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Abstract 

Cooper minima are known to profoundly affect photoionisation cross sections. They become 
particularly important in high- Z atoms where relativistic effects split each nonrelativistic Cooper 
minimum into three minima (two for s states). In addition, there are significant splittings in these 
'triplets'. In this paper, the systematics of these relativistic Cooper minima are explored, over a 
broad range of elements, for 5p, 5d, 6s and 6p subshells. The phenomenology is presented and 
the physics behind the results discussed. In addition, the important implications for branching 
rates and photoelectron angular distributions are presented. 

1. Introduction 

Over the past two decades, our understanding of the overall systematics of the 
photoionisation of low-Z atoms has mushroomed, largely through the interplay 
between theory and experiment (Fano and Cooper 1968; Manson 1976, 1977; 
Wuilleumier 1976; Starace 1981; Samson 1981). The calculations, however, have 
been largely nonrelativistic. Thus, their ability to deal with high-Z atoms, where 
relativistic effects become important and experimental data are sparse, is somewhat 
questionable. Thus, it is clear, that relativistic calculations are needed, and we have 
embarked on such a program. 

Relativistic interactions affect the photoionisation of high-Z atoms in a number 
of ways. In this work we have sought to uncover which aspect(s) of the relativistic 
interactions are most important to photoionisation. To this end, we have focused 
our study on the feature of photoionisation cross sections which is, perhaps, most 
sensitive to the details of the calculation, the Cooper minimum (Cooper 1962; Manson 
and Cooper 1968). This minimum, perhaps more accurately called a Ditchburn­
Bates-Seaton-Cooper minimum, is characterised by a photon energy for which the 
dipole matrix element for the dominant I ---+ 1+1 channel has a zero. These zeros 
occur extensively for outer and near-outer subshells throughout the periodic system 
(Manson 1985). It is important to note that a single nonrelativistic zero splits into 
three (two for initial s states) under the influence of the spin-orbit interaction; for 
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example, a nonrelativistic p -+ d channel splits into P3/2 -+ d3/2 , P3/2 -+ dS/2 and 
P1l2 -+ d3/2 relativistic channels, each having its own Cooper minimum (zero) at a 
different energy. 

In this paper we present and compare results for 5p, 5d, 6s and 6p subshells 
over a range of Z values. Calculations were performed using simple Hartree-Slater 
(HS) wavefunctions (Herman and Skillman 1963) for the nonrelativistic case, and 
Dirac-Slater (DS) wavefunctions for the relativistic case. Using the same atomic 
model in each case, with the HS calculations based on the Schrodinger equation and 
the DS calculations based on the Dirac equation, we could then elucidate the effects 
specifically due to relativistic interactions. The details of these calculations have been 
given by Manson and Cooper (1968) and by Tambe and Manson (1984). 
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Fig. 1. Trajectory (in photoelectron energy) of the 'Cooper' zeros in the 6p ---+ d 
dipole matrix elements, as a function of Z. The relativistic matrix elements 
are labelled, while HS refers to the nonrelativistic Hartree-Slater results. Also 
shown, for comparison, is the spin-orbit splitting of the 6Pllr6P3/2 energy levels 
as a function of Z. 

2. Results and Discussion 

The results for the 6p -+ d Cooper minima are given in Fig. 1 (Manson et al. 
1983), where the trajectories of each of the relativistic and nonrelativistic minima are 
shown as a function of Z. There are several striking features in these results. First, 
we note the strong Z dependence of the 6P1l2 -+ €d 3/2 minimum; for Z = 82 it is 
located about 200 eV above threshold, while by Z = 100 it appears about 460 eV 
above threshold. Second, the, energy splitting between the 6P3/2 and 6P1l2 minima 
is huge, being 100 eV for Z = 82 and increasing to more than 300 eV by Z = 100. 
There is also a splitting between the 6P3/2 -+ €d 3/2 and 6P3/2 -+ €d s/2 minima which 
increases slowly from about 20 eV at Z = 82 to almost 50 eV at Z = 100, as can 
be seen from Fig. 1. Further, the locus of the nonrelativistic p -+ d minima lies 
below any of the relativistic minima, roughly a constant 10 e V below the P3/2 -+ d3 /2 

minima independent of Z. Thus the effect of relativistic interactions is both to move 
the minima to higher energy and to introduce a very significant energy splitting among 
them. 



Photoionisation of Heavy Atoms 681 

To understand these results, we consider first the P1l2 - d3/2 and P3/2 - d3/2 
mmima. In our DS calculation for a given photoelectron energy E, the Ed3/2 
wavefunction is exactly the same, independent of the initial state of the photoelectron. 
Thus, since the final state in each of these transitions is exactly the same, the huge 
splitting must result from the differences between the 6PI/2 and 6P3/2 bound-state 
wavefunctions. In a first approximation, in regions where these wavefunctions are 
large, the 6p1/2 wavefunction is the same as that of 6p3/2 only displaced inward 
towards the nucleus, because the spin-orbit force is attractive for j = /- ~ but 
repulsive for j = / + ~. Thus at the energy for which the overlap of the 6p3/2 
wavefunction is such that the dipole matrix element vanishes, the radial extent of the 
Ed3/2 wavefunction is still too great to have the similar overlap needed for the 6P1l2 
matrix element to vanish. Since continuum wavefunctions move in with increasing 
energy, it is clear that the 6P1l2 minimum will occur at a higher energy. 

The 6p1/2-6P3/2 spin-orbit splitting of bound-state energies, also shown in Fig. 1, 
is an order of magnitude smaller than the splitting of the minima. One might think 
that the same energy difference by which the discrete PII2 wavefunction is displaced 
inward from that of P3/2 should cause Ed3/2 to move in similarly, so that the minima 
would be split by about the same amount as the discrete states. This is not true, 
owing to the centrifugal barrier for d waves which makes it far more difficult for 
continuum d waves to penetrate the core region than for the discrete p orbitals. The 
strength of the centrifugal barrier for d waves, then, is responsible for the more than 
tenfold 'magnification' of the splitting, while the increasing strength of the spin-orbit 
interaction as Z increases causes the increased splitting of the minima with Z. 

We see from Fig. 1 that the location of the 6p3/2 - Ed3/2 zero varies little with Z 
while, as already noted, the 6P1l2 - Ed3/2 zero shows an extremely strong variation. 
In examining this difference, we have observed that both 6p wavefunctions move 
in by about the same amount with increasing Z, with the displacement of 6P1l2 
inward with respect to 6P3/2 remaining roughly constant. (Although the 6P1l2-6P3/2 
spin-orbit energy splitting increases with increasing Z, it also takes a larger energy to 
displace the wavefunctions as they moVe toward the interior of the atoms where the 
potential is larger.) The d wavefunctions are also displaced inward with increasing 
Z, and just enough so that the 6p3/2 - Ed312 minimum has very little variation with 
Z. Then, although the Ed3/2 wavefunction moves in the same distance for each Z 
to reach the point where the 6P1l2 - Ed3/2 matrix element vanishes, since the 6p 
wavefunctions are displaced inward with increasing Z it takes progressively more 
energy for the Ed312 wavefunction to move in that same distance owing to the strength 
of the d-wave potential barrier. Thus a given energy increase has a greater effect 
on the Ed3/2 wavefunction in the vicinity of the 6p3/2 minimum than near the 6PI/2 
minim~m, which occurs when the continuum wavefunction is closer in. 

The much smaller splitting between the 6p3/2 - Ed3/2 and 6P3/2 - Ed5/2 minima 
is evidently due to the final continuum states, since the initial states are exactly the 
same. The spin-orbit force pulls the Ed3/2 wavefunction in and pushes Ed5/2 out; 
thus, the Ed3/2 minimum occurs at lower energy, as seen in Fig. 1. In addition, the 
increase in the strength of the spin-orbit interaction with Z causes the increase in 
the separation of this minima with Z. 

Finally, we note that the nonrelativistic 6p _ Ed minimum behaves almost exactly 
like the 6p3/2 - Ed3/2 minimum, as a function of Z. Owing to the relativistic 
contraction of the core, the electrostatic attraction becomes greater for p states and 
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less for d states, compared with nonrelativistic values (Manson et al. 1983). But, the 
6P3/2 wavefunction also 'feels' a spin-orbit repulsion which renders its net attraction 
approximately nonrelativistic, while Ed3/2 'feels' a spin-orbit attraction, so that its net 
attraction is also approximately nonrelativistic. 
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A similar result is found for the 6s subshell shown in Fig. 2a. In this case 
the 6s -- EP1l2 zero moves below threshold by Z = 84, while the 6s -- EP3/2 zero 
is moving toward higher energies. Basically, the 6s and EP1l2 wavefunctions both 
contract under the action of relativity (as discussed above) so that this transition is 
rather similar to the nonrelativistic HS result, also shown. The outward movement 
of the 6s -- EP3/2 zero is because the spin-orbit force is repulsive for a P312 state; the 
situation is quite similar to the 6P1l2 -- Ed3/2 transition discussed above. 
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The situation for the 5d subshell (Tambe and Manson 1984), shown in Fig. 2b, is 
similar to the 6p case, with one important exception; the energy scale of the splitting of 
these zero trajectories is much smaller. This is due to the fact that spin-orbit splittings 
become smaller with increasing I. Below Z= 80, the zeros move out because the 
5d discrete orbitals are contracting with increasing Z, while the continuum f state is 
not. The zero moves to lower energies in all of the relativistic channels, as well as the 
nonrelativistic channel, in the range Z = 80-90, indicative of the contraction of the 
f wave in this region. This contraction is more rapid than the discrete 5d contraction, 
leading to a net moving in of the zero. At still higher Z values the behaviour of the 
trajectories is obscured by wiggles which are"-of small amplitude, but real. They are 
due to the irregular filling of the 6d subshell as compared with the 5f subshell in this 
region. However, if regular filling is assumed, they disappear (Tambe and Manson 
1984). Thus, ignoring them, it is seen that the dS12 zeros remain at a fairly constant 
energy, while the d3/2 zero is moved to larger energy, with increasing Z, similar to 
the 6p case. 
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Fig. 3. Photoelectron angular distribution asymmetry parameter {3 for the Spl/2 
and SP3/2 subshells of uranium. 

The results for the 5p photoionisation are shown in Fig. 2e. These again are very 
similar to the 6p results, with a very important exception; by Z = 90 the P3/2 zeros 
have moved below threshold while the Pl/2 zero is moving out. The P3/2 zeros behave 
substantially like the nonrelativistic case (Manson 1985). Thus above Z = 90, only 
the 5Pl/2 photoionisation channel has a zero. This has interesting consequences. For 
example, the photoelectron angular distribution asymmetry parameter /3 is rather 
different depending on whether or not the channel has a zero. Generally, the /3 values 
for spin-orbit doublets are rather similar, but not in this case. The values for the 5p 
subshells of uranium are shown in Fig. 3 where it is clearly seen that the two curves 
behave rather differently. It can be shown that /3 is zero at the location of the zero 
in the p--d channel (Manson 1973). This is seen in the /3 value for the 5Pl/2 subshell 
just above 6 a.u. For the 5P3/2 subshell, the zero appears to be just below threshold. 
Thus, the existence of separated zeros gives rise to /3 values which differ by as much 
as 2 units, just above threshold, which is a very large fraction of the total possible 
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variation of {3 (3 units) from -1 to 2. In the threshold region then, the calculation 
predicts that the photoelectrons from the 5P3/2 subshell will be rather isotropic, while 
those from 5PIl2 will be close to a cos28 angular distribution . 
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Fig. 4. The 6P3/r6P1I2 branching ratio for radon, showing the RRPA length 
and velocity results and the Dirac-Slater (DS) result. The arrows denote the 
minima in the RRPA calculation; the ones near 7 a.u. are from 6P3/2 while the 
one at 12 a.u. is from 6P1I2' The horizontal dashed line represents the statistical 
ratio. 

In addition, branching ratios are bound to be affected by the location of these 
zeros. When one channel has a zero, clearly its cross section will be anomalously 
small compared with a channel that does not have a zero in that vicinity. Returning 
to Fig. 1, it is seen that for the 6p case, the P3/2 zeros are at a much lower energy 
than those of P1l2' Thus the 6P3/2-6Pl/2 branching ratio should be smaller than the 
statistical ratio of 2 at the lower energies, and above 2 at the higher energies. The 
actual result is shown in Fig. 4 where it is seen that the DS result is as predicted. 

All of the relativistic results presented here were calculated using the DS formalism. 
At this point it is fair to inquire as to the reliability of such results, calculated as they 
were with approximate exchange and correlation omitted. Since experimental work 
in this Z region is too sparse for an appeal to experiment to answer the question, we 
have performed far more accurate relativistic random phase approximation (RRP A) 
calculations for radon, Z = 86. The RRP A calculations include exchange along 
with a significant amount of correlation (Johnson and Cheng 1979). The results for 
the 6p branching ratio, in both length and velocity formulations (Starace 1981) are 
also shown in Fig. 4. Except for a resonance in the threshold region caused by 
interchannel coupling with the 5d subshell, the structure on the branching ratio is 
the same as the DS prediction. The arrows in Fig. 4 show the location of the zeros 
in the RRP A calculation. The splitting between them is almost precisely the same as 
the DS result, but they are all shifted upward in energy by about 3 a. u. The result 
of this shift is an overall shift of the branching ratio curve to higher energy. It is 
thus clear from the comparison that, while the actual positions of the zeros in the 
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DS calculation may be somewhat inaccurate, the splittings and overall systematics 
are substantially correct. 

3. Concluding Remarks 

The results presented herein show the significant effects that relativistic interactions 
have in one aspect of the photoionisation of high- Z atoms, the splittings and shifts of 
the zeros in the dipole matrix elements. In addition, some important implications of 
these zeros were presented involving photoelectron angular distributions and branching 
ratios. While the effects are confirmed in one case by an RRP A calculation, they 
have yet to be tested experimentally. Such experimental tests, in a few cases, would 
be very helpful to our understanding. 
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