertial effects, or both, will quickly become important and the above equations, 
except for (1) and possibly (2), will be inapplicable. 

3. The Functions f± 

As a preliminary step to obtaining information on the qualitative behaviour of GJ 
outflow, the functions f± will now be evaluated at a number of locations, with a 
view to following the behaviour of the GJ Lorentz factor, given by equation (12"), 
as it varies along a poloidal field/flow line. The locations include V and W, two 
surfaces which arise naturally from the extended MR W 2 formalism in a way that the 
light cylinder does not; that surface appears now merely as the common limit of V 
and W as G' ---+ O. 

Near the Star 

Taking X 2max(K2, I KI) .( 1 and B~ .( B~ in (10') and (14) shows that Doo ;:::; 
Bp/S and f± ;:::; ±Bp/S -EG' ;:::; ±Bp/S near the star; Bp/S is very large there. 
Equation (12") shows that y-2 ;:::; (1- V~)jj;/(jjz-l)2, with Vp ;:::; Va Bp/ Bz' near 
a polar cap; we note that Va(P) must be less than B/ Bp evaluated near the polar 
cap, which has a value slightly below one. 

On the Light Cylinder 

Equation (10) becomes 

Doo = [K2 +(1-K2 )B2/s2 J4 on X = 1. (16a) 

For K =1= ± 1 (i.e. E G' =1= 0 or - 2), equation (14) shows that 

f± = (1±D"J/(I+K), f+-f- = 2Doo/(1+K) on X = 1. (16b,c) 

For K> 1 (i.e. EG' > 0), it follows that 0 <; Doo < K on X = 1 and hence that 

1!(1+K)<;f+<I, -(K-l)/(1+K)<f-<;1!(1+K) on X=I, (17a,b) 

with 
o <; f+ - f- < 2K/(1 + K) on X = 1; (17c) 

in particular, 0 < f+ < 1 and f- <; f+ on X = 1. 
For 0 < K < 1 (i.e. -1 < EG' < 0), equations (16) show that Doo > K on X = 1 

and hence that 

f+ > 1, f- < (1- K)/(1 + K) on X = 1, (18a, b) 

with 
f+ -f- > 2K/(1+K) on X = 1; (18c) 

in particular, f- < f+ on X = 1. 
For -1 < K < 0 (-2 < EG' < -1), it follows from equations (16) that Doo > I KI 

on X = 1 and hence that 

f+ > (1+IKI)/(1-IKI), f- < 1 on X = 1 (19a, b) 
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with 
f+-f->2IKI/(I-IKI) on X=I; (19c) 

in particular, f- < f+ on X = 1. 
For K < -1 (EG' < -2), equations (16) show that 0.;;; Doo < 1 KI on X = 1 and 

hence that 

-(I KI + 1)/(1 KI-l) < f+ .;;; -11(1 KI-l), 

-11(1 KI-l) .;;; f- < 1 on X = 1, (20a, b) 

with 

0.;;;f--f+<2IKI/(IKI-I) on X=I; (20c) 

in particular, f+ < 0 and f- ;;;. f+ on X = 1. 
For K = 1 (G' = 0), equation (14) shows that f± = ± D 00 everywhere, with, 

from (11) and (10), Doo = Foo = {1 +(I-X2)B2/S2Jt; in particular, f+ = +1 
and f- = -Ion X = 1. For K = 0 (EG' = -1), equations (10) and (14) 
show that f± = 1 ±BIS everywhere. For K = -1 (EG' = -2), equation (10) 
becomes Doo = P +(I-X2)B2/S2Jt, so (14) shows that (l-X2)f+ = 4 and 
f- = - B~I B~ on X = 1: although f+ diverges on the light cylinder, the quantity 
(1- X2) C, containing vanishing and infinite factors, remains finite, and (12') yields 

-2 - 2 2 - 2 Y = -4(Bz+ Bpi B<j»/(Bz-I) on X = 1. 

On W.·IKIX= 1 

For K ~ 0 (EG' ~ -1), we let W denote the surface IKIX = 1. Examination 
of the definition (14) of f±, together with (10) for Doo' shows that for K > 0 
(EG' > -1), 

f+ = 1 +iEG'B2IB~, (1_K2X2)f- = -2EG' on W. (2Ia,b) 

So f+ is finite on W, but f- is singular there when G' ~ O. Substituting (2Ib) into 
(12") shows that, for K > 0, 

y-2 = 2EG'(liz-f+)/(liz-l)2 on W. (22) 

[The quantity (1- K2 X2) Con W contains vanishing and infinite factors, resulting in 
2EG'(liz- f+).] Equation (2ib), and hence (22), are not applicable for G' = 0, when 
W coincides with the light cylinder, on which f± = + 1. For K < 0 (E G' < - 1), the 

expressions (2Ia, b) for f+ and f- are interchanged and f+ in (22) is replaced by f-. 

On v.. !dX= 1 

For K > 0 (EG' > -1), we let V denote the surface KtX = 1. It is readily 
seen that, for K ~ 1 (G' ~ 0), f+ = 1 = f- on V, and that neither function can 
be unity anywhere else. This means that C and A can vanish together on V only. 
Since f+ is large and positive near the star, remains finite on Wand is unity on V 
only, f+ > 1 inside V and f+ < 1 outside V. For G' = 0, the surfaces V and W 
coincide on the light cylinder, where f± = ± 1. If liz ~ 1 on V, then C = A ~ 0 
there for G' ~ 0, so (12') shows that y-2 = - E G' on V; for G' = 0, the ratio 
CI A is (liz + 1)/(liz-I) on X = 1, so (12') shows that y-2 = 0 there, vanishing 
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because of the (1- X2) factor. If Bz = 1 on V, then A = 0 = C there (whether G' 
is zero or not) and a limiting process must be applied in order to evaluate "I on V. If 
L denotes the limiting value of (I-KX2)/(Bz -I) as V is approached along a flow 
line, then (12) shows that 

"1- 2 = L(2K-LB2/S2)-eG' on V, (23) 

covering all cases in which V exists. This may be written as 

"1- 2 = (B2/S2)(L+-L)(L-L-) on V, (23') 

where 132L± = B~±S(B~-eG'B~)~; we note that B~ = KS2 on V. For K> 1 
(eG' > 0), the easily-met condition B~I B~ > eG' on V ensures that L± are real; for 
o < K ..; 1 (-1 < e G' ..; 0), they are real, with values 2S2 I B2 and 0 when G' = O. 

Crossover 

Let us consider further the conditions for equality of f+ and f-. For K > 0 
but ~1 (eG' > -1 but ~), f+ = 1 = f- on V and f+ = f- ~ I if Dc<> = 0 
somewhere. For K = 0 (eG' = -1), equality cannot occur. For K < 0 (eG' < -1), 
equality is possible only with f+ = f- ~ 1, occurring if Dc<> = O. For G' = 0, 
f± = + Dc<>, so f+ and f- can be equal only if they vanish, the condition being 
Dc<> = 0; this condition is "I m = 00, corresponding to B~ = (K2 X2 - 1) B~, and 
cannot be satisfied inside W. 

Zeros 

The conditions for f± to vanish are Dc<>(1-KX2) = +eG' not on W. Hence, 
for K> 1 (eG' > 0), f+ cannot vanish outside, nor f- inside, V. For 0 < K < 1 
(-1 < e G' < 0), f+ cannot vanish inside, nor f- outside, V. For K ..; 0 (e G' ..; 
-1), f+ cannot vanish; the condition for f- to vanish is Dc<> (1 + I KI X2) = -e G' 
not on W; for K = O(eG' = -1), f- vanishes where BIS = 1, corresponding to 
B~ = (X2 -1)B~, which cannot occur inside or on the light cylinder. For G' = 0, 
the condition for f± to vanish is Dc<> = 0, which is "1m = 00 or B~ = (X2-1)B~, 
and cannot be satisfied inside the light cylinder; nor do f± vanish on the light 
cylinder-in this case, f± = ± 1 there. 

4. Flow Classes 

The qualitative behaviour of GJ outflow will now be studied by considering the 
equations for its Lorentz factor, taken together with the information on the functions 
f± deduced in the last section. This will be done by examining the behaviour of 
Bz , f+ and f- along an arbitrary poloidal flow line, remembering that Vo S is 
constant on each line. On these lines, which are also poloidal magnetic field lines, Bz 
may be thought of as behaving qualitatively as it would for a dipole field. 

As pointed out near the beginning of the last section, f+ ::::: Bpi S near the star, 
a very lar~e quantity, and Vo(P) must .be less than BzI Bp evaluated near the polar 
cap. So Bz . decreases from a very large positive value, exceeding f+, at the polar 
caps, and eventually passes through zero (on the Bz = 0 cones) to reach a maximum 
negative value on the equatorial plane. 
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The flows will be grouped into five types, labelled by values, or ranges of values, 
of K, corresponding to differences in their mathematical description. They will also 
be divided into Class I flows, for which the Lorentz factor given by equations (12) 
becomes infinite at some point on the flow line, and Class II flows, which reach the 
equatorial plane without encountering such a singularity. 

Type (> 1) Flows: K> 1; eG' > 0 

In this case, the surfaces V andW both exist, with W lying inside V, which is 
inside the light cylinder. The function f+ is large and positive near the star; f+ > 1 
inside V, f+ = 1 on V and, since it cannot vanish outside V, 1 > f+ > 0 there. 
The function f-; which is large and negative near the star, diverges on W, tending 
to - 00 as W is approached from the inside and decreasing from + 00 beyond W; 
since it cannot vanish inside V, f- < 0 inside W; f- > 1, = 1 and < I between W 
and V, on V and beyond V. 

If Bz decreases to equality with f+ at some point inside W, then C = 0 and 
'Y = 00 at that point: GJ outflow ends in a pole of its Lorentz factor inside W. If Bz 

falls to equality with f+ on W, where f- diverges, then the product (1- K2 X2) C is 
not only finite but zero there: as shown by (22), 'Y = 00 on W. If Bz is still above f+ 
on W, then 'Y is real and finite inside and, as shown by (22), onW. It continues that 
way beyond W so long as Bz remains above f+ and below f-: either Bz intersects 
one of these functions between Wand V, at which point C = 0 and 'Y = 00, or Bz 
falls to unity on V so Bz = f+ = f- = 1 and C = 0 = A there. (It is clear that 
A cannot vanish inside V without 'Y = 00 occurring closer to the star.) 

In the case in which Bz falls to unity on V, since 'Y-2 cannot jump from positive 
to negative values without passing through zero, 'Y- 2 ;;;. 0 on V; equation (23') shows 
that 'Y is real and finite on V if L - < L < L + there and is infinite if L = L - or L + . 
If 'Y is real and finite on V, then, by continuity, 'Y- 2 > 0 immediately beyond V, so 
Bz must lie above f- and below f+ infinitesimally beyond V: Bz must cross both 
f+ and f- on V; it cannot cross one and just touch the other. Outside V, either 
Bz intersects one of those functions, at which point C = 0 and 'Y = 00, or the flow 
continues on with f- < Bz < f+ to reach the equatorial plane with 'Y still finite. 

Type 1 Flows: K = 1; G' = 0 

In this case, the surfaces V and W coincide on the light cylinder. The function 
f+ decreases from its large positive value at the polar caps, passing through unity on 
the light cylinder; f+ > 1, = 1 and < 1 inside, on and outside X = 1. The function 
f- is just the negative of f+ . 

If Bz falls to equality with f+ at some point inside the light cylinder, then C = 0 
and'Y = 00 at that point. If Bz is still above f+ on X = 1, then'Y = 00 on the light 
cylinder because of the (1- X2) factor in (12") for 'Y- 2. (It is clear that A cannot 
vanish inside X = 1 without 'Y = 00 occurring closer to the star.) 

If Bz decreases to unity on X = 1, so that Bz = 1 = f+ and C = 0 = A 
there, then, since 'Y- 2 cannot jump from positive to negative values without passing 
through zero, 'Y- 2 ;;;. 0 on X = 1; equation (23) shows that 'Y is real and finite if 
0< L < 2S2/ B2 and is infinite if L = 0 or 2S2/ B2. In that case, beyond X = 1, 
either Bz intersects one of the functions f±, at which point C = 0 and 'Y = 00, or the 
flow continues on with f- < Bz < f+ to reach the equatorial plane with 'Y still finite. 
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Type (0,1) Flows: 0 < K < 1; -1 < eG' < 0 

In this case, the surfaces V and W both exist, with W lying outside V, which is 
outside the light cylinder. The function f+ decreases from its large positive value at 
the polar caps to unity on V; f+ > 1, = 1 and < 1 inside, on and beyond V. The 
function f- increases from its iarge negative value at the polar caps to + 1 on V, 
and goes on to diverge to + 00 as W is approached from the inside, beyond which 
it increases from - 00; f- < 1, = 1 and> 1 inside V, on V and between V and W; 
since f- cannot vanish outside V, f- < 0 beyond W. 

If Bz decreases to equality with f+ inside V, then C = 0 and y = 00 at that 
point. If Bz is still above f+ on V (so y-2 = -eG' there), then Bz must reach 
equality with f- somewhere between V and W; at that point, C = 0 and y = 00. 

(Since f+ > 1 inside V and f- > 1 between V and W, the quantity A cannot vanish 
inside V unless y = 00 occurs closer to the star.) 

If Bz falls to equality with f+ on V, so Bz = f+ = f- = 1 and C = 0 = A 
there, then, by continuity, y-2 > 0 on V; equation (23') shows that y is real and 
finite there provided L - < L < L + and is infinite if L = L - or L +. If Y is real 
and finite on V, then, by continuity, y-2 > 0 immediately beyond V; so Bz must lie 
below f+, which is below f-, in~nitesimally beyond V: Bz must cross f+ (as well 
as f-) on V, not just touch it. If Bz intersects f+ again between V and W, then 
C ,,; 0 and y = 00 there. But, if Bz is still below f+ on W, then y is real and finite 
inside and, as shown by (22), on W. It continues that way beyond W so long as 
Bz lies below f+ and above f"':' (which is negative there): either Bz intersects one of 
these functions beyond W, at which point C = 0 and y = 00, or the flow continues 
on with f- < Bz < f+ to reach the equatorial plane with y still finite. 

Type 0 Flows: K = 0; e G = - 1 

In this case, there are no surfaces V and W; the functions f± are 1 + B/ S 
everywhere and y-2 = C/ A. Since f+ is always above unity, while Bz along a 
poloidal flow line must eventually pass through zero, Bz must decrease somewhere· 
to equality with f+, at which point C = 0 and y = 00. (Clearly, A cannot vanish 
without y = 00 occurring closer to the star.) There are no Class II flows of Type 
0: in fact, GJ' flows of Type 0 do not reach the B z = 0 cones, but terminate with 
Bz > 1. 

Type « 0) Flows: K < 0; eG > -1 

In this case, there is no surface V, so neither f+ nor f- can equal unity. The 
surface W is outside, on and inside the light cylinder in the subcases - 1 < K < 0 
(-2 < eG' < -1), K = -1 (eG' = -2) and K < -1 (eG' < -2). The functions 
f± cannot cross each other inside W. The function f+ cannot vanish; it diverges on 
W, tending to + 00 as W is approached from the inside and increasing from - 00 

beyond W; thus f+ > 1 inside Wand f+ < 0 outside W. Since it remains finite, 
f- < 1 everywhere. 

Clearly, Bz must intersect f+ somewhere inside W, at which point C = 0 and 
y = 00. There are no Class II flows of Type «0): as with Type 0, GJ flows of Type 
«0) do not reach the Bz = 0 cones, but terminate with Bz > 1. 
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lA, IB and IC Flows 

The following subdivision of Class I, according to where the GJ flow terminates 
in the singularity of its Lorentz factor, is convenient in distinguishing flows having 
different mathematical descriptions: IA and IC flows are those for which the infinity 
arises from the vanishing of C at some point where Bz > 1 and Bz < 1 respectively; 
IB flows are those with the infinity on V. 

Class IA flows are confined within the outermost of V and W. For K..; 0 
(eG' ..; -1), there is no surface V, and all GJ flow is confined within W (considered 
as being at infinity when K = O)-all flows are of Class IA when K ..; O. Class IC 
flows terminate outside V. We note that, for 0 < K < 1 (-1 < e G' < 0), the zone 
between V and W can see the termination of both IA and IC flows. 

For G' =1= 0, Class IB flows all have Bz = 1 on V, with L = L - or L +. For IB 
flows when G' = 0, either the same is true or Bz > 1 (so C =1= 0) on X = 1. 

IC and II Flows of Type 1 

When the Endean integral is constant throughout the region concerned, rather than 
merely constant on each poloidal fieldlflow line, flows of Classes IC and II-which 
cross the light cylinder without encountering S r-are described, for a dipolar poloidal 
magnetic field, by 

- 9 ! 3 9! S(P) = 2P(I- g Q)2, Vo(P) = (1-:2 Q)/(I- g Q)2, (24a, b) 

where P == - P and Q = p2l3. (For the dipole field, P = X2 I R3 with R denoting 
. the spherical polar radial coordinate normalized to unity on the light cylinder in 
the equatorial plane.) These relations satisfy Vo = !dS/dP and the condition that 
Bz = 1 on the light cylinder. They were introduced by MRW2, who regarded them 
as describing Class IA flow in the limiting case in which S I is just inside the light 
cylinder, and have been used in a detailed study of ICIII flows (Burman 1985 b). The 
Lorentz factor corresponding to this Vo(P) is given by 

'Y5(P) = (8/15 Q)(1 - ~ Q)/(1 - ~ Q). (25) 

The relations (24) for S(P) and Vo(P) contain the unphysical limit Vo(O) = 1, so 
it is necessary in this particular case to check whether or not the condition 'Y5 V~ « 1 
at the polar cap, assumed in the identification of G(S) with 'Yo(P), remains satisfied 
as P -+ O. Equation (25) for 'Yo together with Vol X :::::: ~ Q, which is valid near a 
polar cap for flows described by (24), show that this condition is essentially QX2 « 1, 
which is satisfied very well. 

Since G is very closely equal to 'Yo, it follows that 

G'(P) = (fs)~(2 Vol3 Q2)(l - fo Q)/(l - ~ Q)312 . (26) 

This vanishes at the edge of the zone of GJ outflow (where Vo = 0 and Q = j) and 
diverges on the axis; it is 0·800 on the poloidal field line Q = ! separating IC and 
II flows; it is 1·00, 2·00 and 3·00 on Q = 0·46, 0·34 and 0·28 respectively; it is 
already O· lion Q = 0·65, just inside the edge of the zone. It is interesting to see 
that, although 'Yo does not vary much across Class IC flow (from 1 at Q = j to 
1·080 at Q = i), G'(P) varies from 0 to 0·800. (This is caused largely by the 1/~ 
factor, along with the Vo factor, which varies from 0 at Q = j to 0·378 at Q = !.) 
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In. the paper on Class IC/II flow (Burman 1985 b), some order-of-magnitude 
estimates were made which indicated that the theory based on the relations (24) fails, 
because of inertial drift generated in the vicinity of the Bz = 0 cones, on poloidal 
field/flow lines having Q ~ e2/3 and hence .'Yo ~ C 1/ 3. Since e is roughly in the 
range from 10-6 to 10-11 for different pulsars, the corresponding limiting 'Yo is from 
about 102 to 104 • 

The extended MRW2 formalism developed in Section 2 shows that neglect of 
the variation of the Endean integral is invalid if eG'(P) is a significant fraction of 
one. Equation (26) for G' shows that the theory based on the relations (24) fails 
for this reason on poloidal field/flow lines with Q ~ e~ and hence 'Yo ~ ci; the 
corresponding limiting 'Yo for different pulsars is from about 30 to 103. This limitation 
is a bit more stringent than that obtained from examining inertial drift. 

These considerations do not imply failure of the MR W2 approach to GJ flow: they 
merely reflect an inconsistency between the assumptions of IC/II flow and constancy 
everywhere of the Endean integral. The conclusion is this: either outflow from the 
innermost core of a polar cap is of Class IA/B, or poloidal flow-line dependence of 
the Endean integral must be incorporated. 

5. Concluding Remarks 

When G' =F 0, the light cylinder plays no special part in the mathematical 
description of GJ flows: rather, it is the surfaces V and W that do so, particularly 
the former. It is only flows with Bz = 1 on V that have the possibility of reaching 
values of Bz below one (Classes IC and II flows), and therefore the possibility of 
continuing to the Bz = 0 cones and beyond to the equatorial plane. 

The surface W exists unless K = 0 (e G' = -1), for which it has gone off to 
X = 00; this forms the simplest case mathematically, in that there is no special 
surface at all. For all cases with no V, namely those with K.;;; 0 (eG' .;;; -1), not 
only are there no IA or IB flows, but there are no Class II flows either: the GJ flows 
all terminate in an infinite Lorentz factor with Bz > 1, and hence cannot reach the 
Bz = 0 cones. For all cases with a surface V, namely those with K > 0 (eG' > -1), 
both Class I and Class II flows, with all three subdivisions of the former, are possible. 

Since G is closely equal to the Lorentz factor 'Yo corresponding to Vo, which is 
equal to !dS/dP' it follows that 

, 3 - 1 3 2 -2 
G (P) = -'Yo Vo d Vo/dP = - 2"'Yo Vo d S/dP . 

Hence, G' > 0 and G' < 0 correspond to emission speeds that respectively decrease 
and increase away from the poles. So, of the various flow types, Type (>1) with 
K just slightly above unity is likely to be the one of most physical interest in the 
treatment of electron emission. Other types may also. be required, for example in 
treating the outflow of positively charged particles. 
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