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Abstract 

The three· dimensional potential of a charged particle tunneling between a flat metal surface and 
a spherical metal tip is calculated within the framework of the hydrodynamic description of 
metallic electrons. It is demonstrated that the inclusion of coupling of surface modes in the 
two electrodes, even for separations as small as 10 times the screening length in either of them, 
contributes less than 5% of the total potential of a point charge. Hence the potential is obtained 
as a superposition of contributions from a planar surface and a charge neutral, conducting sphere 
(and can include a simple classical term for a sphere at a fixed potential). This should enable 
accurate determination of three· dimensional tunnel currents in scanning tunneling microscope 
geometry. 

1. Introduction 

The successful development of the scanning tunneling microscope (STM) by the 
IBM Zurich group (Binnig et al. 1982a, 1982b, 1983; Binnig and Rohrer 1982) has 
stimulated vigorous research activity in recent years. This promising experimental 
technique has already facilitated the study of the surface structure of metals, metallic 
glasses and semiconductors with atomic resolution (Scheel et al. 1982; Binnig and 
Rohrer 1982; Gimzewski et al. 1985; Binnig et al. 1986a; Feenstra et al. 1986a, 
1986b; Weisendanger et al. 1987). The effort of experimentalists led to the STM which 
can operate in air at ambient pressure and in liquids (Park and Quate 1986; Drake 
et al. 1986). The principle of STM operation has been utilised to build prototype 
instruments for scanning tunneling potentiometry (Muralt and Pohl 1986) and atomic 
force measurements (Binnig et al. 1986b). 

The problems of the tunneling conductance of electrons, the lateral resolution of 
the STM and other theoretical issues have been treated using the transfer matrix, 
perturbative or direct methods in a number of papers (Tersoff and Hamann 1983, 
1985; Garcia et al. 1983; Feuchtwang et al. 1983; Baratoff 1984; Garcia and Flores 
1984; Stoll et al. 1984; Stoll 1984). The tunneling occurs through a potential barrier 
consisting of the bias voltage and the 'image' potential. 

The image potential arises from the interaction of the external charge with the 
charges induced in the metal due to the collective response of the electrons. The latter 
can be estimated using the hydrodynamic model which gives the response in terms 
of the plasmons (both surface and bulk). In the present paper we demonstrate that 
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the image potential of a charged particle between a fiat metal surface and a spherical 
metal tip arises mainly from surface plasmons on the planar surface and a finite 
number of surface plasmons on the sphere. The coupling of the surface modes in the 
two electrodes has a very small effect on the potential when the minimum separation 
is larger than about ten times the screening length. Therefore the multiple-image 
method for generating the image potential (Simmons 1963 a, 1963 b; Miskovsky et al. 
1981, 1982) is not necessary for dispersive metals. . 

In the semi-classical model of a static charge between the two electrodes, we 
obtain a three-dimensional axially symmetric potential, which is everywhere finite and 
saturates to two different values on the surfaces of the electrodes. This result resolves 
the problem of classical image potential divergence at the surface discussed recently 
in the present context by Binnig et al. (1984) and Payne and Inkson (1985). 

A study, which addressed the same question of the charged particle potential in a 
model STM geometry identical with ours has just been completed by Morawitz et a1. 
(1987); in this sense, our work is complementary to theirs. However, they used the 
classical multiple-image method which, in our opinion, limits their results to ideal 
conductors. On the other hand, our treatment takes into account the dynamics of 
the collective modes of conduction electrons, including their spatial dispersion. 

z 

Fig. 1. Geometry of the sphere-plane coupling problem . 

. 2. Problem of Plane-Sphere Coupling 

The magnitude of the contribution to the total potential due to coupling between 
surface plasmons on a plane and a sphere is estimated using a general approach 
presented by Michalewicz and Mahanty (1986). Let us consider a metal sphere of 
radius R (medium 2) and a fiat metal surface (medium 1) at a distance ~-R from 
the surface of the sphere. The z-axis is normal to the planar surface and has its 
origin at the centre of a sphere. An external, stationary point charge Q is confined, 
for simplicity, to the axial line at zl' with R .;;;; Zl .;;;; ~ (see Fig. 1). 

We assume that the density of conduction electrons in both metallic jellium media 
obeys the hydrodynamic equation of motion. In cylindrical coordinates the solutions 
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for the electronic densities are (I = 1 and m = 0) 

I 

nsp(r) = D(4~ r cose ml(~ r), (1a) 

npl(r) = (27T)-2 J d2k C(k)Jo(kp) expl-y(z-~)J. (1b) 

In these expressions, ml(x) = (7T/2x)-1I2I3/2(X) is the modified spherical Bessel 
function of the first kind and the first order, while Jo(x) is the Bessel function of the 
first kind and the zeroth order. Further, y2 = k 2 + ki, and kj I is the Thomas-Fermi 
screening length in the ith metal, with k; = wp(l)/ f3;, where wp(i) is the plasma 
frequency and f3; is the dispersion parameter. The high and low frequency values 
of f37 are ~ v~(i) and ~ v~(L) respectively, VF(I) being the Fermi velocity. The density 
fluctuations in both media are mutually orthogonal with respect to the number m. The 
predominant contribution to the charged particle-metallic sphere interaction potential 
is due to the dipole mode (l = 1) and is of order - (R/ r)4 outside the sphere. The 
higher multipole modes contribute by terms of the smaller order O«R/ r)6), where 
R is the radius and r is the position of the charge measured from the centre of the 
sphere (Mahanty and Michalewicz 1986). This justifies our choice of dipole mode on 
the sphere, I = 1, and m = 0 solution in the plane as the principal solutions for the 
density fluctuations (1a) and (1b) in the coupling problem. 

The coupling occurs in the normalisation constants C(k) and D which are solved 
from the boundary conditions. To this end we require that the normal current in 
metal 1 and the radial current in metal 2 vanish at the respective surfaces. This is 
written as 

{ 2 a a a a Qer~Jl} - mf31 - npl + enol - <l>pl + enol - <l>sp = - - , az az az az I r-zll Z=l\J 
(2a) 

{ 2 a a a a Q e no2 } 
- mf32 - nsp + eno2 - <l>pl + eno2 - <l>sp = - - I I ' ar ar ar ar r- zl r=R 

(2b) 

where no; is the equilibrium electron number density in the ith metal. The boundary 
conditions lead to equations for the coefficients 

C(k) = A(k)+DB(k), Dr = J dk L1(k) C(k) + J dk A(k), (3a, b) 

where 

A(k) = Q w\ (y+ k) explk(zl-~)J , (4a) 
e p 2f3i y(y+ k) -W~l 

B(k) = _ (47T)i (w21 R3 /~) mz(~ R) k(y+ k) exp( - k~) , (4b) 
3 p 2f3i y(y + k) - W~l 

r = -~mz(~ R) - ml~~~R), (4c) 
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and where 

.1(k) = .!.(~)~ ~ k exp( - k~) W(k, R), 
2 41T y+k 

. (3)! Q 
A(k) = -i - 2 - ~ k exp(-k~) W(k,R), 

41T e 

W(k, R) = f: dO sinO cosO exp(kR cosO) 

(4d) 

(4e) 

x {cosOJo(kR sinO) - sinOJ1(kR sinO)}. (5) 

Let us now choose the units of zo, zl and R to be k,l, and let k be in units of k 1. 
This is equivalent to the change of variables k - k = k/ k1' k1 - 1, ~ - ~/ k1' 
Zl - zl k1' ~ - ~ k1' R - Rk1, and y _ y = (k2+ 1)112. Now, the coefficient D 
is found to be 

1 ( 3 )~ Q 2 1 3 D = '2 - - k1 ~(I1-li)/{ r +'2R "'-2(~ R)13} , 41T e . 
(6) 

where the dimensionless integrals 11, 12 and 13 are 

/, = fOC> dk k exp{-k(2~-Zl)} W(k,R), 
1 0 2y(y+ k)-1 

(7a) 

12 = f: dk k exp( - kz1) W( k, R), (7b) 

13 = f OC> dk k2 exp( -2k~) W(k, R). 
o 2y(y+k)-1 

(7c) 

It is interesting to note that the expressions (6), (7a) and (7c) are solved analytically 
in the dispersionless case ({3 - 0, y _ 1). The integral 11 takes, then, the form of li: 

l(a) = f: dk k exp( - ka) W(k, R) = ~a-2, 

13({3 = 0) = ~ I I . 
da a=2~ 

and 

Herice, in the dispersion less case we have 

11 = ~(2~-Zl)-2, 

T 2 -2 . 11 .l2 = }Zl 10 a cases, 

. 13 = -1(2~)-3, 

(8) 

(9) 

(10) 

(11) 

(12) 

and, using (10)-(12), all subsequent expressions lead to the mUltiple-image type of 
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Fig. 2. Potential barrier along the axial line in the coupled sphere (W)-plane (Ag) problem. 
The geometry is as depicted in Fig. 1. The surface of the sphere is at z kl = 10 and the surface 
of the plane at z kl = 20. The distance z is in units of the Thomas-Fermi screening length 
in the sample, kl = ~(rs/2.44355)1I2 and the energy units are Q2 kl = 2~ kl (Ry). The 
solid curve represents the total potential, the dashed curve the contribution fro~ the plane, the 
dash-dot curve the contribution from the dipole mode on the sphere, and the dotted curve the 
coupling contribution ( < 5% of total). 
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Fig. 3. Potential of a charged particle along the axial line in a sphere-plane geometry including 
all surface modes on the sphere (solid curve) and only the dipole mode (dashed curve). The 
units and geometry are as in Fig. 2. 
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result (divergent at the surface of the plane). To recover full multiple-image interaction 
energy one has also to sum all the higher modes on the dispersionless sphere. 

The induced potential in the sphere-plane system is 

cf>,(r) = cf>pl(r)+cf>sp(r) = _ ~ fd 2 k C(k)Jo(kp) exp{k(z-~)J 
27T k y+k 

1 

(47T)i ~(~ R) 3 cosO 
- - e DR--

3 ~ r2 ' 

and, consequently, the self-energy of a charge Q is 

Q Q2 kl f exp{2k(zl-~)J 
.2'(zl) = "2 cf>,(zl) = - -2- dk 2y(y+ k)-1 

Q2k1 ~(~R) R312/r+CT. 
+ -2- 2 zi 

(13) 

(14) 

The first and second terms in (14) are respectively the classical interaction potential 
of a charged particle with the dispersive plane and the dispersive sphere with only 
dipole mode present. The coupling term is 

CT = Q2k1 ~(~ R) R3(.l_l)L z2 + ~(~ R) R3ll +r.l) 
2 2 zi 1 2 4 1 2 2 3 1 

x {r(r+R3 ~(;R) 13)r 1
, (15) 

and the integral 14 is 

14 = fOC> dk k exp{ - k(2~-zl)J 
o 2y(y+k)-I· 

(16) 

The interaction potential .2'(zl) and its separate contributions are depicted in Fig. 2 .. 
The most important result is that the correction term does not exceed 5% of the total 
potential. In obtaining these results we used the expressions (7) in the general case of 
dispersive media. Fig. 3 shows the potential of a charged particle in a plane-sphere 
geometry, along the axial line, when all the higher surface modes are included (in the 
example at hand there are six surface modes). 

Inclusion of all modes on the sphere in our computation of the coupling term 
would result in a considerable computational complication, since then a bigger matrix 
equation, instead of (3), would have to be solved. However, since the coupling terms 
with higher modes of the sphere diminish rapidly with the plane-sphere distance of 
separation, we conclude that the coupling contributions for all higher modes will not 
be higher than - 5% of the principal decoupled plane and muItipole terms. 

3. Plane-Sphere Potential Barrier 

The potential of a static charge Q, tunneling between a metal plane and a spherical 
tip, is constructed as a superposition of decoupled contributions from the sphere and 
the plane. It is a matter of straightforward application of the method presented by 
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Michalewicz and Mahanty (1986) to obtain the potential in a charge-plane system 

...!'pl(z) = - __ I dk exp( -2kz)/(y+ k)2, Q2 k foo 
2 0 

(17) 

where z is measured from the planar surface in units of ki l and y = (k2+ 1)1/2. 
The calculation of the potential in a charge-sphere system is a more involved 

problem and has been exhaustively treated by Mahanty and Michalewicz (1986). As 
observed therein, the contribution from the bulk modes can be ignored outside the 
sphere, and then the potential is written as (Mahanty and Michalewicz 1986, eq. 40a) 

Q2 k 4"" w2 1 (R)2(/+ I) 

...!'sp(r) = - 2RI i~1 w; (2/+1)L1~ -;: ; r> R, (18) 

where w [ are the eigenfrequencies of the surface modes, which are found from the 
dispersion equation 

m[(kR) = {1_(2/+ 1) k2} mi(kR) . 
kR 1+ 1 k~ 1 ' 

2 
k 2 = wp -w2 

f32 
(19) 

and k~ = W~(2/ f3~. Here 1 max is the number of surface modes on the sphere, 
Imax;:::: (36+ 16y2)1I2_6j18 with y2 = k~ R2, and L1~ is defined through equation 
(31) in Mahanty and Michalewicz (1986). Further, m/(x) = (TT12X)- 1I2 I[+1I2(X) 
are the modified spherical Bessel functions. 

The results for the interaction potential computed from (18) were tabulated for 
the sizes of the sphere R E (10, 20, 50, 100) and for different metals represented by a 
parameter ~/kl E p.O, 1-1, 1.2, 1.3, 1.4); the value of kl was taken for Ag.* 

The principal results of this work are depicted in Figs 4 and 5. Figs 4a and 5 a 
show the axially symmetric potential barrier in the tip-sample geometry for the two 
inter-electrode separations 10 ki l and 20 ki l respectively. The three-dimensional 
relief of the barrier is presented in Figs 4 band 5 b for the same two separations. The 
barrier is much lower for the narrower tip-sample gap. This is an important effect 
which might show up in the onset of tunneling at the fixed applied bias; it has not 
received much attention so far. 

It should be pointed out that the metal tip in our model is the charge neutral, 
insulated, conducting sphere. In order to include the effect of a fixed potential V 
at the surface of the sphere the classical term (Jackson 1975) ...!' v(r) = V RQ12r 
should be added to (18). 

4. Conclusions 

In the present work we have calculated the interaction potential of a stationary 
point charge in the model scanning tunneling microscope geometry. The sample 
has been taken as a flat free-electron jellium metal, and the probing tip has been 
modelled by a charge neutral, insulating, conducting sphere. It has been assumed 
that the conduction electrons obey the hydrodynamic equation of motion. In most 
experimental situations the probing tip is made of tungsten, although other metals 
such as iridium and molybdenum have been used. Smith (1969) pointed out that 

* These tables are available from the authors on request. 
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Fig. 4. (a) Induced potential contours of a charged particle in the model STM. The probe 
(W)-sample (Ag) separation is 10k)l. The units are the same as in Fig. 2. (b) The potential 
barrier of Fig. 4 a as a three-dimensional relief. 

many surface properties of the transition metals are successfully described within 
the free-electron model, and certainly his calculations of the work functions and 
surface potentials show good agreement with experiment. Assured by this agreement 
we have treated the sphere as being jellium and free-electron-like, with the effective 
Wigner-Seitz radius for tungsten of rs = 1· 62 (Mehrotra 1979). The only parameters 
of the theory are therefore the electronic densities in the probe and the sample. 

We have demonstrated that coupling of the surface modes in the two electrodes 
has a negligible effect on the potential barrier for the typical separations encountered 
in experiments, of the order of 10 times the Thomas-Fermi screening length. The 
coupling contributes less than 5% to the total potential and hence can be ignored. 

In principle, the shape of the tunneling potential barrier can be estimated in the 
same manner as done here if the independent potentials due to the plane and the 
sphere are obtained by other methods. There are many estimates in the literature of 
the image potential due to a plane, using other methods such as the density functional 
method (Appelbaum and Hamann 1972; Lang and Kohn 1973) or the dielectric 
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Fig. 5. The same as Fig. 4 but for a separation of 20 ki l . Note the lowering of the barrier. 

response method (Equiluz et al. 1984). Similar calculations for the image potential 
due to a sphere are not available to the best of our knowledge. 

The effective potential barrier in a plane-sphere geometry has an obvious rotational 
symmetry about the line normal to the surface and joining the centre of the sphere. It 
displays a 'valley' centred along the axial line where strong enhancement of the tunnel 
current should be expected. The spherical model of the tip shows that STM is an 
excellent local probe of the electronic structure of the sample, since the tunnel current 
will decrease rapidly in lateral distances of about half the tip radius. This effect has 
been discussed by Morawitz et al. (1987). The inadequacy of the one-dimensional 
theory of tunneling and the need for a three-dimensional description of the STM 
operation is evident from our results. 



422 J.Mahanty and M. T. Michalewicz 

References 

Appelbaum, J. A, and Hamann, D. R. (1972). Phys. Rev. B 6, 1122. 
Baratoff, A (1984). Physica B 127, 143. 
Binnig, G., Fuchs, H., Gerber, Ch., Rohrer, H., Stoll, E., and Tossati, E. (1986a). Europhys. 

Lett. 1, 31. 
Binnig, G., Garcia, N., Rohrer, H., Soler, J. M., and Flores, F. (1984). Phys. Rev. B 30,4816. 
Binnig, G., Quate, C. F., and Gerber, Ch. (1986b). Phys. Rev. Lett. 56, 930. 
Binnig, G., and Rohrer, H. (1982). Helv. Phys. Acta 55,726. 
Binnig, G., Rohrer, H., Gerber, Ch., and Weibel, E. (1982a). Appl. Phys. Lett. 40, 178. 
Binnig, G., Rohrer, H., Gerber, Ch., and Weibel, E. (1982b). Phys. Rev. Lett. 49, 57. 
Binnig, G., Rohrer, H., Gerber, Ch., and Weibel, E. (1983). Phys. Rev. Lett. 50, 120. 
Drake, B., Sonnenfeld, R., Schreier, J., Hansma, P. K., Slough, G., and Coleman, R. V. (1986). 

Rev. Sci. Instrum. 57, 441. 
Equiluz, A G., Campbell, D. A, Maradudin, A A, and Wallis, R. F. (1984). Phys. Rev. B 30, 

5449. 
Feenstra, R. M., Thompson, W. A, and Fein, A P. (1986a). Phys. Rev. Lett. 56, 608. 
Feenstra, R. M., Thompson, W. A, and Fein, A P. (1986b). J. Vac. Sci. Technol. A 4, 1315. 
Feuchtwang, T. E., Cutler, P. H., and Miskovsky, N. M. (1983). Phys. Lett. A 99, 167. 
Garcia, N., and Flores, F. (1984). Physica B 127, 137. 
Garcia, N., Ocal, C., and Flores, F. (1983). Phys. Rev. Lett. 50, 2002. 
Gimzewski, J. K., Humbert, A, Bednorz, J. G., and Reihl, B. (1985). Phys. Rev. Lett. 55, 951. 
Jackson, J. D. (1975). 'Classical Electrodynamics', 2nd edn, p. 60 (Wiley: New York). 
Lang, N. D., and Kohn, W. (1973). Phys. Rev. B 7, 3541. 
Mahanty, J., and Michalewicz, M. T. (1986). J. Phys. C 19, 5005. 
Mehrotra, R. (1979). Ph.D. Thesis, Aust. Nat. Univ. 
Michalewicz, M. T., and Mahanty, J. (1986). Phys. Lett. A 116, 392. 
Miskovsky, N. M., Cutler, P. H., and Feuchtwang, T. E. (1981). Int. J. Infrared Mill. Wav. 2, 

739. 
Miskovsky, N. M., Cutler, P. H., and Feuchwang, T. E. (1982). Appl. Phys. A 27, 139. 
Morawitz, H., Batra; I. P., Reinish, R., and Henry, G. R. (1987). Surf Sci. 180, 333. 
Muralt, P., and Pohl, D. W. (1986). Appl. Phys. Lett. 48, 514. 
Park, S., and Quate, C. F. (1986). Appl. Phys. Lett. 48, 112. 
Payne, M. C., and Inkson, J. C. (1985). Surf Sci. 159,485. 
Scheel, H. J., Binnig, G., and Rohrer, H. (1982). J. Cryst. Growth 60, 199. 
Simmons, J. G. (1963a). J. Appl. Phys. 34,1793. 
Simmons, J. G. (1963b). J. Appl. Phys. 34, 2581. 
Smith, J. R. (1969). Phys. Rev. 181, 522. 
Stoll, E. (1984). Surf Sci. 143, L411. 
Stoll, E., Baratoff, A, Selloni, A, and Camevali, P. (1984). J. Phys. C 17, 3073. 
Tersoff, J., and Hamann, D. R. (1983). Phys. Rev. Lett. 50, 1998. 
Tersoff, J., and Hamann, D. R. (1985). Phys. Rev. B 31, 805. 
Weisendanger, R., Ringger, M., Rosenthaler, L., Hidber, H. R., Oelhafen, P., Rudin, H., and 

Griintherodt, H. J. (1987). Surf Sci. (in press). 

Manuscript received 30 September, accepted 9 December 1986 


