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Abstract 

A new type of disorder may occur in artificial superlattices, arising from the randomness in the 
layer thicknesses. We treat here its effect on the phonon structure. A modification of the infinite 
order perturbation theory by Wu et aL (1974 a, 1974 b) serves well to give satisfactory solutions 
of the problem. 

1. Introduction 

A lack of complete control over the preparation of samples often brings about defects 
and irregularities in the structure of artificial superlattices (Schuller 1980). Among 
the various factors of disorder, there is one unique to such layered materials-the 
randomness in the layer thicknesses. Continuing our studies of the influences of 
various types of disorder on'the electron and phonon structures of superlattices (Xiong 
1985a, 1985b; Pang et al. 1985, 1986, 1987), we treat here the effect of this new 
factor of randomness on the spectrum of superlattice vibrations. Here we point out 
that the infinite order perturbation theory of Wu et al. (1974a, 1974b) modified to 
perform the computation in a self-consistent manner provides a satisfactory way to a 
solution of the problem. For this purpose, we adopt in this paper only a simplified 
dynamical model for the system, although it will not. be difficult to generalise the 
discussion to more complicated situations (Xiong et al. 1982; Sun and Tsai 1982). 

2. The Model 

We consider the layered material to consist of alternating crystalline films A and 
B. We assume both A and B layers to have simple cubic structure with identical 
lattice constants, and with the interfaces between adjacent layers perpendicular to the 
(001) direction. Let the number of atomic planes contained in an A or B layer be p 
orq respectively, so that the following distributions are satisfied: 

P(P) = ~ PA(z)8p,j, 
I 

P(q) = ~ PB(i)8 q,j' 
I 

(la, b) 

where i = 1,2, ... , r, with r an integer. We consider p and q to be statistically 
uncorrelated. 
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We adopt for each layer a simple elastic model described by the potential function 
(Xiong et al. 1982) 

fP = fPo +i 1: Kaa'{ u(a)- u(a')}2, 
a,ti ' 

(2) 

where fPo is a constant, u(a) the displacement of an atom at the site a, and Ka,a' the 
force constants. We assume isotropy and homogeneity in each film, and include only 
nearest and next-to-neares~ interactions with force constants Kl and K2 respectively. 

In the mixed Bloch-site representation (Xiong et al. 1982), the matrix elements of 
the phonon Greenian satisfy 

D(n, n'; k) = ~(n, k) + 1: ~(n, k) T(n, n"; k) D(n", n'; k), (3) 
n" 

where n, n', n" label the atomic planes, k is a Bloch vector in a plane parallel to the 
interfaces, while 

~(n, k) = MAl F(k)-w2, 

= Mil F(k)-w2, 

T(n, n'; k) = MAly(k), 

= MilY(k), 

for n in an A layer 

for n in a B layer, 

for n, n' in an A layer 

for n, n' in a B layer, 

with MA(B) the masses of the atoms in the A(B) layers, and 

r(k) = 2Kd -3+ cos(kx d)+cos(ky d)} 

+4K2{ -3+ cos(kx d)cos(ky d)}, 

y(k) = Kl +2K2{cos(kx d)+ cos(ky d)}. 

(4) 

(5) 

(6) 

(7) 

One also needs the matrix elements of T between atomic planes on both sides of 
an interface. Generally speaking, the elastic coupling between two unlike atoms A 
and B should be different from those between like atoms A and A, or Band B, 
but, for simplicity, we overlook such differences. In fact, we have assumed already 
in equations (4)-(7) that the interactions between a pair of A atoms and between a 
pair of B atoms are identical, so that only two force constants Kl and K2 are used 
to characterise the elastic couplings between any pair of nearest or next-to-nearest 
neighbouring atoms. Thus, the two sorts of atoms are distinguished only by their 
different masses, and 

T(n, n'; k) = (MA MB)-iy(k) (8) 

for two adjacent atomic planes n, n' on both sides of an interface. 
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3. Method of Computation 

Our aim is to evaluate the phonon density of states (DOS) given by 

p(W2) = _7T- 1 ~ ~ {Im<D(n, n; k»J , 
k n 

(9) 

where < ... ) signifies a configurational average over the random distribution of layer 
thickness. Following Wu et al. (I974a, I974b), D(n, n) can be expressed as 

D(n,n) = (I-Zn.n+l-Zn.n_l)-1 Do(n) , (10) 

where Zn. n±1 satisfy 

DOl(n) Zn. n±1 = T(n, n± 1) T(n± 1, n){ Dol(n+I) - Dol(n±I) Zn±l.n±2J -1. 

(11) 

Hereafter, the parameter k, which is a good quantum number, is suppressed to make 
the equations resemble those for a linear chain. 

Equation (11) gives Zn. n±1 as infinitCi! continued fractions, so that approximations 
are unavoidable for their evaluation. Let us consider a certain arbitrary finite segment 
of the chain. We use two 'mean field' parameters TA and TB to describe the influences 
on the segment by the rest of the infinite chain connected to its two ends. For any 
specified distributions P(p) and P(q), equations can be written for TA and TB, so that 
they can be computed self-consistently. With these, the D(n, n) and its configurational 
average are then calculated exactly for the segment. 

The probability for the occurrence of an A-layer of p!. planes of A atoms, a 
B-Iayer of ql planes of B atoms, a second A-layer of P2 planes, a second B-Iayer 
of qz planes, ... , an sth A-layer of Ps planes and an sth B-Iayer of qs planes, 
in succession, is PA(Pl) PB(ql) PA<P2) PB(qz) ... PA(Ps) PB(qs)' Writing TB and TA 
for DOl(I) ZI.0 at the first atomic plane of the first A-layer and Dol(m) Zm.m+l 
at the last (the qs th) atomic plane of the sth B-Iayer respectively, where m = 
PI + ql + P2 + qz + ... + Ps+ qs' the configurational average is then 

<D(n, n» =~ ~ ~ ~ ... ~ ~(rr PA(P;)PB(q;)m- 1 i D(n, n»), (12) 
A ~ A ~ ~ L ~1 n=1 

with D(n, n) given by (10) and (11). The Zn. n±1 are ultimately expressed in terms 
of T(n, n± 1) and TB and TA, the latter parameters being defined by 

s 

TA = ~ ~ ~ ~ ... ~ ~ II PA(p;) PB(q;)FA(p!', ql' .. ·,Ps' qs; TA), (13) 
A q, A ~ p, q, ;= 1 

s 

TB = ~ ~ ~ ~ ... ~ ~ II PA(P;) PB(q;)FB{PJ., Ql' ... , Ps' qs; TB), (14) 
A q, A ~ p, q, ;= 1 
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Fig. 1. Phonon DOS at the centre of the two-dimensional Brillouin zone for different degrees of 
randomness in layer thickness: (a) perfect superlattice (p = 0); (b) p = 0.05; and (c) p = 0·20. 
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Fig. 2. Total phonon DOS for different degrees of randomness in layer thickness: (a) perfect 
superlattice (p = 0) and (b) p = 0·20. 

where 

FA(p;. % TA) = Do 1(0) ~.1 = 1 T(O, 1)1 2 

D01(I)- 1 T(I,2)1 2 

D01(2)- . 

1 T(m-I, m)1 2 

Dol(m)- TA 

(15) 

FB(Pi' qi; TB) = Do 1 (m + 1) Z _ _____ ~I_=_T~( m~+:-:I~, :..:..:.m~) 1~2_----,.-__ 
m+l.m -

Dol(m)- 1 T(m, m_I)1 2 

D01(m-I)- . 

1 T(I,0)1 2 

. Dol(1)- TB 

(16) 

4. Numerical Example 

Equations (9)-(16) constitute our working scheme. The more layers (larger s) 
included in the computation, the better the approximation. As an illustration, we 
take 

M - 1K 2 M-1f(, 1 
A 1=3' A 2=3' MB = 2MA , s = 1, (17) 

PA(i) = PB(i) = p, i = 1,3 

= I-2p, i = 2 (r = 3). (18) 
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Fig. 3. Phonon density of states at the centre of the two-dimensional Brillouin zone by Monte 
Carlo simulation for p = 0·05. 

Fig. 1 displays the phonon DOS at the centre of the two-dimensional Brillouin 
zone k = 0, with (a) p = 0, (b) p = 0·05, and (c) p = 0·20, while Fig. 2 shows 
the total DOS with (a) p = 0 and (b) p = 0·20. In Figs la and 2a, the curves 
correspond to the case of a perfect superlattice. 

As a check, we have performed a Monte Carlo simulation for p = 0·05 with 
randomly generated samples consisting of 600 atoms. The number of eigenfrequencies 
between wand w+aw (aw = 0.01) has been computed and averaged over the 
samples; the result is shown in Fig. 3. (We found that 600 atoms are sufficient to 
ensure the stability of the results.) The good agreement between Figs 1 band 3 clearly 
illustrates the merit of the theory, even though s only has the value 1. 

Figs 1 and 2 exhibit the effects of randomness in layer thickness on the phonon 
structure. With increasing disorder, new modes appear within the forbidden bands, 
while the DOS profile smooths down with more and more fine structure wiped out 
and the whole frequency range broadened. 
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