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Abstract 

The energy of the ! + first excited state of 9B is derived from the measured energy of the 
analogue state in 9Be together with calculated values of the Coulomb displacement energy. The 
latter include contributions from the internal Coulomb interaction, the electromagnetic spin-orbit 
interaction and the different external wavefunctions in 9Be and 9B. The ! + excitation energy is 
predicted to be greater in 9B than in 9Be,arising from an inverted Thomas-Ehrman shift, due to 
the 9Be state being above the 8 Be(g.s.) + s-wave neutron threshold. This result is in conflict with 
a recently published calculation (Sherr and Bertsch 1985), which was based on a single-particle 
potential model. 

1. Introduction 

The most recent compilation of energy levels for A = 9 nuclei (Ajzenberg-Selove 
1984) gives the low-lying levels as shown in Fig. 1. The first excited state of 9Be is 
a ! + level at 1·685 MeV, just above the threshold for breakup into 8Be+n. The 
analogue state in the mirror nucleus 9B has not been identified with certainty. The 
tentative broad level shown at 1· 6 MeV, with a width of about O· 7 MeV, is based on 
evidence from the lOBeHe, a)9B reaction obtained by Kroepfl and Browne (1968). 
In a more recent study of the 9BeeHe, t)9B reaction with 90 MeV 3He, which is a 
priori more likely to populate the ! + level, the results were interpreted in terms of 
a level with a peak energy of 1· 65 MeV and a width of about 1 MeV (Djaloeis et 
al. 1983 a, 1983 b). Difficulty in observing the ! + level in 9B can be attributed to 
its expected large width, weak production in most reactions, and competition from 
alternative reaction sequences. 

Recently Sherr and Bertsch (1985) calculated the location and shape of the! + 
level in 9B, using a single-particle potential model. They suggested that the level 
should appear as a broad continuum with a peak energy at about 0·9 Me V and a 
width of 1·4 MeV. As evidence for the validity of the potential model, they gave 
results for pairs of analogue states in mirror nuclei with A = 11, 13, 15 and 17, 
finding reasonable agreement with experiment for both energies and widths. In many 
cases these levels are bound so that there is no ambiguity in the definition of the 
energy of the level. But for unbound levels, different definitions are possible, and the 
definition used by Sherr and Bertsch for the ! +, A = 9 levels is different from those 
that they used in the test cases. They concluded that the much lower excitation energy 
predicted for the ! + level in 9B, as compared with that in 9Be, is a manifestation of 
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Fig. 1. Low-lying energy levels of 9Be and 9B (from Ajzenberg-Selove 1984). 

the Thomas-Ehrman shift, which therefore persists when the s-wave neutron becomes 
unbound. 

The potential parameters that Sherr and Bertsch used for describing the properties 
of the t + level of 9B are the same as they found for the t + level of 9Be in order 
to best fit 9Be(y, n)8Be cross section data. Their fit is only moderately good. They 
stated that the R-matrix theory gives a better fit (Barker 1983), but that it introduces 
parameters that do not allow a prediction of the analogue state energy. The latter 
part of this statement is, however, not correct. The analogue state energy can be 
calculated in terms of the parameters that come into the R-matrix formulae. Such 
calculations have been done previously for other light nuclei, in particular for the 
very similar 13C_13N system (Barker and Ferdous 1980), with which the original 
Thomas-Ehrman shift was concerned. 

The calculation for the t + states and other low-lying states of 9Be and 9B is 
given in the next section. The one-level approximation is used throughout. Section 3 
contains a discussion of the results, and of the calculation by Sherr and Bertsch. 

2. Coulomb Displacment Energies for A = 9 States 

Energies of analogue states of given J1T in 9Be and 9B are related by the Coulomb 
displacement energy, defined by 

ilEdJ1r) = M(9B, J1r)-M(9Be, J1r)+8np ' (1) 
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where 8np is the neutron-proton mass difference and all masses are nuclear masses. 
Thus the excitation energy of a 9B state can be obtained from the measured excitation 
energy of the analogue state in 9Be together with the calculated net displacement, 
which is the difference between the Coulomb displacement energy for that pair of 
excited states and the value for the ground states. 

We calculate the Coulomb displacement energies for A = 9 states using methods, 
formulae and notation essentially the same as those used previously for the low-lying 
levels of 13C and 13N by Barker and Ferdous (1980). For each J'" value, we have 

ilEe = ilHc+ilL, (2) 
where 

ilHC = <1fI!1(-i)IHCI 1fI!/-i)-<IfI!I(i)IHCI 1fI!I(i) , (3a) 
2 2 2 2 

~ fz2 2 U' ~ -I 1 1 12 -ilL = - ~ -- u-(a)J -~!(T- ---m m 1- --) S t(cm) 2 e e e 2 2 t t 2 2 -2 t 
e me ae m, 

-(Ti i - mt mtl i i)2 S!(emt) J . (3b) 
2 

Here 1fI! 1 (M T) is a state of good isospin T = i defined in the internal region of 
R-matrix theory (Lane and Thomas 1958) and satisfying the boundary condition that 
its logarithmic derivative at the channel radius re = ae is constant, and the same for 
9B (MT = -i) as for 9Be (MT = i). The spectroscopic factor Y1' is related to the 
reduced width 'Y~e of R-matrix theory by 

'YL = Y1'(TiMT-mtmtliMT)2~ u~(ae) (c= emt)' (4) 
2me ae 

where mt = +i, -i for neutron, proton channels respectively, and uc(re)lrcis the 
radial wavefunction normalised by (Barker 1978, equation 17) 

fae 

o u~(r) dr = 1. (5) 

Also SM (emt) is the shift factor of R-matrix theory. The implied definition of the 
T 

energy Er of an unbound state is the energy at which the resonant nuclear phase shift 
passes through 7T/2 (cf. Barker and Ferdous 1980, equations 3 and 4). 

For A = 13, Barker and Ferdous (1980) calculated many contributions to the 
Coulomb displacement energies, but the only ones that gave significant contributions 
to the net displacements were the internal (point) Coulomb interaction and the 
electromagnetic spin-orbit interaction, which contribute to ilHc, and the boundary
condition level displacement, which contributes to ilL. Thus we include only these 
three contributions here, and use approximations similar to those made previously 
(Barker 1978; Barker and Ferdous 1980). Shell model wavefunctions for normal 
parity A = 8,9 states are taken from Kumar (1974), and for non-normal parity A = 9 
states from Woods and Barker (1984). Matrix elements in the internal contribution 
ilHc, given by equation (3a), are calculated with harmonic oscillator wavefunctions 
with the length parameter b = 1·65 fm, as for A = 8 (Barker 1978). The radial 
wavefunctions in the surface contribution ilL, given by equation (3b), are calculated 
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for a Woods-Saxon potential with parameter values ro = 1·75 fm and a = 0·65 fm 
(Millener et al. 1983). We include contributions to I1L from the nucleon channels 
involving the 8Be levels Jt = 00,20,40,20*,10,30,21,11 and 31, and their analogues 
in 8Li and 8B. The energies of the 9Be and 9B levels are as given in Fig. 1, except 
that the! + level of 9Be is here taken at 1· 733 MeV from the 9Be(y, n)8Be fit (Barker 
1983) and for consistency with the above definition of level energy; for the time being 
the same excitation energy is assumed for the ! + level of 9B. The ! - level of 9B is 
taken at 2·6 MeV (Fazely et al. 1982). 

Table 1. Calculated Coulomb displacement energies and 9B excitation energies 

J'Tr Er(9Be) ilnc (MeV) ac ilL ilEe Er(9B) 
(MeV) Coul. s.o. (fm) (MeV) (MeV) (MeV) 

3- 0·0 2·003 -0·042 4 -0·448 1·513 0·0 ! 
5 -0·277 1·684 0·0 
6 -0·158 1·803 0·0 
7 -0·092 1·869 0·0 

1+ 
! 1·733 1·939 -0·015 4 0·313 2·237 2·457 

5 0·151 2·075 2·124 
6 0·072 1·996 1·926 
7 0·040 1·964 1·828 

s- 2·429 2·012 -0·027 4 -0·388 1·597 2·513 ! 
5 -0·251 1·734 2·479 
6 -0-143 1·842 2·468 
7 -0·081 1·904 2·464 

1- 2·78 1·998 0·050 4 -0·302 1·746 3·01 ! 
5 -0·183 1·865 2·96 
6 -0·104 1·944 2·92 
7 -0·059 1·989 2·90 

~+ 3·049 1·905 -0·034 4 -0·491 1·380 2·916 2 

5 -0·342 1·529 2·894 
6 -0·206 1·665 2·911 
7 -0·125 1·746 2·926 

Table 2. Contributions to 4.L (in MeV) from different channels for ac = 6·0 fm 

r ji' 
00 20 40 20·,10,30 21,11,31 

3- 1 -0·121 -0·038 -0·001 0·002 ! 
1+ 0 0·094 0·000 0·000 "2 

2 -0·022 0·000 0·000 
s- 1 -0·143 -0·002 -0·001 0·003 i 
I- I -0·031 -0·072 -0·001 0·000 ! 
s+ 0 -0·147 0·000 0·000 i 

2 -0·044 -0·015 0·000 0·000 0·000 

Because of the approximations involved in the formulae (2) and (3) and in their 
evaluation, the calculated values of I1Ee are dependent on the choice of the channel 
radius a c' The conventional value is ac = 1.45(A~/3 + A~/3) fm = 4· 35 fm. Results 
are given in Table 1 for a range of ac values from 4 to 7 fm. The level energies Er 

are expressed as excitation energies. 



First Excited State of 9B 

---
s 

(b) 

--------
-3 -2 

--

......... 
I , , , 

" 

, ........... 
" ....... 

-" 

E (MeV) 

p 
n 

Fig. 2. Energy dependence of proton and neutron shift factors for 
8Be+nucleon channels with ac = 6·0 fm, for (a) 1= 0 and (b) 1= 1. 
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A striking feature of the values in Table 1 is that ilL is negative in all cases except 
for the i + states, where it is positive. To trace the source of this behaviour, Table 2 
gives the contributions to Il L from the various channels, for the particular channel 
radius ac = 6·0 fm; other values give similar results, but this value was favoured in a 
fit to the decay strength of the i + state of 9Be (Barker 1984). The main contributions 
are from the channels involving the ground state and first excited state of 8Be, and 
these are all negative except for the 8Be(g.s.)+ s-wave nucleon channel that dominates 
for i + states. For these T = 0 channels, the dependence of equation (3b) on the 
shift factors is (with a slight change of notation) through the term Sp~B)- Sn(9Be). 
Values ofthese shift factors are shown in Fig. 2 for ac = 6·0 fm and for the two cases 
of (a) a channel with 1= 0 and (b) one with I = 1 (typifying channels with I =F 0). 
For neutrons the abscissa is the channel energy, and for protons it is the channel 
energy minus the Coulomb displacement energy; then the difference of Sp and Sn at 
the same abscissa enters equation (3b). It is seen that in most cases Sp(9B)- Sn(9Be) 
is positive, but that it is negative for I = 0 channels with an unbound neutron level 
(E > 0). Thus the anomalous sign of ilL for i + states in Table 1 is due to the 
peculiar energy dependence of the s-waveneutron shift factor in the threshold region. 
The effect is enhanced by the large value of u~( ac) for 2s wavefunctions. 

The ilL contribution to the net displacement for the i + levels of 9Be and 9B is 
then positive. In the corresponding 13C_13N case, the value of ilL for the i + states 
is even more negative than for the ground (i -) states, due to the i + state in 13C 
being bound by nearly 2 MeV; this results in a negative contribution of ilL to the net 
displacement, which is the classic Thomas-Ehrman shift. A similar shift is found in 
the 170-17F system, where the i + state of 170 is bound by over 3 MeV. Thus we 
predict an inverted Thomas-Ehrman shift for A = 9. The positive contribution from 
ilL to the net displacement of the i + levels outweighs the negative contribution from 
the Coulomb and spin--orbit interactions, leading to an excitation energy for the i + 
level of 9B higher than that for 9Be. 
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The sensitivity of our results to the input parameter values and assumptions has 
been investigated. Use of the shell model wavefunctions of Barker (1966) for the 
normal parity states gives little change in either component of !:J.Hc ($, 10 keY) or 
in !:J.L ($,5%) for all states. The non-normal parity A = 9 wavefunctions of Barker 
(1961) change the Coulomb contributions to !:J. H C by + 4 and - 17 ke V for the ! + 
and ~ + states respectively, and the spin-orbit contributions by + 5 and -12 keY 
respectively, while !:J.L for the! + states is increased by about 60% and I!:J.LI for 
the ~ + states is decreased by about 15%. A value b = 1· 75 fm has been used 
to fit electron scattering data in 9Be (Woods and Barker 1984); the corresponding 
changes in the values of !:J.Hc are easily obtained since the Coulomb contribution is 
proportional to b- 1 and the spin-orbit contribution to b-3• The conventional value 
of the Woods-Saxon radius parameter ro = 1·25 fm (as used by Sherr and Bertsch 
1985) gives values of I!:J.L I about 30-40% less than those of Table 1, except that the 
values for the ! + states are little affected. These changes indicate the uncertainties in 
the quantities listed in Table 1. The values given in Table 1 are our preferred values. 

So far we have made use of the value of only one of the three parameters that 
were determined in the 9Be(y, n)8Be fit (Barker 1983), namely the! + level energy 
Ea. == Er - Er (where Er is the threshold energy). Of the other two, the reduced 
transition probability B = B(E1; ! + _ ~ -) is not of direct interest here, since we are 
concerned primarily with energies. The other parameter ER is related to the reduced 
width y2 by ER = 2mc a;,y4/ft-, and hence by equation (4) to the spectroscopic factor 
Y of the! + state for the 8Be(g.s.)+s-wave nucleon channel. For the best fit value 
ER = 192 keY, one finds Y = 0·151, 0.188, 0·248 and 0·324 for Qc = 4, 5, 6 and 
7 fm respectively. Acceptable fits to the 9Be(y, n)8Be data were obtained for ER as 
large as o· 34 MeV, and a similar best fit to 9Be(p, p )9Be data (Tucker et al. 1970) 
gave ER = 0·52 MeV, corresponding to increases of the above Y values by 33% and 
64% respectively. These values are all much smaller than the value Y = 0·606 used 
in Table 1, which was obtained from a shell model calculation (Woods and Barker 
1984). These smaller Y values suggest that the !:J.L(! +) values in Table 1 should 
be reduced in magnitude, but the precise amount is uncertain because wavefunctions 
giving the smaller Y values are not known. One would still expect Er~B, ! +) to be 
greater then Er~Be, ! +). 

The level energies used so far are energies Er at which the resonant nuclear phase 
shift /3 passes through 7T /2, where /3 is defined in terms of the total nuclear phase shift 
8 and the hard-sphere phase shift - cf> by /3 = 8 + cf>. In the one-level approximation 
of R-matrix theory, which was found to describe adequately the ! + contribution to 
the 9Be(y, n)8Be cross section (Barker 1983), one has 

l.r 2p 
tan/3 = 2 y. (6) 

Er+L1-E Er- y2(S-B)-E 

Here we have included only the 8Be(g.s.) channel contribution to the level shift ..1, and 
P, Sand B are the penetration factor, shift factor and boundary condition parameter 
for this channel. The condition /3(Er) = 7T/2 requires L1(Er) = 0 or B = SeEr). 
Measurement of 8Be+nucleon elastic scattering is, however, not feasible; if it were, 
it should provide the clearest and cleanest evidence about the properties of the ! + 
states of 9Be and 9B. If the ! + level of 9B is to be observed at all, it will be in 
some reaction such as 9BeeHe, t)9B in which the 9B is formed as an unstable product 
nucleus. The yield of such a reaction as a function of the 9B excitation energy may be 
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expressed in terms of a density-of-states function or lineshape which, in the one-level 
approximation of R-matrix theory, may be written as (Lane and Thomas 1958; Barker 
and Treacy 1962) 

. Ir 
peE) = (Er+.J_2E)2+1" _~ 

-y2p 
{Er-y2(S-B)- Ej2+(y2 P)2 

ex: sin2 {3 

P 
(7) 

We define Em as the excitation energy at which peE) is a maximum, and r 1l2 as the 
FWHM of peE). For the! + state of 9Be, the 9Be(y, n)8Be best fit (Barker 1983) 
gives Em = 1· 696 MeV and r 1l2 = 0·130 MeV. Values of Em and r l/2 calculated 
for the! + state of 9B are given in Table 3. In case (a), the shell model spectroscopic 
factor Y = 0·606 is used and the values are consistent with those in Table 1. Case 
(b) uses values of Y derived from ER = 0·192 MeV; the values of Er are estimated 
by taking the 8Be(g.s.) contribution to aLe! +) proportional to Y, and leaving all 
other contributions to aEe unchanged. Although the values of Er for case (b) are 
lower than the corresponding values for case (a), the values of Em are higher for (b) 
than (a), due to the level being narrower so that the difference between Em and Er 
is smaller. For ac ;::::; 6 fm, for which there is some preference (Barker 1984), one 
might therefore expect the ! + level in 9B to have a peak excitation energy of about 
1· 8 MeV and a width of 1-2 MeV. 

Table 3. Calculated values for the ~ + state of 9B 

Case ac Er y2 Em rl/2 
(fm) (MeV) (MeV) (MeV) (MeV) 

(a) 4 2·457 2·13 1·98 3·02 
5 2·124 1·36 1·79 2·50 
6 1·926 0·862 1·71 2·02 
7 1·828 0·566 1·69 1·65 

(b) 4 2·15 0·529 2·12 0·95 
5 1·99 0·423 1·96 0:95 
6 1·87 0·353 1·83 0·94 
7 1·81 0·302 1:77 0·97 

3. Discussion 

The experimental value of aEe for the ~- ground states of 9Be and 9B is 
1· 851 MeV (Ajzenberg-Selove 1984), with which the calculated values in Table 1 are 
in reasonable agreement for ac = 6--7 fm. It should be remembered, however, that 
some significant contributions to aEe may be neglected here (cf. Table 6 of Barker 
and Ferdous 1980), and that the calculated values are sensitive to the choice of h. 
The differences between the calculated (Table 1) and experimental (Fig. 1 and Fazely 
et aZ. 1982) excitation energies of the ~ -, ! - and ~ + levels of 9B should not be taken 
too seriously, because we have not distinguished between Er and Em values in these 
cases. 

The main point is the big difference between the value of about 1· 8 MeV that we 
expect for the excitation energy of the ! + first excited state of 9B and the prediction 
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of about o· 9 MeV by Sherr and Bertsch (1985) (henceforth referred to as SB). SB 
used a single-particle model, in which the i + state is assumed to have the structure 
8Be(g.s.)+s-wave proton, corresponding to a spectroscopic factor Y = I, whereas 
we used the much smaller shell model value Y = 0·606 and even smaller values 
obtained from fitting 9Be(y, n)8Be data. A more important reason for the difference, 
however, appears to lie in the different definitions used for the energy of an unbound 
level. 

We defined two energies associated with an unbound level; Er is the energy at 
which the resonant nuclear phase shift {3 passes through 7T /2, and Em is the energy 
at which the density-of-state function p reaches a maximum. Theoretically Er is of 
more significance, as it occurs explicitly in both of the formulae (6) for {3 and (7) 
for p, whereas Em is of more interest experimentally as it is closely related to the 
observable peak energy. 

SB made use of four definitions or prescriptions for the energy of an unbound level: 

(a) the real part of the energy of a pole in the scattering matrix; 

(b) the energy at the maximum of 

Pl(E) = Wi(r)-r2 dr, f oo dV 

o dr 

with the single-particle continuum wavefunction W E(r) normalised by 

W E(r) --+ sin(kr+8) 
r .... 00 k~ r 

where 8 is the total nuclear phase shift; 

(c) the energy at the maximum of 

piE) = d8/dE; 

(d) and the energy at the maximum of 

P3(E) = If wE(r)r<po(r)r2drI2, 

(8a) 

(8b) 

(9) 

(10) 

with <po(r) the single-particle bound-state wavefunction describing the ground 
state of 9Be. 

SB considered (a) as the correct definition in principle, but said that it is not easy 
to apply. They found that the prescriptions (b) and (c) gave roughly equal values 
for the A = 11-17 cases that they investigated, but that (c) was to be preferred 
for describing the very broad i-states of 9Be and 9B. They claimed that neither 
(b) nor (c) could be used to compute the energy of the unbound i + state of 9Be, 
because 'there is no potential barrier, and so the resonance does not exist in a rigorous 
sense'. This is reminiscent of the suggestion by Spencer et al. (1960) that this 'is not 
a state in the usual sense'. It was shown, however, by Barker and Treacy (1962) 
that the then-available data could be explained adequately by assuming a normal i + 
state and using R-matrix formulae, and subsequent studies (Barker and Fitzpatrick 
1968; Tucker et al. 1970; Barker 1983; Barker 1984) have tended to confirm this. 
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Nevertheless, for the particular case of the ~ + levels of 9Be and 9B, SB introduced 
the definition (d), and this led to the prediction of 0·9 Me V for the energy of the ~ + 
level of 9B. 

We now consider the relationship between the energies defined in (a)-(d) and 
our quantities Er and Em. For simplicity we assume the one-channel one-level 
approximation of R-matrix theory. 

To show the connection between Er and the pole of the scattering matrix, we 
assume that Ll (or S) is a linear function of E, so that equation (6) can be written as 

tan/3 = ~r/(Er-E), (lla) 
where 

r = rl(1 -dLl/dE), (llb) 

and that ro (or P) is independent of E. Then the scattering matrix is 

U == exp(2i B) = exp( - 2i cf» exp(2i 13) 

= exp( -2icf»(E;.- E +~i r)/(Er- E- ~i r), (12) 

so that the energy of the pole is Er - ~ i ro. With these approximations, the definition 
(a) of SB therefore gives the energy of the unbound level equal to Er, as we have 
used in Table 1; however, the assumptions that S is a linear function of E and P 
is constant are not in general good near threshold. In fact Er in equation (6) is 
necessarily greater than Er for an unbound state and less than Er for a bound state, 
which seem very reasonable properties for the energy of a state, whereas the real part 
of the energy of a pole is less than Er for both a bound state and a virtual (unbound) 
state (Nussenzveig 1959; Humblet and Rosenfeld 1961). 

In prescription (b) of SB, the asymptotic form (8b) is appropriate to an s-wave 
neutron channel; for the general case, this becomes 

IJI E(r) _ Ft(r) cos B + Gt(r) sin B 
r_oo k! r 

(13) 

where Fj and Gt are the regular and irregular Coulomb functions. The term d V Idr 
in equation (8a) was introduced to simulate a surface-peaked reaction mechanism. If 
we take the extreme case 

d Vldr a: B(r-ac), V(r)=O for r>ac' (14) 

then Pl(E) a: 1JI~(ac)' and IJIE(ac) is given by the asymptotic form (13), so that 

Pl(E) a: sin2(B+cf»1 P = sin2 /31 P, (15) 

where we have used the relations 

tan cf> = Fj( ac)l Gt( ac) , P = kac/{F7(ac)+G7(ac)]. (16a, b) 

Thus, with the approximations (14), Pl(E) is proportional to the R-matrix density-of
states function p(E) given in equation (7), and the level energy defined by prescription 
(b) is the same as our Em. 
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We start our discussion of prescription (c) from the density-of-states function 
derived and used by Phillips et al. (1960) 

P(E) = 2. d,8/dE. (17) 
'IT 

Phillips et al. noted that P( E) is approximately the same as p( E) defined by equation 
(7) if it is assumed that rand L1 are slowly varying with E. Barker and Treacy 
(1962) pointed out that this assumption may not be good for levels near thresholds, as 
in the present case, and that P(E) is not necessarily positive, so that it is not always 
suitable as a definition of a density-of-states function. Johnson (1973) also took the 
resonance energy as where p(E) is a maximum, which he assumed to be the same as 
Er; he then stated that if 1> varies linearly with energy, this will also be where dB/dE 
is a maximum, and this is the basis of prescription (c) of SB. The assumption that 1> 
is a linear function of E is, however, not good near threshold. Thus there are several 
arguments against the use of prescription (c) for the low-lying A = 9 levels. 

SB introduced their prescription (d) particularly in order to describe the i + levels 
of 9Be and 9B. For the 9Be case, the integral in equation (10) is an electric dipole 
matrix element between the ground state and the i + state, and SB assumed that the 
9Be(y, n)8Be cross section (j yn is proportional to P3(E). From equations (13)-(15) of 
Barker and Ferdous (1980), equation (13) above, and (j yn <X (k~/ E~)(j ny' we find 
(j yn <X By P3. The additional factor Ey would enhance the disagreement between fit 
and data in Fig. 4(a) of SB (the fact that their model does not allow a good fit to 
the data is due to their spectroscopic factor Y being much too large). To describe 
the i + state of 9B, SB used P3 calculated from equation (10), with t[/ E appropriate 
to 9B but 1>0 still the ground state of 9Be, and found a peak at an excitation energy 
of about 0·93 MeV. An additional Ey factor would increase the peak energy to 
about 1· 3 MeV. The hybrid nature of the matrix element, and the poor fit to the 
9Be(y, n)8Be cross section data, however, make this an unsuitable prescription for 
calculating the energy of the i + state of 9B. 

We have already mentioned that the triton spectrum from the 9BeeHe, t)9B reaction 
measured by Djaloeis et al. (1983a, 1983b) shows some evidence for the i+ state of 
9B, but its position and width would depend very much on the properties assumed 
for the background. SB have suggested that the background could be eliminated or 
minimised by observing triple coincidences between the tritons and the two alphas 
from the °Be breakup. It seems that a simpler way of greatly reducing the background 
would be to require triton-proton double coincidences, with the proton energy gated 
on decay through 8Be(g.s.)-this would have the added bonus of effectively removing 
the peak corresponding to the strongly produced ~ - state of 9B at 2·36 Me V, since 
this state decays less than 0·5 % to 8 Be(g.s.) + proton (Wilkinson et al. 1966). 

In summary, an R-matrix calculation of the Coulomb displacement energies 
predicts a higher excitation energy for the i + state of 9B than for its analogue state 
in 9Be. This inverted Thomas-Ehrman shift is due to the peculiar energy dependence 
of the s-wave neutron shift factor in the threshold region. The suggestion by Sherr 
and Bertsch (1985) of a much lower excitation energy for the i + state of 9B seems 
to be unreliable because the single-particle model and the definition of the energy of 
an unbound level that they used are both inappropriate for these states. 
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