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Abstract 

The quadratic and cubic nonlinear response tensors are calculated for an arbitrary magnetised 
plasma using a covariant forward-scattering method. Some relevant approximate forms for 
the response tensors are derived, and translated into 3-tensor notation in the Appendix. The 
general form of the tensors is used to re-enforce an argument for the non-existence of turbulent 
bremsstrahlung. 

1. Introduction 

A hierarchy of response tensors for a plasma is defined by expanding the Fourier 
transform (in space and time) of the response in powers of the Fourier transform 
of the disturbance. Different choices of the response and of the disturbance lead to 
different tensors, such as the conductivity and susceptibility tensors; these are related 
to each other so that the choice made is unimportant from a formal viewpoint. The 
choice made here is to expand the 4-current in powers of the 4-potential, defining a 
hierarchy of polarisation 4-tensors. In practice only the linear, quadratic and cubic 
response tensors are of interest. The quadratic and cubic nonlinear response tensors 
are used in treating various nonlinear wave-particle and wave-wave interactions (see 
e.g. Tsytovich 1967, 1970; Melrose 1980, 1986a). For most purposes approximate 
forms of the tensors are required, and relevant approximate forms correspond to 
the cold-plasma and longitudinal approximations. The general forms for the tensors 
may be obtained using Vlasov theory, which also needs to be used (in simplified 
form) to treat the longitudinal case. The quadratic and cubic response tensors 
for an unmagnetised plasma have been calculated in this way (e.g. Al'tshul' and 
Karpman 1965; Tsytovich 1967) as has the quadratic response tensor for a magnetised 
plasma (Tsytovich and Shvartsburg 1966; Melrose and Sy 1972a). The extension of 
this method to the cubic response tensor for a magnetised plasma leads to a very 
cumbersome expression which has not been written down explicitly. Nevertheless, 
the cubic response tensor is required for some formal purposes, three of which are 
mentioned below, and it is desirable to have an explicit form for it. 

In this paper the cubic polarisation 4-tensor for a magnetised plasma is calculated 
using a covariant forward-scattering approach. The method is manifestly covariant 
and gauge invariant in the sense discussed by Melrose (1982). In 'forward-scattering' 
the perturbations are calculated in the orbits of individual particles, rather than in the 
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distribution function; the forward-scattering component is that for which the initial 
phase is preserved, and then the contributions from all particles add in phase. In 
terms of a description in phase space, the forward-scattering method corresponds 
to a Lagrangian approach, in which the perturbations are in the trajectories of 
the phase-space points, as opposed to the Vlasov method which corresponds to an 
Eulerian approach, in which the perturbations are in the distribution function of 
phase-space points along their unperturbed trajectories. This method was used by 
Melrose (1983, cf. Appendix 4) in calculating the quadratic and cubic polarisation 
4-tensors for an unmagnetised plasma and the quadratic polarisation 4-tensor for a 
magnetised tensor, but the method of calculation was not explained in that earlier 
paper. A non-covariant form of the forward-scattering method has been discussed by 
Melrose (1986a, cf. Ch. 5). The covariant forward-scattering method is developed in 
Section 2 for the unmagnetised case, and extended to the magnetised case in Section 3. 
The response 4-tensors for the magnetised case are written down in Section 4, and 
approximations to them are discussed in Section 5. Relevant results are translated 
into 3-tensor notation in the Appendix. 

There are three motivations for calculating the cubic response tensor. One is 
to treat four-wave interactions in a magnetised plasma, e.g. generalising the results 
of Melrose (1986b) to the magnetised case. Another is related to a suggestion 
by Nambu (personal communication 1985) that the inclusion of a magnetic field 
enhances turbulent bremsstrahlung, which we have argued does not exist (Melrose and 
Kuijpers 1984; Kuijpers and Melrose 1985). This point is discussed in Section 6. The 
third, and most immediate motivation, concerns an extension of a kinetic theory for 
parametric instabilities (Melrose 1986c) so that it provides a kinetic theory derivation 
of the Zakharov (1972) equations. This derivation is to be presented elsewhere; its 
generalisation to the magnetised case requires an appropriate approximate form for 
the cubic response tensor, derived here in Section 5 and written down in the Appendix. 

2. Forward-scattering Method for an Unmagnetised Plasma 

A covariant description of the orbit of a particle is of the form 

xl-' = XI-'(r), (1) 

where x = (t, x) is the 4-position and r is the particle's proper time. The 4-velocity 
is u(r) = dX(r)/dr and the 4-momentum is p(r) = mu(r). Newton's equation of 
motion in covariant form is 

dpl-'(r)/dr = yl-'(r). (2) 

where Y(r) is the 4-force. For a charge q perturbed by a fluctuating electromagnetic 
field described by the Fourier transform A(k) of the 4-potential, (2) becomes 

dul-'(r) = i q J d4 kl e-iktX(T) ~ u(r) GI-'V(kl' u(r» 4(~), (3) 
dr m (2'7T)4 

with kl-'uV 
) ,../LV _, GI-'V(k, u = I:J - ku (4) 
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where ku = ka ua = 1(00 - k. v) denotes the invariant formed from k and u. 
Similarly we have k2 = 002_1 kl 2 and u2 = 1 (the units have c = 1). 

The perturbations in the orbit may be found to any given order n in A(k). A 
formal expansion in A(k) is written as 

co 

X"'(r) = x~ + u~ r + ~ X(n)"'(r). 
u=, 

(5) 

The term Uo r corresponds to constant rectilinear motion; ~ and Uo are constants. 
The derivative of (5) with respect to r gives the corresponding expansion of u(r). On 
substituting these two expansions in (3), and expanding the exponential in powers of 
the x(n), one obtains the following perturbation expansion: 

du(1)"'(r) = ~ X(')"'(r) = i q J d4 
\ exp( -i ~ ~ -i ~ Uo r) 

dT dr2 m (217") 

X k, Uo G"'V(k" Uo)Av(~), (6) 

du(2)"'(r) = ~ X(2)"'(r) = 1 q __ ~ exp( -i ~ ~ -i k, Uo r) 2 • J d4 k 
dT dT2 m (217") 

x ( -i k, X(1)(r) + u(')(r) o~)k, Uo G"'V(~, Uo) Av(k,) , (7) 

du(3)(r) = ~ X(3)(r) = ~ --'4 exp( -i k, ~ -1 k, Uo r) 2 . J d4 k . 
dr dr2 m (217") 

x (-i k, X(2)(r) -i k, X(1)(r) u(')(r) ~ + u(2)(r)~) 
0Uo 0Uo 

X k, Uo G"'V(~, Uo)Av(~), (8) 

and so on. One solves (6) for u(1)(r) and X(l)(r), substitutes in (7) and solves for 
u(2)(r) and X(2)(r), and so on. 

The single-particle (sp) 4-current density is 

J~p(X) = q J dr u"'(r) 84(x-X(r» , 

and its Fourier transform is 

J~p(k) = q J dT u"'(r)eikX(T) . (9) 

The nth order current is obtained by expanding the u(r), X(r) and the exponential 
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and collecting the terms of nth order in A( k). One obtains 

00 

J~p(k) = l: J~;)P.(k), (10) 
n=O 

J~~P.(k) = qu~ J dr exp(i b o +i kilo r), (11) 

J~~P.(k) = q J dr {u(I)p.(r) +i kX(I)(r) u~J exp(i kXo +i kUor), (12) 

J~~P.(k) = q J dT [u(2)p.(r) +i kX(I)(r) u(I)p.(r) 

+ {i kX(2)(r) - HkX(I)(r»)2 J u~] exp(i kXo +i kilo r), (13) 

J~~P.(k) = q J dr [u(3)p.(r) +i kX(1)(r) u(2)p.(r) 

+ {i kX(2)(r) - H kX(1)(r»)2 J u(I)p.(r) 

+ {i kX(3)(r) - kX(2)(r) kX(I)(r) - ii( kX(1)(r»3 J u~] 

x exp(i kXo +i kilo r). (14) 

We may write J~~)(k) in the form 

J J d4k d4k (n)p. _ __I __ n p.V' ... Vn . J sp - dr 4··· 4/3 (k,kl,···,kn>110) 
(27T) (27T) 

x ~ (kl ) ... ~ (kn) exp{ i(k- kl - ... - kn)(Xo + 110 r) J , (15) 
, n 

which defines the /3's. 
The distribution function F( u, x) in the 8-dimensional phase space constructed 

from the two 4-vectors u and x may be introduced as follows (Dewar 1977). 
The orbit of the particle defines a world line in this phase space. Consider a 
7-dimensional surface orthogonal to the world line. Let the number of representative 
points of the distribution of particles be d/V across the element d4 u d4 x/dr of the 
7-dimensional surface. The distribution function F(u, x) is then defined by writing 
dA/' dr = F(u, x)d4ud4x. 

The average over the single-particle current (4) gives the induced current. This 
average is achieved formally by multiplying (14) by dA" and integrating. One 
replaces dA/" dr by F( u, x) d4 U d4 x, and then makes the further replacement by 
F( 110, Xo) d4 110 d4 Xo by appealing to Liouville's theorem. The resulting nth order 
induced current may be written in the form 

J(n)p.(k) = JdA(n) ap.v, ... vn(k, k l , ... , kn) ~ (kl)'.'~ (kn), (16) 
, n 

with 
(n) _ d4 kl d4 kn 4 4 

dA - --4 ··'--4 (27T) 8 (k-kl-···-kn)· 
(27T) (27T) 

(17) 
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By inspection one has 

aJ.LvJ",vn(k, kl' ... , kJ = J d4u F(u) {3J.LVJoo,vn(k, kl' ... , kn; u), (18) 

where we assume F(Uo, 4» to be independent of 4>, and drop the subscript on Uo. 
The resulting expressions for the linear, quadratic and cubic response tensors were 

written down by Melrose (1983, 1986b) and by Melrose and Kuijpers (1984). 

3. Perturbed Motion in a Magnetic Field 

Consider a static magnetic field B in a frame, called the laboratory frame, in which 
there is no static electric field. This field may be described in a frame-independent 
form in terms of the Maxwell tensor F~v. The invariant formed from this tensor is 
related to B = I B I in the laboratory frame by 

1 J.Lv ! 
B = (2 FO FoJ.LV)2. 

It is convenient to write (Melrose 1983) 

F~v = BfJ.LV, 

!ltV = - fJ.L a rv , uliV = {/"v _ !ltv , 

(19) 

(20) 

(21a, b) 

where gJ.LV = diag. (1, -1, -1, -1) is the metric tensor. In the laboratory frame 
with B along the 3-axis, the matrix representations of these tensors are 

0 0 0 0 0 0 0 0 

0 0 -1 0 
!ltV = 0 -1 0 0 

fJ.LV = 1 I, (22a, b) 
0 0 0 0 0 -1 0 

0 0 0 0 0 0 0 0 

0 0 0 

uliv = 10 
0 0 0 

I· (22c) 
0 0 0 0 

0 0 0 -1 

The equation of motion for a charge q subject to both the static and a fluctuating 
field is 

duJ.L(T) = .!i F~v u..,(T) 
~ m 

+ ~ __ 1. e-ikJX(T) k U(T) GJ.LV(k , U(T» 4 (k). . J d4 k 
m (21T)4 1 1 ~ 1 

(23) 

After solving the unperturbed equation of motion, i.e. (23) for A(k1) 0, a 
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perturbation solution of the form (5) is sought. The form (5) is replaced by 

00 

XIl(r) = x~ +tllV(r)Uo + 1: X(n)Il(r) , 
n=l 

(24) 

with 
tllV(r) _ -pv + -pv sin flo r cos flo r - YII r Yl - Tjfllv , 

flo flo 
(25) 

and with 

flo = \q\Blm, Tj = ql\q\. (26a, b) 

To solve (23), we first introduce a Laplace transform, writing 

ull(wo) = J~ dr ei<o>oT ull(r). (27) 

Denoting the final term in (23) by SIl(r), one has 

-i Wo ull(wo) - u~ = TjflofllV Uv(wo) + J~ dr ei<o>oT SIl(r). (28) 

One may solve (28) by introducing rllV(wo) as the solution of 

(-iwogl.LV -TjflofllV)rvp(wo) = -iwogllp' (29) 

i.e. 

2 . n 
rllV(w ) = rliv + Wo gfv + 1 Tjwo J~o fllv 

o II w2 n2 1 2 n2 . 
0- Uo Wo - J~o 

(30) 

Then (28) implies 

ull(wo) = ~o rllV(wo)( Uov + J~ dr ei<o>oT 5;,(r»). (31) 

Now inverting the Laplace transform one finds 

ull(r) = jIlV(r) Uov + I dr' illV(r-r') 5;,(r') , (32) 

XIl(r) = x~ + tllV(r) Uov + I dr" I'dr' illV(r" -r') 5;,(r') , (33) 

where i(r) denotes dt(r)/dr, and where 

JOO dr ei<o>oT illV(r) = ~ rllV(wo) 
o Wo 

(34) 

has been used. The perturbation expansion (24) is now straightforward using (33). 
The unpertur:bed orbit is X(O)(r) = Xo + t(r) Uo, and the unperturbed 4-velocity is 

u(O)(r) = t(r) Uo. These appear in the following expressions for the perturbations in 
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the orbit: 

X(n)J.I(T) =:!!. . dT" dT' i~(T" -T') d kl e-ikt,r(°)(T) 'JT JT" J4 
mOO (2'77')4 

x H(n)av(k1, T) A.,(k1), (35) 

with 

H(l)av(k,T) ,: kU(O)(T) Gav(k, U(O)(T», (36) 

H(2)av(k, T) = -i kX(l)(T) kU(O)(T) Gav(k, U(O)(T» 

+ kU(l)(T) Gav(k, U(O)(T»- ~ U~)(T) (jJV(k, U(O)(T», (37) 

H(3)aV(k, T) = [-H kX(1)(T)J 2 -i kX(2)(T)]ku(0)(T) Gav(k, U(O)(T» 

-i kX(1)(T) { kU(1)(T) Gav(k, U(O)(T» 

-kaUg)(T) (jJV(k, U(O)(T»J +kU(2)(T) Gav(k, U(O)(T» 

- ka U~)(T) (jJV( k, U(O)(T». (38) 

The perturbations in the 4-velocity U(n)(T) = dx(n)(T)/dT follow trivially from (35) 
with equations (36}-(38). The single-particle currents then follow from (12}-(14) by 
replacing "0 by i(T)"o' 

To evaluate the integrals over proper time T it is necessary to expand in Bessel 
functions. To facilitate this, we first introduce the components, in the laboratory 
frame 

"0 = y( 1, VI cos cf>, VI sin cf>, vII)' 

k = (w, ki cos 1/1, ki sin 1/1, k ll ). 

Then the factor i kt(T) "0 in the exponents of (12)-(14), as modified, becomes 

with 

i k t( T) "0 = i( k u) II T - ki R sine 110 T +TJI/I -TJcf» , 

(ku)11 = gtka "of3 = y(w -kll vII)' 

R = YV11110' 

The generating function for Bessel functions then gives 

00 

(39) 

(40) 

(41) 

(42) 

(43) 

eik t(T)1Io = 1: JsCkl R) exp [it (kU)II- Sl10JT -i STJ(I/I-cf»]. (44) 
S=-oo 
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After some manipulations one finds 

00 

U(O)"'(T) exp{ i kX(O)(T)l = eikAO l: U"'(s, k, u) 
S=-oo 

x exp [it (k u) II - sill T -i S'l'}(l/i - </»], (45) 

with 

U"'(s, k, u) = ("IJ.(k1 R), "1;1 {e-i'!')l/J Js_ I (kl R) +ei'!')l/J Js+ I (kl R) l , 

i'l'}"1 Vi . l/J . l/J ) - -2- {e- I ,!,) Js_ I (k1 R) -el '!') Js+ I (k1 R)l, "I vII J.(kl R) . (46) 

Note the identity 

kU(s, k, u) = {(ku)ll-silolJ,(k1R). (47) 

After expanding in Bessel functions the integral over T" and T' in (35) with 
(36)-(38) may be reduced to the form (cf. equation 34) 

i/h JT d "JT d ' t-a{3(" ') inT' e T T T -T e = 
o 0 

Ta{3(il) 

il2 
(48) 

with 

il = (ku)ll- silo· (49) 

It is possible to arrange the factors involving tensorial indices in (36)-(38) such that 
they can be expressed in terms of Ta{3(il) and (cf. equation 4) 

Note the identity 

G"'V(s, k, u) = g"'V J.(kl R) _ k'" UV(s, k, u) 
(ku)ll-silo . 

Ie" G"'V(s, k, u) = 0. 

4_ Response Tensors for a Magnetised Plasma 

(50) 

(51) 

The calculation of the response tensors for a magnetised plasma is analogous to 
that for an unmagnetised plasma. An integral over the initial positions of the particles, 
i.e. the integral over Xo, gives zero except for k - kl - ... - k n = 0, a condition which 
appears in a o-function. In addition, for the magnetised case the distribution cannot 
depend on the azimuthal angle of the spiralling particles, and the integral over this 
angle </> gives zero except for s = Sl + ... + Sw 

In writing down the resulting expressions it is convenient to simplify the notation 
further. As in (49) let ildenote(ku)ll-siloandsimilarlylet ilrdenote(kr u)11 -sr ilo 
with r = 1,2, .... Further, let the arguments sand u in G"'V(s, k, u), as,defined by 
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(50), be implicit so that one writes GI"V(k). In this abbreviated notation the expression 
for the linear response tensor becomes 

2 00 J aI"V(k) = - ~ S=~OO d4u F(u) Gal"(k) Ta{3(IJ) G*{3V(k). (52) 

This form may be obtained from that derived using Vlasov theory by a partial 
integration. This point is repeated in terms of the more familiar 3-tensor notation in 
the Appendix. 

The response tensors should satisfy the charge-continuity condition 

kl"aI"V(k) = 0, kl"aI"VP(k, kl'~) = 0, kl"aI"VPU(k, kl'~'~) = 0, (53a) 

and the gauge-invariance conditions 

""aI"V(k) = 0, 

~P aI"VP(k, kl' ~) = 0, 

klvaI"VP(k, kl'~) = 0, 

klvaI"VPU(k, kl'~'~) = 0, etc. (53b) 

The form (52) manifestly satisfies (53) in view of the identity (51). It is convenient to 
write the expressions for the quadratic and cubic responses so that the tensor indices 
J-Lvp and J-Lvpcr, respectively, appear only in terms of the relevant G's, i.e. 

G~(k) G~V(kl) G;P(~) and G~(k) G~V(kl) G;P(~) Gr(~) 

respectively; then equations (53) are manifestly satisfied. The relevant forms are 

3 J 00 aI"VP(k, kl'~) = - ~ d4 u F(u) ~ 
m S,SI'S:2--oo 

s=sl +'2 

x e-i'l)(*-sl"'I-'2\Ji2)G~(k) G~V(kl) G;p(~)r{3')'(k, kl' ~), (54) 

4 J 00 

aI"VPU(k, kl'~'~) = - !3 d4u F(u) S,SI,'2:t=-OO 
s= SI + '2+ S:l 

x e-i'l)(*-sl"'I-'2"'2-S:l"'3)G~(k) G~V(kl) G;P(~) GgU(~)r{3')'8(k, kl'~' ~). (55) 

Unique results are obtained only if the symmetry properties 

aI"VP(k, kl' ~) = aI"PV(k, ~, k1), (56) 

aI"VPU(k, kl' ~, ~) = aI"VUP(k, kl' ~, ~) = aI"PVU(k, ~, kl' ~) (57) 

are imposed. 
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The explicit results obtained are 

r f3Y(k, k), kz) = i(ke rOf3~fl)) r aY(fl2) + ke rOY~fl2) r af3(fl)) 
) 2 

raO(fl) rUO(fl) 
+ k)O -- r f3Y(fl2) + kzo -- rYf3(fl)) 

fl fl 

_ klo rOY~fl2) r af3(fl) _ kzo rOf3~fll) raY(fl)) , (58) 
2 I 

rf3yl)(k, kl' kz, ~) = i {(raf3(fl) kl <l> -raf3(fl l )k<l> _ ra'7(fl) k J3 
fl-fll fl I'7 Y <I> 

_ r'7f3(fll) k rf1 )r<l>O(fl_ fl )(_ r yl)(fl3)kzo +rI)Y(fl2)~0 
fl '7 Y <l> I fl+fl 123 

r'7l)(fl3) f.. y r'7Y(fl2) f.. I)) 
+ fl "2'7 9 0 + fl "3'7 9 0 

3 2 

~ k k (raO(fl) rf3Y(fl ) r'7l)(fl3) + raO(fl) r'7Y(fl2) rf3l)(fl ) 
10 1'7 fl 2 fl fl fl 3 

2 3 2 

_raf3(fl) r'7Y(fl2) r OI)(fl3)) + ke kq r af3(fl)) r OY(fl2) r'7l)(fl3) 
fl2 fl3 fl2 fl3 

+(1, v)++(2, p)+(I, v)++(3, O-)}, (59) 

where (1, v)++(2, p) and (1, v)++(3, 0-) indicate additional terms obtained from those 
shown by making the indicated substitutions. Note that in (58) one has k = kl + kz 
and fl = fll + fl2 and in (59) one has k = k) + kz + ~ and fl = fl) + fl2 + fl3. 

The symmetry properties (56) and (57) have been imposed, and by inspection the 
following symmetry properties are satisfied (cf. Melrose 1972): 

aIlVP(k, kl' kz) = aVIlP(_kl' -k, kz), 

allvPO"(k, kl' kz,~) = aVIlPO"(_k), -k, kz, ~). 

(60) 

(61) 

In the proof of these one needs to note that on making the changes k ~ - k, 
kl ~ - kl one may also reverse the sign of sand sl in the sums and so ensure that 
one has fl ~ - fl, fll ~ - fll in (54) and (55), and then one uses 

r af3( _ fl) = r f3a (fl). (62) 

As stated in the Introduction, explicit results for the quadratic response tensor 
have been derived previously, and (54) with (58) was written down by Melrose (1983). 
However, there has been no previous detailed calculation of the cubic response tensor 
for a magnetised plasma, i.e. no form of (55) with (59) has been presented hitherto. 
It is possible to translate the result into 3-tensor notation, but for the cubic response 
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in general the resulting expression is very cumbersome indeed, and only relevant 
approximate forms are written down in the Appendix. 

5. Approximate Forms 

For most practical purposes approximate forms of the tensors are required, and 
the most important are the cold-plasma and longitudinal approximations. [These 
approximations were discussed by Melrose (1986b) for the unmagnetised case.] 

Cold-plasma Approximation 

The cold-plasma approximation involves neglecting all thermal motions. This is 
reasonable provided all relevant fluctuations have phase speed much greater than the 
thermal speed (of the particular species of particle in question, usually electrons). For 
the quadratic response tensor this requires Iwl/l kl, IW1I/I kll, IW21/1 k21 > V, where 
V is the thermal speed. For the cubic response tensor, not only these inequalities and 
IW31/1k31> V need to be satisfied, but also all the inequalities IW±Wll/lk+k11, 
I w±w21/1 k+ k21, ... , I W2 ±w3lil k2 + k31 > V need to be satisfied. That is, all the 
waves involved, and all the beats between them need to have phase speeds> V. 

When these inequalities are satisfied, one may approximate F( u) in (52), (54) and 
(55) by F(u) = n84(u- u), where u is the 4-velocity of the rest frame and n is 
the number density in this frame. In the rest frame one has vII = VI = 0, 'Y = 1,· 
R = ° in (46), and then only s = ° is nonzero in U(s, k, u). In any frame one has 
U(s=O, k, u) = u, U(s4=O, k, u) = 0, and G"'V(s=O, k, u) reduces to G"'V(k, u), as 
defined in the unmagnetised case (cf. equation 4). Thus (52), (54) and (55) simplify in 
that the sums over the s's are omitted, the integral over d4 u F( u) is replaced by the 
number density n, the G's are re-interpreted as the unmagnetised forms with u = u, 
and the fl's are interpreted as ku's. 

The resulting forms may be obtained using cold-plasma theory. This involves 
setting up a fluid description of the particles (here in covariant form) and solving for 
the nonlinear currents. The cold-plasma approximation for the quadratic response 
tensor was obtained in 3-tensor notation in the form written down in the Appendix 
by Melrose and Sy (1972b) (cf. also Trakhtengerts 1970; Giles 1974; Stenflo 1973). 

If not all the fields may be treated using the cold-plasma approximation, one may 
still simplify by using the following prescription for those fields which do satisfy the 
high-phase-speed condition. Consider the field described by /L and k. In (54) and 
(55) /L appears in terms of Ga",(s, k, u), as defined by (50). In the rest frame it 
is obvious that only s = ° contributes, and this therefore applies in an arbitrary 
frame. Moreover, in the rest frame one has u = u = (1,0), and hence fl = ku and 
Ga",(s=O, k, u) = Ga"'(k, u). The factors Ga"'(k, u) and r a{3(ku) no longer depend 
on the variable of integration, and may be taken outside the integral. This simplifying 
approximation may be used for any high-phase-speed disturbance [cf. the derivations 
of (66) and (67) below]. 

Longitudinal Approximation 

Suppose the field associated with the index /L is longitudinal. (The concept of a 
longitudinal field is frame-dependent, and is defined such that the field is longitudinal, 
in the usual sense, in the rest frame.) One is free to describe a longitudinal field 
using the Coulomb gauge, in which case one has A"'(k) = (<P(k), 0) where <P(k) is 



150 D. B. Melrose 

the electrostatic potential. It follows that all relevant information for longitudinal 
fields must be contained in the fJ- = 0 component. In practice the fJ- = 0 components 
aOVP(k, kl' ~) and aOVPCT(k, kl' ~, ~) are found simply by replacing Gall by 

GaO(k) = JS<~ R) (IJ-yw, -yk) (63) 

in (54) and (55). The integrals are then to be performed in the rest frame. 
The resulting expressions for a Ovp and a OVpCT may be used to construct the full 

tensors, valid in an arbitrary frame, by multiplying them by 

,.JJ.(k -) - ku k all k -y- , U - / J _'0.'1 ''l a G ( ,u). (64) 

The argument for this is as follows. The full tensors must reduce to the calculated forms 
a Ovp and a OVpCT in the rest frame u = (1,0), and must satisfy the charge-continuity 
condition (or the gauge-invariance condition for any index other than fJ-). The only 
4-vector which satisfies the latter condition, which is constructed only from k and u, 
and which reduces to (1,0) in the rest frame is gll(k, u). 

Low-frequency Disturbance 

Suppose that k describes a low-frequency disturbance in the rest frame. Then IJ 
is small in the sense that the dominant term should be that corresponding to the 
largest power of IJ in the denominator. In practice low-frequency fields are usually 
also approximately longitudinal. 

Consider the linear response to a low-frequency field. Assuming that the field is 
also longitudinal and that the particles are nonrelativistic, (52) gives 

2( f k8T (IJ)kT'J ) atv(k) ::::: - ~.;. d4 u F(u) 8~2 J;(kl R) 

x (k2:(~Uo)2 r ka Gall(k, Uo)k~ G~V(k, Uo), (65) 

where the subscript Lon a llV is introduced to denote this approximation. 
Now consider the quadratic response tensor when k and kl may be treated using 

the cold-plasma approximation, and with ~ being a low frequency longitudinal 
disturbance. 

The dominant terms in the expression (58) are the two with IJ2 in the denominator, 
and only these two terms are retained. As the disturbances at k and kl are 
treated using the cold-plasma approximation, only s = 0 and sl = 0 contribute, and 
with I ~ Uo I < I k Uo I ::::: I kl Uo I by hypothesis, one has IJ 1 ::::: IJ. Then taking the 
cold-plasma forms outside the integral in (54) leaves 

3 

allVP(k, kl'~)::::: ~ Gall(kl Uo)Ta~(kUo) G~V(kl' Uo) 
2m 

x Cioo f d4 u F(u) k~ T~{IJ2) k~ J~(~l R») 

x _ ~. 'Y _ ~ ~8 ~P(~, Uo), (66) 
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with the G's and the T'S defined by (4) and (30) respectively, and where the integral 
is to be evaluated in the rest frame. Comparison with (65) shows that the integral 
may be re-expressed in terms of the longitudinal part of the linear response tensor. 
The form (66) is familiar in terms of its counterpart in 3-tensor notation for an 
unmagnetised plasma (cf. the Appendix). 

Low-frequency Beat 

Consider the case of the cubic response tensor where all four fields (described by 
k, kl' ~ and ~) have high phase speeds, and the beat between two of them is of low 
frequency, say that at k- kl = ~ +~. Then the dominant terms in (59) are those 
with (lJ- lJ1)2 = (lJ2 + lJ3)2 in the denominator. Proceeding as in the derivation of 
(66), in this case one finds 

4 

a/J.vPCT(k, kl'~'~) ::::: - 6~3 GalJ.(k, "0) Tap(k"o) GPV(k, "0) (JYP(~, "0) 

x Tyfj(lJ2) GfjCT(~, "0) i fd4 U F(u) (k- k1)6T6T/(lJ-lJ1)(k- k1P 
S-S[=-oo (lJ-lJ1f 

x J~_st«k- k1)1 R). (67) 

Again the integral is of the same form as that in the approximation (65) to the linear 
response tensor. 

The form (67) is that required in the kinetic theory derivation of the Zakharov 
equation for a magnetised plasma (cf. discussion in the Introduction). A 3-tensor 
version of (67) is given by equation (All) in the Appendix. 

6. Non-existence of Turbulent Bremsstrabhing in a Magnetic Field 

Turbulent bremsstrahlung (Tsytovich et al. 1975) has proved to be a controversial 
effect; see e.g. the controversy cited by Tsytovich et al. (1981). More recently Melrose 
and Kuijpers (1984) and Kuijpers and Melrose (1985) have argued on general grounds 
that both the original form of the proposed mechanism and an alternative form (called 
'induced bremsstrahlung') by Nambu (1981) do not exist. Nambu (1986 and personal 
communication) has argued that the effect does exist and is enhanced by the presence 
of a magnetic field. The general arguments for the non-existence of this effect can be 
summarised and extended to the magnetised case as follows. 

The supposed effect arises from a contribution to the imaginary part of the nonlinear 
correction to the linear response tensor due to resonant ion sound waves. The two 
terms which contribute to this nonlinear correction have been written down by Melrose 
and Kuijpers (1984, equations 27a, b) in the notation used here. The important feature 
to note is that these terms have the form of integrals over kl with integrands involving 
either (the Tsytovich et al. form) aIJ.VPCT(k, kl' ~,~) evaluated at ~ = k and 
~ = - let or (the Nambu form) aIJ.V6(k, let, k-kl) D6T/(k- kl)aT/PCT(k- kl'~'~) 
similarly evaluated. The v and p indices are projected onto polarisation vectors for 
the ion sound waves and kl and ~ = - let satisfy the dispersion relation for ion 
sound waves. The imaginary parts arise from the resonant denominators for the ion 
sound waves, i.e. from lJ1 = 0 and lJ3 = 0 here. There are the two contributions 
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from [JI = 0 and [J3 = 0 (for either form of turbulent bremsstrahlung) and the 
argument for non-existence is that the two contributions cancel exactly. 

This cancellation is less controversial for the Nambu (1981, 1983, 1986) form. 
In brief the contribution from the resonance at [JI = 0 in allv(J(k, kl' k- kl ) is 
proportional to -i 7T8([JI)' and the contribution from the resonance at [J3 = - [JI 

in (note here that ~ = k and ~ = - k l ) 

a"IJPCT(k_ kl' ~, ~) = a"IJPCT(k_ kl' k, - kl ) = a pCT"IJ ( - k, - kl' - k+ kl ) 

= laPCT"IJ(k, kl' k-kl)}* 

has the opposite sign, leading to the exact cancellation. This null result has been 
found by all authors who have considered the problem, with the exception of Nambu 
himself [cf. the discussion of this point by Kuijpers and Melrose (1985)]. 

Melrose and Kuijpers (1984) and Kuijpers and Melrose (1985) effectively argued 
that an analogous exact cancellation. occurs for the Tsytovich et af. form. The 
essential point concerns the sequence in which one (I) takes the imaginary parts and 
(S) sets ~ = - kl • For the resonance at [J3 = 0, the term 1/ [J3 is treated as follows 
according to the two alternative possibilities (denoting the relevant steps by I and S 
as indicated): 

_1_ ~ Im( 1.) = -i 7T8([J3) ~ -i 7T8([JI)' 
[J3 [J3 +10 

Is I, (1). - - - - - -1m . ~ 17T8([JI)' 
[J3 [JI [JI +10 

In effect Melrose and Kuijpers argued for the former procedure, in which case 
exact cancellation occurs, and Tsytovich et al. (1975) in their equation (7) used 
the latter procedure, in which case the two resonant contributions are equal and 
add. [The resonant parts can differ at most by a sign due to the symmetry property 
aIlVPCT(k, kl' ~, ~) = aIlCTPV(k, ~, ~, kl ) for the nonresonant part.] 

These arguments are not dependent on whether or not the plasma is magnetised. 
Thus, contrary to Nambu's (1986) claim, the inclusion of the magnetic field is 
irrelevant to the argument as to whether or not turbulent bremsstrahlung exists. 

7. Conclusions 

The objective of the work reported here has been the derivation of an explicit 
form for the cubic response tensor for an arbitrary magnetised plasma. The general 
form can be written relatively concisely in 4-tensor form [cf. equation (55) with (59)]. 
However, translating this into 3-tensor notation leads to an excessively cumbersome 
form. Only when simplifying approximations are made is it practicable to write 
down explicit 3-tensor forms, and this is done in the Appendix. As mentioned in the 
Introduction this cubic response tensor is required for at least three purposes, only 
one of which is discussed in a:ny detail here, specifically turbulent bremsstrahlung 
(Section 6). 

The method of calculation here involves two differences from the conventional 
approach. One is the use of a covariant formalism. As indicated above, the conciseness 
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which 4-tensor notation allows greatly simplifies the details of the analysis. The other 
difference is the use of the forward-scattering method. The conventional approach is 
based on use of the Vlasov equation in which the perturbations in the distribution 
function are found at a fixed point (x, p) in phase space as a function of time t, 
and are then Fourier transformed. In the forward-scattering method the distribution 
function is kept fixed, and the perturbations in x and p are found as a function of 
t using a perturbation expansion of the equations of motion. These two approaches 
in the 6-dimensional phase space are formally equivalent in the same sense as the 
Lagrangian and Eulerian viewpoints in 3-dimensional space in fluid mechanics are 
equivalent. 

One obvious difference in the forms of the tensors which arise in the two approaches 
relates to derivatives (with respect to momentum) of the distribution function. In the 
Vlasov approach the nth order response tensor involves up to nth order derivatives 
of the distribution function, and in the forward-scattering approach no derivatives 
appear. The two results are related by partial integration, although some care is 
required with singular terms (e.g. Melrose 1986b). Some care is also required in taking 
the resonant parts. As shown by Melrose and Kuijpers (1984), the resonant parts 
involve first and only first derivatives of the distribution function. The resonant parts 
are obtained by imposing the causal condition in either case, and neither approach 
has any advantage over the other for this purpose. An exception is for the linear 
response for which the Vlasov approach leads to the required first derivatives directly. 
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Appendix. 3-Tensor Forms 

In conventional 3-tensor notation, used in this Appendix, the indices are latin, and 
run over 1 to 3 and are all lowered. There is a source of confusion in that the 3-tensor, 
say aij(w, k), relating the 3-current Ji(w, k) to the vector potential A/w, k) in the 
temporal gauge [<P(w, k) = 0], can be confused with the f-L = i, v = j component 
of the 4-tensor a/lv(k); the two differ by a sign. To minimise the possibility of 
confusion, here the tensors are written as conductivity 3-tensors relating J(w, k) to 
the electric field E(w, k) = i wA(w, k), where A(w, k) is in the temporal gauge. The 
weak-turbulence expansion then becomes 

Ji(w, k) = 0" iw, k) ~(w, k) + n~2 I dA. (n) 

x Sik .. jn(W' k; WI' k 1; ••• ; w n' k n) ~JWl' k 1) ••• ~n(Wn' k n)· (AI) 

It is convenient to write 

w2 i 7)ws fl s 0 
w2_ fl2 w~- fl2 s 

Tiws) = I i7)w sfl w2 L (A2) s 0 
w2_ fl2 w2_ fl2 

s s 

0 0 

with [note that the meaning of fl here is different from that in equation (49)] 

w s = W - s fl - kll vII ' fl = flolY. (A3) 

Note that T ij' as defined by (A2), differs from the f-L = i, v = j component of T /lV' 

as defined by (30), by a sign. It is also convenient to introduce V(s, k, v) by writing 
(46) in the form 

U/l(s, k, u) = (yJs(k1 R), I' V(s, k, v»). (A4) 

The expression for the linear conductivity 3-tensor implied by (52) is 

i q2 00 I d3 P {2 O"ij(w, k) = - l: - f(p) J.(kl R)Tiws) 
mw S=-oo I' 

J.( kl R) ( k * k) + Tim(w s) mVj(s,k,v)+J'j(s,k,v) mTm/Ws) 

+ ~~ ( k[ k m T [m(w s) - ::) J'j(s, k, v) Vj(s, k, V)}, (AS) 
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where ordinary units are now used with c the speed of light. This form follows by 
applying the forward-scattering method to an expression quoted by Melrose and Sy 
(1972a) for the scattering current. The more familiar method based on the Vlasov 
equation leads to the expression 

i q2 J 3 {VII (a a ) (Tij(w, k) = - - d p - v1 - - vII - f(P)bi bj 
W v1 a PII 0 Pl 

S=-oo 

V;(s, k, v) V;(s, k, V)(W - kll vII ~ + kll ~)f(P)}, 
W - s n - kll vII n OPl oP11 

(A6) 
00 

+ l: 

where b is a unit vector along the ambient magnetic field. It is possible to derive 
(A5) from (A6) by partially integrating and rearranging the resulting expression. This 
proves tedious; inter alia it involves using the recursion formulas and the sum rules 
for the Bessel functions and re-arranging the sum over s. 

It is impracticable to write out the 3-tensor form for the quadratic response tensor 
(54) with (58). Formally it involves 96 terms [each contraction over a 4-index involves 
two 3-tensor terms and the contractions over a, /3, 'Y and 0 lead to a factor 8 times 
the 6 terms in (58)]. The useful forms are the cold-plasma approximation (Melrose 
and Sy 1972b) 

q3 n ( kr kr) ( ) Sij/w, k; WI' k l ; w2, k2) = - 2 - T riw) T i/(W2) + - T rl(w2 T ij WI 
2 m wI w2 wI W2 

+ klr TilW) Tj l(W2) + "-2r TilW) Tlj(WI) 
W W 

- "-2rTriw)Ti/(W)- klrTrl(W2)T/W»), (A7) 
WI W2 

and the approximate form (66), which translates into (Melrose and Sy 1972b) 

EO q 
Sij/W' k; WI' k l ; W2, k 2) = - T /w) "-21 XL(W2' k 2), 

mw 

with the form (65) written as a susceptibility 

(A8) 

XL(W, k) = - L i Jd3 P f(P) J~(kl R)(l _ (W-W s)2). (A9) 
EO m s= - 00 W~ 1 k 12 c2 
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The cold-plasma approximation to the cubic response tensor implied by (55) with 
(58) is 

Sijlm(W, k; wI' k 1; w2' k 2; w3' k3) = 
i q4 n 

6m3wl w2 w3 

X {(T;/W)k1r -T;/W 1)kr _ kla T;iw) [)rj 

w-wl W 

_ k T a/WI) 0;:,.) (_ )(_ T Im(W3)'-2s+ T ml(w2)~s 
a Un T rs W WI 

WI W2+W3 

z,. T am(W3) [) z,. T at«2) [) ) + "2a sl + "3a sm 
W3 W2 

k k ( T;r(W) ( ) Tsm(W 3) + T;r(W) Tst« 2) () 
- lr Is --T·I W2 ----T·m W3 

W } W3 W W2 } 

-Tij(W) Tr/(W2) Tsm(W 3») 
W2 W3 

+ kr ksT;/Wl) T rl(W2) Tsm(W 3) +(1,j)+-+(2, /)+(1,j)+-+(3, m)}, (A 10) 
W2 W3 

and the form corresponding to (67) is 

Sijlm(W, k; wI' k 1; W2' k 2; W3' k3) = 
i EO q2 
m 2ww2 T ij(W) T Im(W2) 

2 

x I k- k I 1
2xL(W-Wl' k- k 1), (All) 

where we set wI = wand w3 -w2 except in the difference w-wl-w2+w3. 
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