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Abstract 

A phenomenological NN interaction has been developed in momentum space to fit the elastic 
scattering phase shifts, the deuteron properties and to saturate nuclear matter. The special 
features of this interaction are gaussian momentum dependent form factors and the use of only 
three mesons to characterise the phase shifts. 

1. Introduction 

A momentum-space interaction is developed here, that is very similar to one 
previously defined (Petris 1981) to fit the phase shifts and the deuteron properties. 
The specification of that interaction, however, contained a computational error which, 
for some states, considerably affected the fit to the phase shifts (the fit to the low energy 
phase shifts and the deuteron properties was not greatly affected). In fact, the inability 
of the previous interaction to produce saturation of nuclear matter was a direct 
consequence, specifically because the repulsion in the S states was underestimated 
considerably. 

The 1981 interaction originated from the investigation of a certain functional form 
(Petris 1971)-a gaussian form factor divided by the usual Yukawa denominator-for 
fitting the NN data. This functional form was used in conjunction with three ranges 
which in meson exchange theory correspond to the mass of one pion, two pions 
and a p(765 MeV) or w(783 MeV) meson. The strengths for each contribution were 
determined separately for each partial-wave state. Here, we present an interaction 
which is similar to the 1981 one, but with some additional features, and with which 
we are able to fit the phase shifts (L = 0 - 5, EJab = 0-400 MeV), to obtain the 
deuteron properties and to saturate nuclear matter close to the correct values of E/ N 
and kF • 

2. The Interaction 

The interaction form we considered has, for the state a 
(a = a') matrix elements given by 

[LSJ, T], diagonal 

v,,(k, k') = G[ V~ FL(k, k', m,,) + V2" F'iJk, k', 2m,,) + V'j Fi(k, k', m3)} , (1) 
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Table 1. The V~ strengths 

State V,. ~,. J'3 State V,. ~,. V3 

ISO -4 -1+2zA 4 3PO +z 2-2z 10+ lOz 
Ipi 6 3+0·Sz -3+7z 3PI 6 l·S+l·Sz 10+6z 
ID -2 -1-0·Sz 12-lOz 3P2 0 -0·6-0·2z 1-2z I 2 
F3 6 3+1·Sz -3S+2Sz 1:2 +2z 1· 1 2-z 

10 -2 -1-1·3z 10-2Sz 3F -1 -1·4z 2S I 4 
6 3+1·Sz + lS0z 

3 2 
6 1+2z 60-30z Hs F3 

3F4 0 -l·S lS-lSz 
3S1 -6 -2+4zA 6+6zA 1:4 +2z 3 +6z 
1:1 -4z -1 -6z 3H4 -1 -3 -1 
3DI 12 2+6z 2S+2Sz 3HS 6 1+4z -60+60z 
3D2 -8 -2-3z 7-8z 3H6 
3D3 0 -0·7z 8-4z 
1:3 -6z -6 -14z 
303 3 S+2z +SOz 
304 -8 -2-8z 100-90z 
30S 

A See Section 2. 

where the overall strength G has the value 20·4 fm -I for all states, * the basic ranges 
and scales are 

m,. = 135.0/lie fm- I , 

~,. = 279·l/lie fm- I , 

m3 = 774.0/lie fm- I , 

M = 938·9/lie fm- I , 

m;1 = 1·462 fm, 

m2,.1 = 0·707 fm, 

m3 1 = 0·255 fm, 

lie = 197·33 MeVfm, (2) 

and Eiab = 2'Ak2 = 2'Ak'2 (where 'A = 41·5 MeVfm2) on the energy shell. The FL 
are defined by 

FL(k, k', mi) = (l/kk')QL(zi)(M/mi) exp{ -M/mi _(k2 + k'2)/2m7l, (3) 

in which 

Zi = (k2+ k'2+ m7)12kk', (4) 

and the QL(Zi) are Legendre functions of the second kind. The functions F'L are 
defined by 

F'iJk, k', mi) = {(k2+k'2)/2m7lFL(k, k', m j), (5) 

and the scaling strengths are taken in the form 

v~ = A+Bzi' (6) 

• This phenomenological value of G is equal, coincidentally, to 2(2M + m.".). 
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where A and B are constants. In the 1981 interaction the strength coefficients Vi 
had constant values. In this version the dependence on Zi represents contributions 
from operators such as k' • k and S. k' S. k; a specific set of which will eventually be 
used to characterise the entire Vi set. The Vi, given in Table 1, are subject to one 
proviso: a zi contribution in the S states is assumed to arise from the operator k'. k 
(tensor terms do not contribute in the ISO state and they produce QI (z) contributions 
in the 3S1 state), and for the partial-wave expansion one has 

f+1 

-I [k'. kl[(k'-ki+m2 J]PL(fL) dfL = zQL(z)-OLO' (7) 

where fL = k'. k and PL(fL) is a Legendre function of the first kind. For L = 0 the 
right-hand side of (7) is simply QI (z). Hence, for both the S states (and only the S 
states) the [A+BzJ QL(z) part of Vi F'L must be replaced by A(t(z)+BQI(z). This 
is important because z (t(z) > QI (z). 

For the off-diagonal matrix elements v"a,(k, k') (a = [L= J±I, S, J; T] and 
a' = [L' = J+ 1, S, J; T]), which are due to tensor operators and which determine 
the coupling parameters EJ, QL(z) in equation (3) is replaced by QJ(z), and FJ is 
replaced by F'J for the one pion term, whence 

v"a,(k, k') = G[ V7T FJ(k, k', m7T ) + Vz7T F'J(k, k', 2m7T ) + J'3 F'J(k, k', m3) J . (8) 

3. Fit of NN Data 

The matrix inversion technique (Haftel and Tabakin 1970) for solving the Lippman­
Schwinger equation was used to obtain the R-matrix elements for the interaction, 
from which the Blatt-Biedenharn phase shifts were obtained and, by transformation, 
the nuclear bar phase shifts. The resulting nuclear bar phase shifts for our interaction 
are compared with the np energy-dependent and single-energy analysis of Arndt et 
af. (1983) for the various channels indicated in Fig. 1. 

The strengths Vi given in Table 1 have been determined to give a good fit to the 
energy-dependent analysis of Arndt et az. using mainly integer numbers. The exception 
is the Vz7T strengths which are more sensitive to the data. The important- difference 
between these V; and those of the 1981 interaction is the greatly enhanced repulsion 
in the I So state (J'3 = 4 while previously J'3 = 1) and the 3S1 state (J'3 = 6 + 6z 
as opposed to J'3 = 1). Hence, the repulsion in the ISO state is four times, and that 
in the 3S1 state is approximately six times, that in the 1981 version. The singlet 
(S = 0) V7T values for L > 0 are simply -2TI.T2' and such a contribution is similar 
to the central part of the one-pion exchange potential (OPEP) but modulated by the 
gaussian form factor exp(-k2Im;'). The ISo and 3S1 values of V7T (-4 and -6 
respectively) are, however, considerably larger than what would be consistent with 
the OPEP, but are necessary to reproduce the scattering lengths, deuteron properties 
and the low energy phase shifts. The remaining V7T quite adequately represent the 
central plus spin-orbit plus tensor contributions for the triplet (S = 1) states. 

It is difficult to comment on the values of Vz7T because of the many different ways 
this very necessary 27T contribution has been included in NN interactions. It suffices 
to say that with this particular functional form and scaling, the values of Vz7T lie 
mainly in the range - 3 ---+ + 3 (note that z 2 ;::; 1 + 1/ k 2 on the energy shell), 
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Fig. 1. Curves of the phase shift as a function of lab energy for the present inter­
action for the various channels indicated. The squares and diamonds denote the np energy­
dependent values from Arndt et al. (1983), while the vertical bars denote a combined np and pp 
single-energy analysis by the same authors. 
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and produce contributions which are ideal for describing the intermediate energy 
(100-300 MeV) behaviour of the phase shifts. 

Although it is generally considered that the fit to the phase shifts need only be 
good up to 400 MeV (the energy to which the phase shifts are plotted), a comparison 
has been made up to Eiab = 1 GeV for the purpose of getting a better understanding 
of the (p, w) contribution. Noting that on the energy shell Z:3 ::::: 1 + 8/ k 2 , so that Z:3 
has an average value of 2 between 300 and 1000 MeV, this contribution to the phase 
shifts is not very different from that of the 1981 interaction. The z-dependence of the 
f3 appears to blend well with the functional form to describe the phase shifts even 
above 400 MeV for all except a few states-the unusually behaved 1 D2 state and the 
3PO and 3P1 states. A slightly unsatisfactory feature of the (p, w) contribution is this 
inability to reproduce the strong high-energy repulsion in the 3PO and 3P1 states. This 
is due to the off-the-energy-shell character of the functional form, and preliminary 
calculations indicate that this problem does not arise with a form factor that depends 
on the square of the momentum transfer q2 = (k' - k)2. The fact that many of the 
states have parameters f3 proportional to 1- z may be further indication of the need 
for such a dependence since on-shell q2 = 2k2(1 - k'. k) ~ 2k2(1- z). Such a form 
factor is presently being investigated, but it is felt that even if a q2 dependence is 
more appropriate, the present functional form is more tractable' for nuclear structure 
and reaction studies, and thus is, at least, a very appropriate approximation. 

Table 2. Low energy results for the np system 

Quantity Exp. value Interaction Method of calc. 

as(np) (fm) -23·7±0·1 -24·7 Ro(O,O) 
aT (fm) . 
Deuteron ,eSl-3D1) 

5·42±0·03 5·9 Ro(O,O) 

EO (MeV) 2·2246 2·19 Zero determ. 
Po 4-7% 6·0% 

The scattering lengths as and ar, the deuteron binding energy Eo and the D-state 
probability Po are compared with the experimental values in Table 2. All quantities 
converged to better than 1 % using 15 Laguerre points in the matrix inversion 
calculations, except for Eo for which 32 points were required. In view of the integer 
values used for the V; to characterise the S states, the agreement is quite good. It is 
possible to obtain a much more accurate simultaneous fit to ar and Eo, and as and 
the low-energy 1 So phase shifts, by using the off-shell (k2 =I k'2) behaviour k' k/ m2 

instead of (k2 + k '2)/2 m2 for the zi terms. This causes only small changes in the 
S-state potential strengths V;, and it is felt that until a q2 dependence is properly 
investigated, the present fit to these quantities is quite satisfactory. 

It is very interesting to note that the value of Po depends almost entirely on the 
f3 in the El row of Table 1. This is required to be z-dependent, and a change in 
this f3 from -4z to -6z changes the value of Po from 3% to 6%, while hardly 
affecting ar and Eo· 

The deuteron wavefunctions in momentum and coordinate space are presented 
in Figs 2 and 3 respectively. These bear the strongest resemblance to the deuteron 
wavefunctions obtained from the Reid hard-core potential, as can be seen from 
Mathelitschand Zingl (1978) where the deuteron wavefunctions of the most popular 
NN interactions are compared. 
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Fig. 2. Deuteron wavefunction in momentum space calculated with the present interaction. 

0·8r.---------r---------r--------.---------,-------~ 

S 
I 
g 
~ .... 
'::i -0·4 
~ .... 

-0·8 

D 

4 6 10 

r (fm) 

Fig. 3. Deuteron wavefunction in coordinate space calculated with the present interaction. 

4. Nuclear Matter 

The derivation of the correct nuclear matter energy per particle E/ N and saturation 
density p = 2k~/37T2, where kF is the Fermi momentum, is a criterion that a realistic 
(i.e. fitting the two-body data) NN interaction is expected to satisfy. There are, 
however, uncertainties in the method of calculating E/N, the conventional one 
being the Brueckner-Hartree-Fock (BHF), and a satisfactory agreement with the 
empirical values has not been achieved so far. The explanations put forward for 
this have included the neglect of higher order diagrams (Day 1981), the need for 
relativistic corrections (RBHF; see Shakin et al. 1980) and approximations made in 
BHF calculations (see Mahaux et al. 1975, 1978; Ma and Kuo 1983a, 1983b). In 
this section we present the results of a BHF calculation, making no comment on 
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Table 3. Nuclear matter results 

State 
1·2 1· 3 1·4 

'So -11·9 -13·8 -15·7 
'P, 1·9 2·7 3·7 
'D2 -1·5 -2-1 -2·8 
'F3 0·4 0·6 0·8 
'G4 -0·2 -0·3 -0·4 
'Hs 0 0-1 0·1 
3S, -21·0 -24·4 -27·9 
3PO -2·4 -3·0 -3·7 
3p, 7·6 10·3 13·7 
3p -4·4 -6·0 -7·9 3 2 

1·0 1·5 2·2 D, 
3D2 -1·9 -2·6 -3·4 
3D3 -0·3 -0·4 -0·6 
3F -0·3 -0·4 -0·6 3 2 

1·2 1·7 2·2 F3 
3F4 -0·1 -0·3 -0·4 
3G3 0·1 0·1 0·2 
3G4 -0·3 -0·4 -0·6 
3Gs 0 0 0 
3H 0 0 -0-1 
3 4 

0·2 0·3 0·4 Hs 
3H6 0 0 0 
KE 17·9 21·0 24·4 
EIN (BHF) -14·0 -15·3 -16·4 
EIN (RBHF) -12·5 -12·7 -11·9 
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Fig. 4. Energy per particle EI N of 
nuclear matter as a function of the 
Fermi momentum kF . The continuous 
curve shows the BHF result and the 
dashed curve the RBHF result. The box 
represents the area where saturation is 
expected. 
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the magnitude of the higher order corrections, and noting that the RBHF correction 
appears to cancel the effect of the model-space approach (MBHF) of Ma and Kuo; 
the BHF calculation shows that the present interaction produces saturation close to 
the expected (E/N, kF ) values. 

The matrix inversion technique is again used to solve the Brueckner-Goldstone 
equation and calculate the G matrix for infinite nuclear matter (Haftel and Tabakin 
1970). In the average c.m. momentum approximation, E/ N in BHF theory is given 
by 

E/N = ~EF +~(1i2/M) l:(2J+1)(2T+1)J
k

F (l-~k/kF +ik3/k}) 
~ a 0 

x Gaa(Kav; k, k)k2 dk, (9) 

where Kav refers to the average value of the c.m. momentum of the two nucleons 
below the Fermi sea with relative momentum k. To obtain Gaa , 10 Laguerre points 
were used for the matrix inversion and a 10 point Simpson's rule was used to evaluate 
the integral in equation (9). As found by Haftel and Tabakin, using 15 and 24 
Laguerre points changes the results by less than 2%, and increasing the number of 
Simpson points has almost no effect. 

The variation of the partial-wave potential energy contributions, the kinetic energy 
and E/ N with kF is shown in Table 3. As can be seen in Fig. 4, E/ N for BHF 
has a minimum value consistent with the -16 MeV from the volume term of the 
semi-empirical mass formula, although this occurs at kF = 1· 56 fm - 1 instead of the 
expected 1·36 fm -I. The compressibility of nuclear matter, given at the minimum 
by 

2 2 2 
K = kF a (E/N)/akF' (10) 

is 160 MeV for the E/ N value of Fig. 4. 
In a BHF calculation one simply uses a free particle spectrum for nucleons with 

k > kF. Such a spectrum has a discontinuity at kF' and Mahaux et al. (1975, 1978) 
advocated the use of a continuous single-particle spectrum, while more recently Ma 
and Kuo (1983a, 1983b) have proposed a better way of defining the latter. But for 
convenience, and to compare with most previous estimates, a discontinuous spectrum 
has been used in our calculations, the result of which will be referred to as the 
BHF result. Nevertheless, we note that Ma and Kuo (1983b) showed for the Reid 
(1968) and Paris (Lacombe et al. 1980) potentials, that their model-space approach 
(MBHF) increases the S-state contribution (mainly the 3S I ) by about - 3 MeV in 
the range kF = 1·2-1·6 fm -I, and has negligible effect on the other states. This 
provides an interesting conjecture when one takes into account the other important 
correction to the nuclear matter result, namely the relativistic one (RBHF) proposed 
by Shakin et al. (1980). This correction has a strong density dependence and is given 
approximately by 

I1E/N;::::: 3.6(p/Poi·4 , (11) 

where Po is the density at kF = 1· 36 fm -I. The magnitude of 11 E/ N increases 
rapidly from 1· 5 to 7·3 Me V as kF increases from 1·2 to 1· 5 fm - I, and such a 
contribution may force any interaction to saturate close to the correct kF• 
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It is interesting to note that the MBHF and RBHF corrections, if applied to our 
BHF result, would produce saturation at kF = 1·3 fm -1 with E/ N about - 16 MeV. 
The RBHF result obtained by adding !1E/N, as given in equation (11), to our BHF 
result is shown in Fig. 4. It is also interesting to note that, except for the 3S1 and 
3p 1 states, the potential contributions for the other states are very similar to those 
obtained by other potentials. If there is anyone factor responsible for producing the 
good value of E/ N, then it must be the much larger 3S 1 contribution obtained with 
our interaction. 

Since it was not the original intention to demand that nuclear matter be saturated 
precisely, and in view of the above corrections, let alone the possibility of sizeable 
higher order corrections, it is not known how much credence should be attached 
to our result. Of course, it is pleasing to obtain such a result with an interaction 
determined purely to fit the two-body data. 

It should be noted that an ordinary Hartree-Fock (V matrix as opposed to G 
matrix) calculation yields E/ N > 0, indicating that the G matrix elements of this 
interaction should be calculated for nuclear structure calculations. In the 1981 
interaction, where the repulsion was underestimated, the HF and BHF results did 
not differ greatly. 

5. Discussion of the Interaction 

Two important features of the interaction are to be stressed: 

(a) The gaussian form factor has the effect of confining the three contributions 
in the prediction of phase shifts, to particular energy ranges. The 1T contribution 
becomes negligible above 100 MeV. The 21T contribution dominates between 100 
and 300 MeV in most states, while the (p, w) contribution which is negligible below 
200 MeV, dominates above 400 MeV. This form factor has a far more important effect 
on the properties of the interaction than the usual Yukawa-type meson-nucleon form 
factors used by Holinde (1981) and other one-boson exchange potentials (OBEP, e.g. 
see Erkelenz 1974). 

(b) The 21T contribution has no rigorous experimental justification and theoretically 
its role in the OBEP interactions varies from author to author (see Holinde 1981). 
Under the guise of the (T meson it plays a varying role in the quark and gluon exchange 
NN interactions (see e.g. Bakker et al. 1982; Faessler 1984), where the long and 
intermediate range (r > 0·5 fm) part of the force is still attributed to 'the exchange 
of color singlet objects which can be identified with physical mesons' (Faessler 1985). 
The 21T contribution, however, is crucial to this interaction and together with this 
specific form factor, serves the function of the large collection of mesons used in other 
potentials. 

6. Summary 

A phenomenological two-nucleon interaction has been found with attributes in 
momentum space that not only characterise the deuteron and fit the scattering 
phase shifts, but also appear to saturate nuclear matter correctly. As far as NN 
interactions are concerned, this is quite unusual. Because the potential strengths Vi 
are not derived from operators, however, one can justifiably call this a 3 n-parameter 
interaction, where n is the number of states that have been fitted. For this reason, 
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until the V~ can be derived from a specific operator set, and the dependence of the 
form factor on the square of the momentum transfer is investigated, this remains as 
a phenomenological potential. But it is one which is most convenient for use in finite 
nucleus structure and reaction studies. Such studies are in progress. 

Acknowledgments 

The authors wish to thank Dr K. Amos for many helpful discussions and a critical 
reading of this manuscript, and the Physics Department at Melbourne University for 
inaking available its facilities. 

References 

Arndt, R. A, Roper, L. D., Bryan, R. A, Clark, R. B., VerWest, B. J., and Signell, P. (1983). 
Phys. Rev. D 28, 97. 

Bakker, B. L. G., Bozoian, M., Maslow, J. N., and Weber, H. J. (1982). Phys. Rev. C 25, 1134. 
Day, B. D. (1981). Phys. Rev. C 24, 1203. 
Erkelenz, K. (1974). Phys. Rep. C 13, 191. 
Faessler, A (1984). Prog. Part. Nuc/. Phys. 11, 171. 
Faessler, A (1985). Prog. Part. Nuc/. Phys. 13, 253. 
Haftel, M. I., and Tabakin, F. (1970).' Nuc/. Phys. A 158, 1. 
Holinde, K. (1981). Phys. Rep. 68, 121. 
Lacombe, M., et 01. (1980). Phys. Rev. C 21, 861. 
Ma, Z. Y., and Kuo, T. T. S. (19830). Phys. Lett. B 127, 137. 
Ma, Z. Y., and Kuo, T. T. S. (1983b). Proc. Int. Summer School on NN Interaction and Nuclear 

Many-body Problems (Eds S. S. Wu and T. T. S. Kuo),p. 178 (World Scientific: Singapore). 
Mahaux, C., Jeukenne, J. P., and Lejeune, A (1975). Phys. Rep. 25, 83. 
Mahaux, C., and Lejeune, A (1978). NucL Phys. A 295, 189. 
Mathelitsch, L., and Zingl, H. F. K. (1978). Nuovo Cimento A 44, 81. 
Petris, L. (1971). Ph.D. Thesis, Melbourne University. 
Petris, L. (1981). J. Phys. G 7, 309. 
Reid, R. V. (1968). Ann. Phys. (New York) 50,411. 
Shakin, C. M., Anastasio, M. R., and Celenza, L. S. (1980). Phys. Rev. Lett. 45, 2096. 

Manuscript received 2 October 1985, accepted 28 February 1986 




