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Abstract 

We calculate the electron-phonon enhancement effect in thermopower using several different 
models for the Eliashberg function a 2 F(E) which describes the interaction of electrons and 
lattice vibrations. The behaviour of a 2 F(E) at low energies determines whether the predicted 
thermopower enhancement shows a peak at low temperatures, but the enhancement is rather 
insensitive to the detailed spectral shape of a 2 F(E) at higher energies. The calculations are able 
to give a good account of the thermopowers of several glassy metals measured by Gallagher and 
Hickey (1985), with slightly better agreement obtained for a smooth rather than a Debye-like 
a 2 F(E). 

1. Introduction 

It is well known that the interaction of electrons with lattice vibrations increases 
the effective mass of electrons in the vicinity of the Fermi surface by a factor of 
1 + A., where A. ranges from O· 1 for non-superconductors to 1· 5 for strong-coupling 
superconductors, leading to electron-phonon enhancement effects at low temperatures 
in for example the electronic specific heat (see e.g. Grimvall 1981). This interaction 
is significant only for electrons in a band at the Fermi level of width corresponding 
approximately to the Debye energy, i.e. the maximum phonon energy. Hence at 
temperatures above the Debye temperature TD , the enhancement effect is expected to 
disappear. However, the temperature dependence of electron-phonon enhancement 
is usually masked by other larger effects (e.g. the lattice term in the specific heat or 
the phonon drag in crystalline thermopower). The thermopower of glassy metals, in 
which the strong disorder scattering suppresses phonon drag (JackIe 1980), provides 
the first dear demonstration of the decay of electron-phonon enhancement with 
temperature (Gallagher 1981; Kaiser 1982). 

Measurements on many glassy metals (see e.g. Gallagher and Hickey 1985; Naugle 
et al. 1985; Fritsch et al. 1985) and on amorphous films (Rathnayaka et al. 1985) 
have provided further evidence that electron-phonon enhancement is the dominant 
cause of nonlinear thermopowers in non-magnetic amorphous metals. Naugle et al. 
(1985) fitted their data on LaAI, CaAI and LaAIGa glassy metals to the calculated 
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thermopower shape (Kaiser and Stedman 1985) for a Debye-like Eliashberg function 
a 2 F(E). 

In this paper we extend the theoretical calculations to other Eliashberg function 
shapes, and make fits to the detailed data of Gallagher and Hickey (1985) on many 
glassy metals. In seeking to test to what extent current theory accounts for the 
thermopower temperature dependence, it is of interest to look for possible systematic 
discrepancies that might be attributable to electron-electron correlations or to incipient 
localisation, which have recently been found (Imry 1980; Riipp et al. 1982; Howson 
1984) to produce significant effects in the temperature dependence of the resistivity 
of glassy metals. 

2. Theoretical Calculations 

General Expressions 

For many years it was believed that electron-phonon renormalisation of the electron 
mass did not affect d.c. transport properties (Prange and Kadanoff 1964). However, 
Opsal et al. (1976) pointed out that because thermopower involves the derivative 
of conductivity with respect to energy, and the energy scale is renormalised, it is 
enhanced by the factor 1 + A at low temperatures. Additional contributions are 
expected from velocity and relaxation time renormalisation (Lyo 1978; Vilenkin and 
Taylor 1978), as well as higher order diagrams (Ono and Taylor 1980), so that the 
low temperature thermopower enhancement is not simply 1 +1... The size (and even 
sign) of these additional contributions in real systems remains uncertain. 

Fortunately, the situation with respect to the temperature dependence of these 
thermopower contributions is much simpler: the calculation of the decay of the 
1 + A thermopower enhancement (Kaiser 1982) is also applicable for the velocity 
and relaxation time effects (Kaiser 1984), and even for the higher order diagram 
contribution in glassy metals where elastic disorder scattering is large (Kaiser and 
Stedman 1985). The reason for this similarity is that in each case the temperature 
dependence is governed by virtual phonons. 

The diffusion thermopower S can therefore be written as a function of temperature 
T as 

SIT = Xb !1 + aAXs(T)) , (1) 

where Xb is the bare thermopower parameter St,IT (St, being the bare thermopower) 
in the absence of the electron-phonon interaction. For non-magnetic systems we 
expect St, to be approximately linear in temperature, i.e. Xb constant, as given by the 
usual Mott formula (see e.g. Blatt et al. 1976). The effective enhancement factor at 
low temperatures is 1 + aI.., the constant a accounting for the additional contributions 
mentioned above and changing the effective enhancement from 1 +1... We mention 
that the form of equation (1) is still valid in the presence of spin fluctuations provided 
the system is not too near the magnetic transition, the effect of the spin fluctuation 
enhancement Asf being to reduce the value of the constant a by the factor 1 + Asf 

(Kaiser et al. 1984). 
Finally, Xs( T) gives the temperature dependence of the thermopower effects due 

to the electron-phonon interaction, normalised to unity at zero temperature, and is 
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expressed by (Kaiser 1984) 

'As(T) = J: dE a2iE) Gs(ElkB T) / J: dE a2~E), (2) 

where kB is Boltzmann's constant, and a 2 F(E) is the Eliashberg function which 
depends on the lattice vibration density of states F( E) at energy E modified by an 
electron-phonon coupling parameter a 2. The universal function Gs(Y) is (Kaiser 

1982) 3 +00 af +00 f(t)y2 
Gs(Y) = 2 J dz (- -)z J dt 2 2 ' (3) 

1T -00 az -00 (t-z)-y 

where f( t) is the Fermi function. 
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Fig. 1. Six models used for the Eliashberg function a 2 F(E), characterised by the power law 
index n of a 2 F(E) at low energies. The full curves show the smooth shapes defined by equations 
(4)-(7) with m = 8, and the dotted lines the corresponding Debye-like shapes. The vertical scale 
is arbitrary. 

Models for the Eliashberg Function 

The above theory indicates that the temperature dependence of the electron-phonon 
thermopower effects, represented by 'As( T), is determined once the Eliashberg function 
a 2 F(E) is known. In crystalline materials the electron-phonon coupling a 2 shows 
little variation with energy (see e.g. Grimvall 1981), so a2 F(E) follows the phonon 
density of states by showing an E2 variation at low energies. In amorphous materials, 
the situation is less clear. As a result of loss of wavevector conservation, a variation 
of a 2 with E- 1, and so of a 2 F( E) with E, has been predicted and observed at 
low energies in amorphous simple metals (Bergmann 1971; Poon and Geballe 1978). 
However, Kimhi and Geballe (1980) found that a 2 F(E) varies with E2 at low 
energies in the amorphous transition metals Nb and Mo, and Meisel and Cote (1981) 
calculated this behaviour taking account of phonon ineffectiveness when the phonon 
wavelength exceeded the electron mean free path. Finally, Keck and Schmid (1976), 
FrobOse and JackIe (1981) and Poon (1980) calculated an E3 variation of a 2 F(E) at 
low energies. Thus, we carried out calculations for a 2 F(E) varying with En, where 
n = 1, 2 and 3, as indicated in Fig. 1. The dotted lines in Fig. 1 show the Debye-like 
approximation in which the energy dependence is taken as constant up to a sharp 
cut-off, corresponding to the Debye energy and temperature. The phonon density of 
states in amorphous metals, however, is smeared out to some extent, resembling a 
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gaussian shape (except at lowest energies) in CuZr and MgZn (Suck et al. 1980, 1981; 
Holden et al. 1981). We, therefore, also carried out calculations for smooth a 2 F(E) 
shapes such as those shown by the full curves in Fig. 1, and represented analytically 
by 

a2F(E) = c[(l+E- n)(1+Em)]-l, (4) 

where n gives the exponent of the power law at low energies (n = 1, 2 or 3), m 
determines the shape of the high energy tail (with m = 8 for the examples in Fig. 1), 
c is an arbitrary normalisation constant that does not affect ~ s( n, and 

~ 
'-" 
I-<~ 

1·2 

0·8 

0·4 

o 

E = E/Eo. 

0·2 0·4 0·6 

TITb 

Fig. 2. Calculated temperature dependence of electron-phonon 
enhancement for the Eliashberg function models of Fig. 1 [full 
curves are for the smooth a 2 F(E) shapes and dotted curves for 
the Debye-like models]. For each set of three curves the value 
of n is indicated, while T'f) is the effective Debye temperature 
defined by equation (6). 

(5) 

The effective Debye energy E1) and temperature r1) for our a 2 F(E) distributions 
are defined (Suck et al. 1981) as those for the Debye-like distributions having the 
same mean-square energy (indicated by the dotted lines in Fig. 1). In this case the 
energy scale parameter Eo is given by 

where 

( n+3)12)! 
kB r1) = E1) = Eo (n+l)lQ ' 

Jl.S 

Ip = 0 EP[(1+E-")(l+Em)]-l dE 

(6) 

(7) 

[note that we have cut off the small high-energy tail of the a 2 F(E) distributions at 
E = 1.5]. 
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Results 

Fig. 2 shows the calculated temperature dependence of electron-phonon 
enhancement corresponding to the six Eliashberg function models of Fig. 1. The 
following features are evident: 

(i) The curves scale with the Debye temperature Tt for a fixed shape of a 2 F(E). 

(ii) The behaviour of a 2 F(E) at low energies determines whether the predicted 
thermopower enhancement shows a peak at low temperatures, analogous to the 
peak in the electron-phonon mass enhancement at the Fermi level (Grimvall 
1981). There is a peak for n = 2 or 3 but not for n = 1. 

(iii) The shape of the enhancement curves is less sensitive to variations in the 
high-energy shape of a 2 F(E), i.e. to the value of m or the presence of the 
Debye cut-off, the main effect being accounted for by a change in effective 
Debye temperature Tt. However, the peak in Xs< T) is slightly smaller, 
and at lower temperatures relative to the decay in enhancement at higher 
temperatures, for a smooth a 2 F(E) than for a Debye-like a 2 F(E). For 
example, for n = 2, the temperature at which X s( T) has decayed to O· 5 is 
four times the temperature of the peak for the smooth a 2 F( E), but only 3·5 
times for the Debye-like ·a2 F(E). 

3. Comparison with Experiment 

Gallagher and Hickey (1985) have made accurate thermopower measurements on 
14 non-magnetic glassy metals, so it is of interest to make a detailed comparison with 
our calculations. We have fitted each data set to the six enhancement curves in Fig. 2 
to determine which value of n~ and which shape, gives the best fit. The best of the 
three fits for each shape (smooth and Debye-like), with the corresponding value of n, 
are listed in Table 1, and best fits for the smooth a 2 F(E) shapes are compared with 
the data in Fig. 3. We can make the following observations: 

(i) Most of the alloys show a peak in S/ T at low temperatures so, as concluded 
by Gallagher and Hickey (1985), the data suggest that in glassy metals a 2 F(E) 
varies as n = 2 or 3 rather than as n = 1 at low energies. Exceptions are the 
La-based alloys in which the thermopower is negative (see Fig. 3 a). 

(ii) The fits using a smooth Eliashberg function are in general slightly better than 
those for a Debye-like shape, except for the CU90HfIO and C022Zr78 glasses 
for which both fits are poor (see Fig. 3c). 

(iii) The fitted values of Tt are larger for the smooth a 2 F(E) shapes than for 
the Debye-like shapes (for the same value of n), as a result of the horizontal 
shift of the curves in Fig. 2 mentioned in Section 2. Since the effective 
Debye temperature Tt for thermopower enhancement applies to the a 2 F(E) 
distribution rather than the lattice vibration density of states F( E), close 
agreement with values of Tn deduced from other properties such as the specific 
heat would not be expected. Nevertheless, it can be seen from Table 1 that 
there is in general reasonable agreement; for example, the lowest values of Tt 
are obtained for the La-rich glasses which have the lowest Debye temperatures. 

(iv) The fitted values of the low-temperature effective enhancement aA are similar 
to, but somewhat larger than, the usual mass enhancement (except for the 
poor fit for C022Zr78 and the lower fitted value for Fe24Zr76)' ranging from 
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Table 1. Best fits of the experimental thermopower measurements of Gallagher and Hickey 
(1985) to our theoretical expressions 

Fits using Debye-like (D) and smooth (S) Eliashberg functions are shown on successive lines 
to aid comparison. The fitting parameters Xb , T!J and at. are defined in equations (1) and (6), 
with n = 1, 2 or 3 being the power of the energy dependence of a 2 F(E) at low energies, and 
{T2 the residual variance of the fit. Also shown for comparison are the values of t. (estimated 
largely from superconducting transition temperatures) listed by Gallagher and Hickey (1985), 
and the Debye temperature TD (from the specific heat), where available, from Mizytani (1983), 

Gallagher (1981) and Naugle et at. (1985) 

System a 2 F(E) n Xb at. T!J {T2 t. TD 
model (nVK- 2) (K) (nVK-2)2 (K) 

La78Ga22 D -5·31 0·95 115 0·043 
S -5·27 1·01 132 0·027 0·8 109 

La76AI24 D -4·73 1·09 110 0·016 
S -4·70 1·17 123 0·012 0·8 125 

Ni60Nb40 D 2 1·57 0·66 127 0·006 
S 2 I· 56 0·69 141 0·006 0·6 240 

Ni64Zr36 D 2 2·50 0·97 213 0·010 
S 3 2·50 0·96 207 0·009 0·4 

Ni36Zr64 D 2 8 ·13 0·71 233 0·077 
S 2 7·99 0·74 266 0·069 0·6 235 

CU50Ti50 D 2 4·25 0·55 196 0·011 
S 3 4·25 0·54 191 0·011 0·3 297 

Fe24Zr76 D 2 5·38 0·31 197 0·025 
S 3 5·38 0·31 191 0·025 0·7 

Ti50Be40ZrlO D 2 6·47 0·49 224 0·067 
S 2 6·41 0·51 253 0·062 0·3 190 

CU30Zr70 D 2 8·42 0·62 216 0·047 
S 2 8·34 0·64 242 0·034 0·6 184 

CU50Zr50 D 2 8·69 0·59 200 0·043 
S 3 8·69 0·58 192 0·039 0·4 231 

CU70Zr30 D 2 9·65 0·51 192 0·042 
S 3 9·65 0·50 186 0·039 0·3 230 

CU50Hf50 D 3 11· 36 0·52 142 0·033 
S 3 11·30 0·53 156 0·028 0·4 

CU90HflO D 3 13·28 0·23 181 0·129 
S 3 13·26 0·23 198 0·138 0·1 

C022Zr78 D 3 5·88 2·07 293 19·048 
S 3 6 ·14 1·94 311 19 ·125 0·6 

about 1· 1 for the La-rich glasses to 0·2 for CU90HflO' [Our fitted values for all. 
are slightly larger than those estimated from the high and low temperature Sf T 
values by Gallagher and Hickey (1985) as a result of the slow decay of X. s( T) at high 
temperatures and the stronger than expected decrease of the data often seen at the 
lowest temperatures.] Although there is evidence that other virtual phonon effects, 
at least in NiZr, increase the value of all. above A when S is positive (Kaiser 1984; 
Kaiser and Stedman 1985), the reasonable agreement of the fitted all. values with 
A suggests that energy-renormalisation enhancement has the dominant effect on the 
thermopower. 
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Fig. 3. Fits of the present calculations for the smooth Eliashberg model to the data of Gallagher 
and Hickey (1985) for: (a) two La-based glasses which best fit the n = 1 models (parameter 
values for the fits are given in Table 1); (b) six alloys with positive thermopower (some fits listed 
in Table 1 that overlap those shown are omitted); and (c) the last two alloys of Table 1 for which 
the fits are worst. 
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4. Conclusions 

Our calculations are clearly able to explain the main features of the data with 
reasonable values of the effective Debye temperature Tt and zero-temperature 
effective enhancement at.., providing further evidence that the characteristic curvature 
of glassy metal thermopower at low temperatures is largely due to electron-phonon 
enhancement. For all cases except the La-based glasses, a better fit is obtained for 
the Eliashberg function varying with E2 or E3 at low energies, rather than linearly, 
since a peak is seen in the low temperature thermopower. Naugle et al. (1985) found 
slightly better agreement for the E2 dependence even for their La-based glassy metals 
and amorphous films. There is little difference in the quality of fits for the E2 and 
E3 variations, so we cannot make a choice between these possibilities. The data do 
give a slightly better fit for an Eliashberg function with a smooth rather than a sharp 
Debye-like peak, although we have shown that the calculated enhancement is not too 
sensitive to the shape of a 2 F(E) at higher energies. 

The main discrepancy between theory and experiment is that the Sf T data 
decrease more sharply than predicted as the temperature decreases below the peak, 
the discrepancy being the largest for C022Zr78 • The disagreement cannot be removed 
by allowing the peak size to increase by increasing the value of n, since as mentioned 
above, this pushes the peak to higher relative temperatures in conflict with the data. 
Obviously, it is difficult to measure the ratio Sf T accurately in the low temperature 
limit, since both quantities go to zero, but there is a possibility that correlation effects 
that cause an increase in resistivity below about 15 K could also affect thermopower in 
this temperature range. Apart from this possible anomaly at very low temperatures, 
there is no obvious evidence for correlation or localisation effects in the temperature 
dependence of thermopower. In particular, the approximately linear thermopower S 
at higher temperature suggests that if incipient localisation has any effect it is largely 
to change the size of the linear slope (i.e. the parameter Xb). 
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