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Abstract 

To lay a foundation for the study and use of rotation operators in graduate quantum mechanics 
and in research, a thorough discussion is presented of rotations in Euclidean three space (R3 ) 

and of their effect on kets in the Hilbert space of a single particle. The Wigner D-matrices are 
obtained and used to rotate spherical harmonics. An extensive ready-reference appendix of the 
properties of these matrices, expressed in a consistent notation, is provided. Careful attention is 
paid throughout to various conventions (e.g. active versus passive viewpoints) that are used in 
the literature. 
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Part 1. INTRODUCTION 

Rotation operators, their matrix representations, and their effect on quantum 
states are an essential part of the quantum mechanics of microscopic systems. In 
graduate-level treatments of this topic (cf. Gottfried 1966; Shankar 1980; Messiah 
1966; Schiff 1968; Merzbacher 1970; Sakurai 1985; Bohm 1979; Cohen-Tannoudji 
et at. 1977) the introduction of the rotation operator in Hilbert space and the 
Euler angle parametrization of rotations leads in short order to the Wigner rotation 
matrices.* These matrices, in turn, are widely used in a variety of applications (cf. 
Weissbluth 1979). 

In our experience, newcomers to the theory of angular momentum, be they stu­
dents or practicing physicists, are frequently confused by differences in the conven­
tions and viewpoints used by various authors and by the lack of clarity in many 
introductory texts. Moreover, many have difficulty relating their intuitive (classi­
cal) notion of a rotation to the quantum mechanics of rotations in Hilbert space -
primarily, we think, because their training in rotations in ~3 is poor. Although a 
few recent papers have dealt with rotations in Euclidean three space (~3) (Leubner 
1980) and with rotation matrices (Bayha 1984), few have addressed the rotation 
operators per se (see, however, Wolf 1969). 

Our objec1:ive is to lay a foundation for the study of rotations in quantum me­
chanics and to provide a compendium of essential results of the theory of angular 
momentum. We begin in § II by discussing geometrical rotations in ~3 and the 
corresponding rotation matrices, both for a general rotation and in the Euler angle 
parametrization. (Goldstein 1980). \Ve also discuss the difference between active 
and passive rotation conventions - a notorious source of confusion. 

There follows in § III an introduction to rotations in Hilbert space. This leads to 
the \Vigner rotation matrices, which are illustrated by rotating the familiar spherical 
harmonics. We have not included proofs of the properties of these matrices, since 
such proofs can be found in many texts and treatises on angular momentum (Brink 
and Satchler 1962; Edmonds 1960; Rose 1957; Biedenharn and Louck 1981; Judd 
1975; Normand 1980; Silver 1976; Cushing 1975; Wybourne 1970).t To compensate 
for this lack, we have listed the important properties of the Wigner matrices in a 
"ready-reference appendix." The material in this appendix was gathered from a 
wide range of sources, but is here presented in a consistent notation and viewpoint. 

Part II. ROTATIONS IN ~3 

1. Simple Rotations about an Arbitrary Axis 

A rotation in ~3 is a geometrical transformation. A particular rotation can be 
fully specified by two parameters: a rotation angle 6 and a rotation axis fu, the 
axis about which the rotation occurs. We shall denote a rotation in ~3 by Ru (6). 
Unless otherwise indicated, all rotations are in the positive sense, as illustrated in 
Fig. 1. 

* Rotations are treated in several advanced undergraduate quantum mechanics texts, including 
Dicke and Wittke (1960), Saxon (1968), Liboff (1980), and Powell and Crasemann (1961). 

t Group theory is applied to rotations in Tinkham (1964) and in Hammermesh (1962); see also 
Harter et al. (1978). 
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Fig. 1. A rotation in ~3 is defined by a rotation angle 8 and a rotation axis eu. For 8 > 0, the 
rotation R,,(8) appears counterclockwise to an observer looking towards the origin. 
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Fig. 2. An active rotation through a positive angle 8 about the z axis. The operator that effects 

this rotation is R~ a) (8). Note that 8 = 'P2 - 'Pl. 



468 M. A. Morrison and G. A. Parker 

ez = ez , 
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ex' 
Fig. 3. A passive rotation through a positive angle Ii about the z axis. The operator that effects 

this rotation is RV')(Ii). This rotation is not equivalent to the active rotation in Fig. 2. 
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Fig. 4. The passive rotation that is equivalent to R ~ a) (Ii) of Fig 1. The operator for this rotation 

is R~p)(-li). Note that Ii = 'P~ - 'Pl. 
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(aJ Active and Passive Rotations 

To describe the effect of a rotation in ?J?3, we first define a right-handed coor­
dinate system, such as the one in Fig. 1. Because this system does not change its 
orientation, we call it the space-fixed system. The orthogonal unit vectors that 
define the space-fixed system are (ex, ey , ez ). 

A rotation in ?J?3 can be described using two viewpoints: active or passive. (Davy­
dov 1976; Biedenharn and Louck 1981). An active rotation is a rotation of a 
vector in a fixed coordinate frame. We shall use a superscript (a) to emphasize that 

a rotation is active e.g. n~a)(8). In the active rotation about the z axis (eu = ez ) 

shown in Fig. 2, the vector rl from the origin to point P1 is rotated by n~a)(8) into 
the vector r2 to point P2: 

r2 = n~a)( 8) rl. (1) 

The inverse of an active rotation through angle 8 about eu is an active rotation 
through -8 about eu or, equivalently, through 8 about -eu : 

n~a)-1(8) = n~a)( -8) = n~2(8). (2) 

Thus, the inverse of the rotation n~a) (8) shown in Fig. 2 takes r2 into rl, i.e. 

rl = n~a)-1(8)r2' (3) 

In contrast, a passive rotation is a rotation of the coordinate system. In a 
particular reference frame, a point (the tip of a vector from the origin) is labelled 
by a triple of numbers - e.g. (x, y, z) or (r, B, ¢). Under a passive rotation, 
the vector remains fixed, but the point it defines receives new labels. That is, the 
numbers that describe the location of the point change from those appropriate to 
the (initial) unrotated frame to the (final) rotated frame. We shall use a superscript 
(p) to denote a passive rotation, e.g. n}!)(8). 

A passive rotation through a positive angle 8 about the z axis is shown in Fig. 3. 
Denoting the location of the point P1 in the fixed frame by unprimed coordinates 
and that of the same point in the rotated frame by primed coordinates, we can 
write the effect of a passive rotation as 

r; = n~p)(8)rl' (4) 

The rotations shown in Figs 2 and 3 are not equivalent. They differ because 
both are defined as positive rotations through a positive angle (8 > 0). The 
passive rotation of coordinates that is equivalent. to an active rotation through 8 
about eu must do to the coordinate axes the opposite of what n~a\8) does to a 
vector. So the passive rotation that is equivalent to n~a)(8) of Fig. 2 is n~p)( -8), 
as illustrated in Fig. 4. 

There is therefore an equivalence (an isomorphism) between active and passive 
rotations, i.e. 

n~a)(8) ~ n}!)( -8), (5a) 

where ~ stands for "is equivalent to". A similar argument establishes the 
corresponding equivalence 

n}!)(8) ~ n~a)( -8). (5b) 
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These equivalences will play an important role in the subsequent discussions of 
Euler angle rotations (§ II.2) and ofrotation operators in Hilbert space (§ III). 

To summarize: we can describe a rotation mathematically using either the active 
or passive convention, because according to Eqs (5), these rotations are equivalent 
provided we remember to change the sign of the rotation angle. The essential point 
is that n~a)(8) and n~)(-8) are merely two ways to describe the same geometrical 
rotation. In an active rotation the "final" coordinate system is the same as the 
initial one; in a passive rotation the final system is (ex" ey " ez'). But the proximity 
of the physical system to the final coordinate system is the same regardless of 
whether we carry out the rotation in the active or the (equivalent) passive viewpoint. 

(b) Rotation Matrices 
Operationally, we describe the effect of a rotation in ~3 in terms of the compo­

nents of the vector being rotated. For example, we can write T1 in terms of the 
unit vectors that define the fixed reference frame as 

T1 X1ex + Y1ey + Zlez. (6) 

The Cartesian components Xl, Y1, and Zl are just the direction cosines of T1 with 
respect to the fixed axes, e.g. Xl = ex· T1. We can conveniently represent T1 by 
the column vector 

,,= GJ (7) 

To write Eq. (6) in matrix notation, we must first define the basis 

~ = (i), ~ = (~), ~ = (;) (8) 

Then the matrix counterpart of (6) is Eq. (7), 

r1 X1ex + Y1ey + Zlez· (9) 

The representation (7) depends critically on the coordinate system - this column 
vector is the correct representation of T1 only in the basis (8) which, in turn, pertains 
only to the fixed frame (ex, ey , e z ). 

A vector T2 that is obtained via an active rotation of T1 [Eq. (1)] can similarly 
be represented in the basis (8) by 

" = (~) (10) 

How can the components of T2 in the fixed basis (8) be obtained directly from those 
of T1 in this basis? The components of a vector before and after rotation are related 
by a rotation matrix; for each rotation nSa) (8) in ~3 there exists a matrix R u ( 8) 
that appears in the matrix counterpart of Eq. (1), 

r2 = R u (8) r1· (11) 
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To find the elements of Ru( 0) we first write both sides of (1) in the fixed frame 
and then translate the resulting equation into matrix notation using the basis (8). 
We begin by letting n~a)(o) act on both sides of Eq. (6): 

r2 = Xln~a)(o)ex + Yln~a)(o)ey + Zln~a)(o)ez. (12) 

Let us denote the (orthogonal) unit vectors obtained when ex, ey , and ez in (12) 
• (a) " ,. 

are rotated Via nu (0) by fx, f y, and fz: 

Ix = n~a)(o)ex, 

Iy = n~a)(o)ey, 
Iz = n~a)(o)ez. 

In terms of these rotated unit vectors, Eq. (12) is simply 

r2 = xdx + ydy + zdz' 

(13a) 

(13b) 

(13c) 

(14) 

But our goal is to obtain the components of r:i in the fixed basis. To do so, we must 
write each unit vector in (13) in terms of ex, ey , ez j e.g. 

Ix = (ex' Ix) ex + (ey • Ix) ey + (ez . Ix) ez. (15) 

We now define the direction cosines in (15) to be elements of the first column of 
a 3 x 3 matrix R : 

Rl1 = (ex ·Ix), 

R2l = (ey • Ix), 

R3l = (ez . Ix). 

(16a) 

(16b) 

(16c) 

The elements of the second and third columns of R are just the direction cosines 
of Iy and Iz, respectively. Using the elements of the matrix R, we can write the 
right-hand side of (14) in the fixed frame, viz. 

r2 = Xl Rl1 ex + Xl R2l ey + Xl R3l ez 
+ Yl R12 ex + Yl R22 ey + Yl R32 ez (17) 

+ Zl R13 ex + Zl R23 ey + Zl R33 ez· 

When we translate (17) into matrix notation using the basis (8), we recognize R 
as the rotation matrix of Eq. (11): 

(
ex . Ix) (ex' Iy) (ex' Iz) ) 

Ru( 0) = (ey)x) (ey)y) (ey)z) . 
(ez . fx) (ez : fy) (ez · fz) 

(18) 

This matrix is orthogonal, because n~a)(o) is an orthogonal transformation. In 
§ 11.2 we shall write down the rotation matrix for an arbitrary rotation in the 
(parametrized) Euler angle form. 

To illustrate how one determines a rotation matrix, let us consider an active 
rotation through angle 0 about the Z axis (Fig. 2). For eu = ez , the rotation matrix 
(18) is 

(

COSO 

R z(o) = si~ 0 
-sino 

cosO 
o n (19) 
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For example, if 0 = sin-l(t) ~ 53.1301°, then 

(
3/5 -4/5 

Rz(o) = 4/5 3/5 
o 0 n (20) 

Suppose we rotate the vector rl with components 

r, = en (21) 

through 53.1301° about ez . To determine the resulting rotated vector, we multiply 
the matrix (20) by the column vector (21), viz. 

r, = R.(6)r, = (~1). (22) 

We could, of course, carry out the rotation n~a)(o) using the passive viewpoint. 
To do so in ~3, we would have to use the equivalent passive rotation operator 
nr,r)(-o). But we can determine the components of rl in the rotated frame using 
the rotation matrix Ru( 0) of Eq. (18). To see why, let us act on rl of (6) with 

nr,r\~o): 

r{ = nr,r) ( -0) rl (23a) 

= xlnr,r)(-o) ex + Ylnr,r) (-0) ey + Zlnr,r) ( -0) ez . (23b) 

Now, to work out the effect of nr,r)(-o) on the unit vectors in (23b), we replace 
this operator with its active equivalent, viz. 

I -n(a)(c) A -n(a)(c) , -n(a)(c) , rl = Xl"-u u ex + Y1/~u u ey + zl/~u u ez . (24) 

The right-hand side 0/(24} is now identical to that 0/{12}. So Ru(o) of (18) gives 
us the components of rl in the rotated frame, e.g. 

X{ = Rll(O) Xl + R12(0) Yl + R13(0) Zl. (25) 

The fact that the same rotation matrix is used in the active rotation (17) and in 
the passive rotation (25) should not come as a surprise, since by construction o/the 
equivalent passive rotation, the components of rl in the rotated frame are related 
to those of the rotated vector r2 in the fixed frame by 

X{ X2, 

y{ Y2, 

z{ Z2. 

(26a) 

(26b) 

(26c) 

Finally, we should note that the rotation matrix (18) differs from that found 
in texts that adopt the passive viewpoint. According to the equivalence (5b), the 
active rotation that is equivalent to nr,r)(o) is n~a)(_o). Therefore the rotation 
matrix for a passive rotation through a positive angle 0 about ez is obtained from 
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(19) by replacing 0 with -0, i.e. 

(
COSo sino 0) 

Rz(-o) = -sino coso 0 . 

2. Euler Angle Rotations in ~3 

(aJ Definitions of the Euler Angles 

o 0 1 

473 

(27) 

It is convenient to parametrize rotations in ~, and the most widely used param­
etrization is that of Euler angles. In this formulation, an arbitrary rotation is carried 
out via three successive rotations about prescribed axes. 

Euler angle rotations are often described in the passive viewpoint, in which 
the fixed coordinate system (ex, ey, ez) is rotated through three positive angles, the 
Euler angles a, (3, and 'Y.* Each rotation produces a new set of axes, which are 
labelled by successively more cumbersome sets of primes. The three stages of a 
passive Euler angle rotation are 

PASSIVE EULER ANGLE ROTATION 

• Step 1: Rotate the (unprimed) fixed axes through an angle a (0 ~ a ~ 271-) 
about ez, taking the (ex, ey, ez) coordinate system into the (ex" eyl , ezl) system. 

• Step 2: Rotate the primed axes from step 1 through (3 (0 ~ (3 ~ 71") about eyl, 
taking the (ex" eyl, ezl) system into the (exll, eyll, ezll) system. 

• Step 3: Rotate the double primed axes from step 2 through 'Y (0 ~ 'Y ~ 271") 
about ezll , taking the (exlI, eyll, ezll) system into the (ex III , eylll , ezlll) system. 

So the passive Euler angle rotation operator is 

'R,(p) (a, (3, 'Y) == 'R,~~} ('Y) 'R,~~) «(3) 'R,~p) (a) . (28) 

(6 J Active Euler Angle Rotation 

As noted above, we have adopted the active viewpoint, in which the physical 
system, not the reference frame, is rotated. Conventionally, such an Euler angle 
rotation is performed as follows (cf. Goldstein 1980): 

• Step 1: Rotate the system through an angle a (0 ~ a ~ 271") about ez: 'R,~a) (a). 

• Step 2: Rotate the system through (3 (0 ~ (3 ~ 271") about eyl : 'R,~~) «(3). 

• Step 3: Rotate the system through 'Y (0 ~ 'Y ~ 271") about ezll : 'R,~~} ('Y). 

The corresponding geometrical rotation operator is 

'R,(a) (a,(3,'Y) == 'R,~~}('Y)'R,~~)«(3)'R,~a)(a). (29) 

* The passive rotation operator is used, for example, in Rose (1957). Somewhat confusingly, 
Rose discussed Euler angle rotations from the passive viewpoint although his rotations in !R3 

and in state space are active. 
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But this parametrization mixes the active and passive viewpoints, since steps 2 
and 3 entail rotations of the system about rotated axes. So it is convenient, both 
conceptually and operationally, to rewrite (29) in terms of rotations solely about 
fixed axes. In Appendix A, we use the class angle relation - which shows how to 
change the axis with respect to which a rotation operator is defined - to rewrite 
(29) as 

R(a)( a, (3,,) = R~a)( a) R~a)({3) R~a)( ,). (30) 

This result prescribes the following steps: 

ACTIVE EULER ANGLE ROTATION 

• Step 1: Rotate the system through an angle, (0 ~, ~ 271") about ez . 

• Step 2: Rotate the system through {3 (0 ~ (3 ~ 71") about ey • 

• Step 3: Rotate the system through a (0 ~ a ~ 271") about ez • 

Notice that when we rotate about the fixed axes, we perform the rotation by, first; 
when we rotate about the rotated axes, we perform this rotation last. 

(c) Passive Euler Angle Rotations 

The passive Euler angle rotation (28) can also be written as a product ofrotations 
about the fixed axes, viz. 

R(p)( a, (3,,) = R~p)( a) R~p)({3) R~p)(,). (31) 

The effect on a vector of the equivalent active rotation operator must be the inverse 
of what R(p)(a, (3,,) does to the coordinate axes, i.e. 

R(p) ( a, (3,,) <==> [R~a)( a)R~a)({3)R~a)(,) r 1 

= R~a)-l(,) R~a)-l({3) R~a)-l(a) 

= R~a)( -,) R~a)( -(3) R~a)(-a). 

(d) The Euler Angle Rotation Matrix 

(32a) 

(32b) 

(32c) 

To write down the rotation matrix that corresponds to R(a)( a, (3, ,), we first use 
Eq. (30) to express this operator in terms of three, single angle, active rotations 
and write the result in terms of the matrices of § II.1(b), viz. 

R(a,{3,,) = Rz(a)Ry({3)Rz(/). (33) 

We can now construct an explicit form for the Euler angle rotation matrix 
R(a,{3,,) from the single angle rotation matrices (18) as 

(
COS a - sin a 0) ( cos (3 0 sin (3) (cos, - sin, 0 ) 

R(a,{3,,) = sin a cos a 0 0 1 0 sin, cos, 0 . 
o 0 1 - sin {3 0 cos {3 0 0 1 

(34) 
(Notice the location of the minus sign in the second of these matrices.) We need 
not append a superscript (a) to R(a,{3,,), because the matrix (34) applies to the 
active rotation R(a)(a, (3,,) and to the equivalent passive rotation. Note that in the 
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passive convention, which is preferred by some authors (cf. Pack and Hirschfelder 
1970) the Euler angle rotation matrix is R( -a, -j3, -,), 

Part III. ROTATION OPERATORS IN HILBERT SPACE 

1. Single Angle Rotation of an Arbitrary Ket 

Consider an active rotation Rta)(8) of a physical system. Let [: denote the state 
space of the system and I 'lj;(t) ) the ket that describes a state of the system at time 
t. As a consequence of rotation of the system in 1R3 , the ket that describes its 
state in [: will change; let I 'lj;'(t)) denote the "rotated ket", i.e. the ket in [: that 
represents the state immediately after rotation. 

Corresponding to the rotation Rta ) (8) in 1R3 , there is a unitary rotation oper­
ator that acts in [: to map I 'lj;( t)) into I 'lj;' (t) ): 

Ru(8) : I'lj;(t)) f-> I'lj;'(t)), 
I'lj;'(t)) = Ru(8)1'lj;(t)). 

(35a) 

(35b) 

The rotation operator that corresponds to Rta)(8) is an exponential* involving 
the projection on the rotation axis eu of the total angular momentum operator j, 
l.e. 

Rta)(8) = exp(-i8Ju), (36) 

where we have used atomic units (Ii = 1). [This operator is derived from the 
operator for an infinitesimal rotation by considering Rta)(8) as an infinite succession 
of infinitesimal rotations (cf. Cohen-Tannoudji et al. 1977).J Hence the basic Hilbert 
space transformation (35 b) is 

I 'lj;'(t)) = exp( -i 8 Ju) I 'lj;(t)). (37) 

The equivalent passive rotation is R~\·':'8). For this rotation, the final ket is 
I 'lj;'(t)) of(35b), so the appropriate rotation operator is just the one used for the 
active rotation in Eq. (36). 

For a passive rotation through a positive angle 8, the rotation operator is deter­
mined by the fundamental correspondence (5b), which requires that we change the 
sign of the angle in (36): 

R}!)(8) = exp(i8Ju). (38) 

This convention is used by many authors. 

2. Euler Angle Rotation of an Arbitrary Ket 

Let us now write down the Hilbert space operator that corresponds to an arbi­
trary active rotation in the Euler angle parametrization. Recall that for (positive) 
Euler angles a, j3, and I, the rotation operator in 1R3 is 

R(a)(a, j3, I) = R~a)(a) R~a)(j3) R~a)(,), (39) 

* The exponential of an operator is defined by a series that has the saIne coefficients as the 

exponential of a function, i.e. exp{A) = ;:::::"=0 An/{n!). 



476 M. A. Morrison and G. A. Parker 

The quantum mechanical rotation operator corresponding to R (a) (a, /3, ,) is the 
product of three, single angle, rotation operators, each of the form (36): 

k(a)(a, /3,,) = k~a)(a) k~a)(/3) k~a)(,) (40a) 

= exp(-iaJz ) exp(-ij3Jy) exp(-hJz )' (40b) 

[We cannot write (40b) as a single exponential, because Jz and Jy do not commute.] 
Using this operator, we can express the effect on a ket I'l/J(t)) in £ of the rotation 
(39): 

I'l/J'(t)) = k(a)(a, /3,,) I'l/J(t)). ( 41) 

3. Euler Angle Rotations of a Position Eigenket 

Some of the most important applications of rotation operators in quantum me­
chanics are made in the position representation (cf. Weissbluth 1979). It is there­
fore important to know the effect on a position eigenket in £ of an active rotation 
R(a)(a,/3,,) of a vector Tl in ~3, such as 

T2 = R(a)(a,/3,,)Tl. (42) 

Using the rotation operator (40b), we can exhibit the relationship between the 
rotation in ~3 and its effect in £; denoting the "rotated ket" by I T2), we have 

IT2) = k(a)(a,/3,,) ITt} = IR(a)(a,/3,,)Tl)' (43) 

In § 111.6, we shall need the dual of this result. Since the rotation operator is 
unitary, i.e. 

k(a)-l(a,j3,,) = k(a)t(a,j3,,), 

the bra corresponding to I T2 ) is 
'( )t (T21 = (TlIR a (a,/3,,), 

whence 
(Tli = (T2Ik(a)(a,/3,,). 

4. Euler Angle Rotations of an Angular Momentum Eigenket 

( 44) 

(45a) 

(45b) 

The mathematical manipulations required to rotate an arbitrary ket in E can be 
simplified by first expanding the ket in an angular momentum basis. If we denote 
by J2 and Jz the square and z projection of the total angular momentum J, we 
can write this basis as { I (k), j, m)}. [Note carefully that Jz is the projection of J 
on the fixed ez axis.] The quantum numbers j and m are defined by the eigenvalue 
equations for the basis kets, 

J21(k),j,m) = j(j+1)I(k),j,m), 

Jzl(k),j,m) = ml(k),j,m), 

where j and m obey the usual restrictions (Cohen-Tannoudji et al. 1977): 

. 0 1 1 3 
J = , 2' , 2"'" 

m -j,-j+1,-j+2, ... ,j-2,j-1,j. 

(46a) 

(46b) 
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The symbol (k) represents the set of quantum numbers that, together with j and 
m, completely specify a particular state; i.e. the quantum numbers (k) correspond 
to the eigenvalues of a set of operators A that, together with j2 and jz, comprise 
a complete set of commuting operators (CSCO). 

The expansion of a ket I ¢(t)) in this basis is 

I¢(t)) = L L L I(k),j,m)(k),j,ml¢(t)). (47) 
(k) j m 

We are here concerned with the angular momentum properties of quantum states, 
so from now on we shall suppress the indices (k), e.g. for I (k), j, m) we shall write 
Ij,m). 

Using the expansion (47), we can rotate an arbitrary ket if we know the effect 
of a rotation operator R(a)(a, (3,,) on an eigenket. This result will eventually lead 
us to the Wigner D-matrices. 

To develop a general result for the "rotated ket" R(a)(a,(3,,) Ij,m), we use 
closure of the angular momentum basis { I j, m) } to write 

+j 

R(a)(a,(3,,)lj,m) = L 1j,1l){j,IlIR(a)(a,(3,,)Ij,m). (48) 
J-l=-j 

[In writing Eq. (48) we used the lact that!!J.e eigensubspace defined by the quantum 
number j, which we denote by £(k,j) == £(j), is globally invariant under any oper­
ator function of the components of J, and hence is invariant under R(a)(a, (3, ,).] 

The quantity (j, Il I R(a)( a, (3,,) I j, m) in Eq. (48) is the famous Wigner D­
matrix: the matrix element of the unitary rotation operator R(a)(a,(3,,) on the 
eigensubspace l(j) with respect to the angular momentum basis:* 

vt,m(a,(3,,) == (j,1l1 R(a)(a,(3,,) I j,m). (49) 

Using the definition ofthe D-matrix, we can write the transformation equation (48) 
as 

+j 

R(a)(a,(3,,)Ij,m) = L Ij,ll)vt,m(a,(3,,). (50) 
J-l=-j 

To obtain the D-matrix appropriate to a passive rotation, we can use the re­
lationship between active and passive rotation operators, Eqs (36) and (38), to 
transform our equations into the passive viewpoint. According to Eq. (38), 

R(p)(a,(3,,) = R(a)t(a,(3,,), (51) 

so the D-matrix element for a passive rotation, (j,1l1 R(p)(a,(3,,) I j,m), is simply 
related to the corresponding element for an active rotation: 

(j,1l1 R(p)(a,(3,,) I j,m) (j,1l1 R(a)t(a,(3,,) I j,m) (52a) 

= ((j,m I R(a)(a,(3,,) I j,Il))* (52b) 

= V!n~J-l(a,(3,,). (52c) 

* Useful methods for calculation of the D-matrices can be found in Walker (1975) and Caride 
and Zanette (1979); see also Appendix B. 
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Thus, to transform an equation written in the active convention to its counterpart in 
the passive convention, we merely replace Vi,m(a,(3,,) everywhere by V!n~iJ(a,(3,,). 
Not only must we take the complex conjugate of the D-matrix element, we must 
also switch the indices. * 

5. Physical Significance of a Rotated Angular Momentum Eigenket 

The "rotated" ket k(a)(a,(3,,) !j,m) in (50) is an eigenvector of J2 but not of 
jz, the component of the total angular momentum along the fixed z axis. But this 
ket is an eigenket of the component of J along a different quantization axis. 

The axis of quantization of the unrotated ket is ez. Let ezl denote the vector in 
?R3 into which ez is rotated by n(a)(a,(3,,), i.e. 

~ -n(a)( (3 ) ~ ez l ,\- a", ez . (53) 

To rotate ez is to rotate the axis of quantization of the unrotated ket I j, m). 
Therefore, the rotated axis ezl is the axis of quantization for the rotated eigenket 
k( a) (a, (3, ,) I j, m ). If we denote the rotated eigenket by I j, m )', we have 

+i 
Ij,m)' = k(a)(a,(3,,)!j,m) = L Ij,Jl)Vi,m(a,(3,,). (54) 

iJ=-j 

The eigenvalue equations for the rotated ket are 

J2!j, m)' = j (j + 1) I j, m)', 

jZ/Ij,m)' = m!j,m)'. 

(55a) 

(55b) 

Note that the eigenvalues are unchanged by this rotation - the eigenvalue of 
I j, m) with respect to jz is m which, according to (55b), is also the eigenvalue 
of I j, m)' with respect to jzl. Equation (54) is a unitary transformation from 
the basis { I j, m) } of the CSCO {A, j2, jz}, to the basis {I j, m)'} of the CSCO 
{A, j2, jz/}. 

6. Transformation of the Spherical Harmonics 

As an application of the D-matrices, we shall transform spherical harmonics 
between two coordinate systems (Steinborn and Ruedenberg 1973). Such transfor­
mations are important in, for example, the theory of electron-molecule scattering 
(Lane 1980; Morrison 1983, 1987). The relative orientation of the two reference 
frames is described by the Euler angles a, (3, and ,. 

The spherical harmonics are the position representation of the eigenkets of the 
orbital angular momentum. More precisely, if i is the orbital angular momentum 
operator, then Ie, m) is a simultaneous eigenket of L2 and Lz with quantum num­
bers e and m, respectively. In the position representation, the angular dependence 
of the scalar product of I e, m) and a position eigenket I r) is given by the spherical 
harmonic yr (B , r.p). 

* Authors such as Pack and Hirschfelder (1970) who work in the passive convention use D­
matrices that are the Hermitian adjoint of the matrices in this section; see Appendix B. 
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First we write the basic relationships between "rotated" and fixed kets, Eq. (54), 
in terms of the eigenkets 1 C, m): 

+l 
, A ( ) 

IC,m) = R a (a,(3,'Y) IC,m) E IC,Jl)D~,m(a,(3,'Y). (56) 
/-<=-l 

The ket IC,m) is an eigenket of{A,£2,£z} (where A completes the CSCO) with 
eigenvalues C( C + 1) and m, and 1 C, m)' is an eigenket of {A, £2, Lz' } with the same 
eigenvalues. 

Now, let r be a vector to a point P in the fixed frame. Consider a second 
coordinate system whose z axis is coincident with the quantization axis of the 
rotated ket 1 C, m )'. We shall denote this rotated system* by a single set of primes, 
(ex" ey " ez')' The vector to P in the rotated system will be denoted r '. 

The position eigenkets that correspond to these two vectors are related by a 
passive rotation, i.e. 

1 r') = k(p)(a, (3, 1') 1 r) = k(a)-l(a, (3, 1') 1 r). (57) 

The dual of this result is 

( r' 1 = (r 1 k( a ) ( a, (3, 1') . (58) 

Now, to express Eq. (56) in the position representation, we operate on the left 
with the bra (r I, viz. 

+l 
(rIC,m)' E (r I C,Jl)D~,m(a,(3,'Y). 

/-<=-l 

But 

(r I C,m)' = (r I k(a)(a, (3, 1') I C,m), 

so we can write (59) as 

+l 
(r I k(a)(a, (3, 1') I C,m) E (r I C,Jl)D~,m(a,(3,'Y). 

/-<=-l 

Now, using Eq. (58) for (r I k(a)(a, (3, 1'), we obtain 

+l 

(r' I C,m) = E (r I C,Jl)D~,m (a, (3, 1'). 
/-<=-l 

(59) 

(60) 

(61 ) 

(62) 

Writing this result in terms of the spherical harmonics we obtain the basic trans­
formation relation 

+l 

yr(B',rp') = E yt(O,rp)D~,m(a,(3,'Y). (63) 
/-<=-l 

This equation is a special case of the general Hilbert space transformation (54). 

* This frame is non-inertial; this fact need not concern us, since we consider its spatial orientation 
only at fixed time. 
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Part IV. CONCLUDING REMARKS 

The rotation operators itua)(8) and the Wigner rotation matrices Di,m (a,,8,,) 
find application in a wide range of fields, including molecular spectroscopy, the 
theory of irreducible tensor operators, nuclear structure, and scattering theory. 
The tables in Appendix B provide most commonly-used formulas involving these 
operators and matrices, expressed in the notation and conventions of this paper, 
together with some guidance to other notations used in the vast literature of angular 
momentum theory. 
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Appendix A: The Class Angle Proof 

Let R~a) (8) represent a rotation in ~3 through 8 about fu. We can use the 
class angle relation (Biedenharn and Louck 1981) to determine the operator for a 
rotation through the same angle about a different axis, say fv' 

There exists an active rotation that carries a vector that lies along fu into a 
vector that lies along fv. Let ¢ be the angle and n the axis for this rotation, i.e. 

R~a)(¢) fu 1-+ fv. (AI) 

According to the class angle relation, the operator for rotation through 8 about the 
rotated axis fv is given in terms ofR~a)(8) by 

R~a)(8) = R~a)(¢)R~a)(8)R~a)-1(¢). (A2) 

We want to use this result to express the active Euler angle rotation (29), 

R(a) (a,f3,!) = R~~!b)R~~)(f3)R~a)(a), (A3) 

in terms of rotations about the fixed axes. To do so, we use the following theorem 
(Biedenharn and Louck 1981), which follows from Eq. (A2): 

• Theorem: Let Rk = Rnk(h), where k = 1,2,3, ... , N labels a set of N rotations 
through angles ¢k about axes nk in ~3. Define N new rotation axes by 

n~ = [Rk-1 Rk-2 ... R2 R1 r 1 nk, k = 2,3, ... N, 
A/ n1 n1 . 

Then 
Rn R n- 1 R n- 2 ... R2 R1 R~ R~ ... R~_l R~. • 

(A4a) 

(A4b) 

(A5) 
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To apply this theorem to the Euler angle rotation (A3), we must consider three 
rotations: 

R1 = R~a)(a) ~ <Pl = a, fit = ez, (A6a) 

R2 = R~~)({3) ~ <P2 = {3, n2 = eyl, (A6b) 

R3 = R~~!(,) ~ <P3 =.', n3 = ezll . (A6e) 

Since nl = n~, the first rotation operator on the right-hand side of (A5) is simply 

R~ = R~a)(a). (A7) 

The new rotation axis for the second rotation R~ is 

o I _ R( a ) - 1 ( ) 0 

n2 - z a ey , . (AS) 

But eyl was obtained from ey via R~a)( a), so the second operator in (A5) is n~ ey, 
and we have 

R~ = R~a)({3). (A9) 

Lastly, we must contend with R3 = R~~! (,). To determine the corresponding 
new rotation axis, we must, according to (A4), evaluate 

n~ = [R2Rd-1 ezll = [R~~)({3)R~a)(a)r1 ezll. (A10) 

Using 

[R(a)(5 ) R(a)(5 )] -1 = R(a)-l(5 ) R(a)-l(5 ) 
Ul 1 U2 2· ~U2 2 Ul 1 , (All) 

we can expand the inverse product in (A10) to obtain 

01 _ R(a)-l ( ) 'T)(a)-l ({3) 0 n3 - z a I~yl ez ll ez (A12) 

Therefore the third operator in (A5) is 

R~ = R~a)(,). (A13) 

Now, if we use Eqs (A7), (A9), and (A13) in the theorem (A5), we find that 
the active Euler angle rotation R(a)(a,{3,,) can be written in two equivalent ways, 
depending on which set of axes we choose for the rotations: either as (A3) or as 

R(a)(a,{3,,) = R~a)(a) R~a)({3) R~a)(,). (A14) 

Appendix B: The Wigner Rotation Matrices 

In this appendix we give a partial list (without proofs) of some of the important 
properties of the Wigner rotation matrices. Detailed proofs and more elaborate 
discussions of these results can be found in Brink and Satchler (1962), Edmonds 
(1960), Rose (1957), Biedenharn and Louck (19S1), Judd (1975), Normand (19S0), 
Silver (1976), Cushing (1975), and Wybourne (1970). These properties assume use 
of the active convention, the choice made in the text of this paper. But they can 
easily be translated into the passive convention by replacing each D-matrix with its 
Hermitian adjoint and each rotation operator with the equivalent passive operator; 
see Eqs (32) and (34) and Appendix C. 
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List of Symbols 

ex, ey, ez Unit vectors in the fixed frame 

ex', eyl, ezl U nit vectors in the rotated frame 

a, f3, 'Y Euler rotation angles 

jx, jy, jz Space-fixed angular momentum operators 

j± Space-fixed raising and lowering operators 

jxl, jyl, jzl Body-fixed angular momentum operators 

j±1 Body-fixed raising and lowering operators 
A (j) A (j) A (j) . 

:J x ,:J y ,:J z Space-fixed angular momentum matrIX operators 

Ijm) Eigenket of the angular momentum operators 
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~m (e, ¢) Spherical harmonic (Condon-Shortley phase convention) 

Tkq Spherical tensor operator 

2Fl Hypergeometric function 

R(a) Active rotation operator 

R(p) Passive rotation operator 

Ru ( 8) Rotation matrix 

i/ ( a, f3, 'Y) Wigner rotation matrix 

d j Reduced Wigner rotation matrix operator 

p~nl,n2) Jacobi polynomial 

p lm Associated Legendre polynomial 

PI Legendre polynomial 

I j Identity matrix 

C(jl, i2, j; ml, m2, m) Clebsch-Gordan coefficient 

C Orthogonal Clebsch-Gordan matrix 

Xj Character or trace of the Wigner rotation matrix 

ao, al, a2, a3 Euler-Rodrigues parameters 

8( x - x') Dirac delta function 

D.(jd2j3) Triangle relation 

p ~ Angular momentum matrix projection operator 

Ix, Iy , Iz Principal moments of inertia 
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Definitions 

The Wigner rotation matrix i/ (ex, ;3, ,) transforms a set of kets Ij Jl) according 
to Eq. (54), 

Ij, m)' = k(a)ljm) 

= exp( -iexjz) exp( -i;3jy) exp( -if jz) Ijm) 

= exp( -ioju)ljm) 
j 

= L vtm(ex,;3,,)ljJl). 
,,=-j 

(B1) 

The ranges of the Euler angles are 

0:Sex:S271', 0:S;3:S 71', O:S ,:S271'. (B2) 

The projection quantum numbers in (B1) must satisfy 

- j:Sm:Sj, 
(B3) 

- j:SJl:Sj. 

The angular momentum operators satisfy the usual commutation relations 

j x j = ij, (B4) 

l.e. 

[ji, jj] = ijkl (B5) 

where the subscripts i, j, k are any cyclic permutation of x, y, z. 

Relations between Commonly-used Notations 

vtm(ex,;3,,) = Rtm(<fJ, e, l/J) 
vtm(ex,;3,,) = Dtm(<fJ, e, l/J) 

vtm (ex,;3,,) = Dtm (ex,;3,,) 

vtm ( ex, ;3, ,) = Dt*.n ( ex, ;3, ,) 

vtm(ex,;3,,) = Dtm( -ex, -;3, -,) 

vtm(ex,;3,,) = Dt::,,(ex,;3,,) 

Messiah (1966): Appendix C.10 Eq. (C.54) 

Normand (1980): Eq. (6-21) 

Rose (1957): Eq. (4.12) 

Biedenharn and Louck (1981): Eq. (3.59) 

Tinkham (1964): Eq. (5.35) 

Cushing (1975): Eq. (9.140) 

Judd (1975): Eq. (1.11) 

Bohr and Mottelson (1969): Eq. (lA-35) 

Edmonds (1960): Eq. (4.1.12) 

Weissbluth (1979): Eq. (4.5-2) 

Hammermesh (1962): Eq. (9.76) 

Fano and Racah (1959): Eq. (D.2) 

Wigner (1959): Eq. (15.27) 

Pack and Hirschfelder (1970): Eq. (B1) 
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Explicit Expressions 

The elements of the Wigner rotation matrix are matrix elements of the rotation 
operator (Rose 1957) (see § IlIA) 

V~ m (a, (3,,) = (jl-'I exp( -iajz) exp( -i{3jy) exp( -i,jz)lim) 

= exp( -il-'a)(il-'I exp( -i{3jy )Iim) exp( -im,) (B6) 

= exp( -il-'a)dim({3) exp( -imr), 

where 

dj ((3) = [U -m)!U + I-')!] 1/2 (cos (3/2)2j+m- l1 ( - sin {3/2)I1- m 

11m U + m)!U -I-')! (I-' - m)! 

X 2F1 (I-' - i, -m - ij I-' - m + Ij - tan2 ~) , 

The hypergeometric function 2F1(a,b,cjz) is 

m' ~ m. 

ab a(a + l)b(b + 1) 2 
2 F1(a,b,cjz)=I+-;-z+ 2!c(c+l) z + ... 

(B7) 

(B8) 

In (B8), a and b are negative integers or zero, so the hypergeometric function is 
a finite polynomial of degree min(11-' - il,.lm + il). The Wigner rotation matrix 
elements can also be expressed in terms of the Jacobi polynomials (Biedenharn and 
Louck 1981) pfm ,I1), viz. 

J _ J m.J m. !:. . !:. . [(._ )1('+· )1]1/2( f.I)m+l1( f.I)m-11 
dl1m ({3) - (j + I-')!(j -I-')! cos 2 sm 2 

X pf~;;;I1,m+I1)(cos{3). 

The Jacobi polynomials in (B9) can be written 

p~nl,n2)(cos{3) = (n + n1)!(n + n2)! 

1 ( . 2 (3) n-8 ( 2 (3) 8 
X -sm - cos -L s!(n + n1 - s)!(n2 + s)!(n - s)! 2 2' 

8 

(B9) 

(BI0) 

where nt, n2, and n are integers and the summation over s extends over all integers 
for which the arguments of the factorials are nonnegative. The Jacobi polynomials 
are orthogonal on the interval -1~ cos {3~1 with weighting factor (1- cos (3)nl(1 + 
cos (3)n 2. 

Symmetry Relations 

The reduced rotation matrices d j are real and satisfy the symmetry relations 
(Rose 1957) 

dim(-{3) = (-I)I1- mdim({3) = d!n 11({3) = d~11 -m({3) = (-lr-l1d~m -11({3)· 

Therefore the iJ\a, (3,,) matrices satisfy 

(B11) 

V~ m(-,,-{3,-a) = V!: l1(a,{3,,), (BI2) 
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Vfm(a,{3,,) = (_1)"-mv~,, _m(a,{3,,), 

Vim (a + 7rnw {3 + 27rnfJ" + 7rnl') = (-1 )2i n,i+"n",+mn-YV i m (a, {3,,), 

(BI3) 

(BI4) 

where nOll nfJ and nl' are integers. Equation (BI4) shows that i/ (a,{3,,) has 
periodicity 47r in {3 and 27r in a and, for all half integral j, and periodicity 27r in 
{3 and 7r in a and, for all integral j. 

Special Values 

The matrix elements d I are related to the associated Legendre polynomials p lm 

by (Rose 1957) 

I m -m. m [(I )1] 1/2 
dmo ({3) = (-1) (I + m)! PI (cos {3) (BI5) 

and to the Legendre polynomials PI by 

d~o ({3) = PI ( cos {3). (BI6) 

For m = J1. = j or m = J1. = -j Eq. (Bl6rbecomes 

d~ .({3) = di . . ({3) = cos2i ~. 
13 -J-J 2 (BI7) 

A I 
The matrix elements']) (a, {3, ,) are also related to the spherical harmonics Yim by 

( 
4 ) 1/2 

V!n o( a, {3,,) = 21: 1 Y,;"({3, a), 

( 
4 )1/2 

V~ m(a,{3,,) = 21: 1 Yi-m({3,,), 

where we have used the phase convention of Condon and Short ley (1953). 

Unitarity Relations 

The Wigner rotation matrices are unitary (Brink and Satchler 1962), i.e. 

i 
L Vi"m(a,{3,,)Vt m/(a,{3,,) = Om m/, 

/J=-i 

i 
L Vi m(a,{3,,)vt: m(a,{3,,) = 0" ,,,. 

m=-i 

In matrix notation, Eqs (B20) and (B21) are written 

(BI8) 

(BI9) 

(B20) 

(B21) 

A it A i A i A it . 
']) (a,{3,,)']) (a,{3,,) = ']) (a,{3,,)']) (a,{3,,) = I J (B22) 

or 
A it [ Ai] -1 . 

']) (a, {3,,) = ']) (a,{3,,) , = '])J(-,,-{3,-a), (B23) 

where Ii is the (2j + 1) by (2j + 1) identity matrix. The determinant of a rotation 
matrix is (Biedenharn and Louck 1981) 

det [Vi (a,{3,,)] = 1. (B24) 
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Relation to Irreducible Tensor Operators 

A spherical tensor operator (or irreducible tensor operator) transforms under a 
rotation as (Biedenharn and Louck 1981) 

j 

fl(a)1jm [fl(a)r l == L Vi m(a,(3,,)1jjJ, (B25) 
jJ=-j 

where 1jm is a spherical tensor operator. This tensor has rank j and 2j + 1 com­
ponents. The product of two rotation matrix elements can be written as a linear 
combination of these matrix elements (the Clebsch-Gordan series) (Rose 1957): 

h+h 
. ~j2 == ~Jl VjJ2 m2 .. I V/J1 m1 j=iJ1-32 L C(jl,h,j;lll,1l2,lll + 1l2)C(jl, h,j; ml, m2, ml + m2) 

X V~1+/J2 m1+m2' 
(B26) 

The inverse of this series is 

j j 

Vi m == L L C(jl,h,j;lll,ll- Ill,Il)C(it,h,j;ml,m - ml,m) 
/J1=-j m 1=-j (B27) 

xVii vh 
1'1 m1 /J-jJ1 m-m1' 

where C(jl, h, j; Ill> 1l2, Il) is a Clebsch-Gordan coefficient in the notation of Rose 
(1957). In matrix notation these transformations become 

C[i>h 0i>h]d == i>h+hEBi>h+h-lEB···EBi>lh-hl 

[ V
i :+;' 

o 
i>h+h- l 

o 

o 1 o 
. ' 

i>lj;-hl 

(B28) 

where 0 stands for a direct product and EB for a direct sum. The dimensions of 
the matrices in (B28) are (2jl + 1)(2h + 1) by (2it + 1)(2h + 1), and the matrix 
on right-hand side of this equation is block diagonal, with blocks consisting of the 
Wigner rotation matrices. Finally, the elements of the orthogonal transformation 
matrix Care 

Cjm;m1m2 == C(jl,h,j;ml,m2,m), (B29) 

where the pairs of indices j, m and ml, m2 label rows and columns respectively. 
These relations show that the Wigner rotation matrices constitute an irreducible 
representation of the groups 0+(3) and SU(2) (cr. Tinkham 1964). The character 
or trace of these matrices is (Weissbluth 1979) 

xj (8) == Tr [i>j (a, (3, ,)] == ~ V j (a (3 ) == sin(j + 1/2)8 
L...J mm , " • / ' m=-j sm8 .2 

(B30) 
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where 0 is a rotation about an arbitrary axis. For 0 = 0 the character ofthe Wigner 
rotation matrix must equal its dimension, i.e. 

xj (0) = 2j + 1 = lim sin(j + 1/2)0 
0 ...... 0 sin 0/2 

(B31) 

Using explicit expressions for the rotation matrix elements and Eq. (B30), we 
find a simple relation between the rotation angle 0 about an arbitrary axis and the 
Euler angles: 

cos (~) = cos [a; ~] cos (~) . 
The product of two rotations is a rotation, so (Biedenharn and Louck 1981) 

Aj Aj Aj 
'D (a',~',,,y')'D (a,~,,) = 'D (a",~",,"). (B32) 

The Euler angles are related to the Euler-Rodrigues parameters (ao, a) where 
a == (aI, a2, (3). These parameters, which are the Cartesian components of a point 
on a unit sphere in four space, are related to the Euler angles by 

ao = cos (~) cos ( I ; a) = cos x, (B33) 

. (~) . (,-a) . eA..' a1 = sm 2" sm -2- = sm cos 'I' SIn X, (B34) 

. (~) (' -a) .' e . A.. • a2 = SIn 2" cos -2- = sm sm'l'smx, (B35) 

(~) . (,+a) e . a3 = cos 2" SIn -2- = cos smX, (B36) 

where 0:S;¢:S;27T, O:s;e:S;7T and O:S;X:S;7T are the spherical polar coordinates in four 
space. The Euler angles in Eq. (B32) satisfy the quaternionic composition rule 

" , A' A ao = aoa - a . a, 

a" = aoa' + a~a + a' x a. 
For small ~ the reduced rotation matrix elements are 

dtn p.(~) ~ Omp. - i~(jmljyljJl) 

~ Om p. + ~{-Op.,m+dj(j + 1) - m(m + 1)]1/2 

+ Op.,m-djU + 1) - m(m - 1)]1/2}. 

Orthogonality and Normalization Relations 

(B37) 

(B38) 

(B39) 

The Wigner rotation matrix elements are orthogonal but not normalized (Rose 
1957): 

J .. . 87T 2 

V~', m,(a,~,,)V~~ m,(a,~,,)dQ = 2j1 + 1 OP.,p.2 0m ,m,Oj,j" (B40) 
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where 

J 1 2'11" 1'11" 12'11" 
dQ = 0 <h 0 qBsin,8 0 dy = 87r2 (B41) 

is the integral over the surface of a four sphere. 

Integrals 

The integral of the product of three Wigner rotation matrix elements is (Rose 
1957) 

J 1Jt~ m3(0:,,8'i)1Jt~ m2(0:,,8'i)1Jt~ ml(o:,,8,i)dil 

87r2 C(' . . )C(' . . ) 2is+ 1 Jl,J2,J3j 1'1, 1'2, 1'3 J1,J2,J3j m l,m2,m3· (B42) 

This integral is zero unless ml + m2 = m3, 1'1 + 1'2 = 1'3 and the triangle rule 
~(ithj3) is satisfied. Equation (B42) leads to the Gaunt formula for spherical 
harmonics: 

J Yi~; (,8,0:) Yi:n 2 (,8, 0:) Yi:r'l (,8, o:)<h sin,8d,B 

[(2h + 1)(2/2 + 1)] 1/2 
= 47r(213+ 1) C(lt,12,13jm 1,m2,m3)C(h,12,/3jO,O,O), (B43) 

which is zero unless It + 12 + 13 is even, m1 + m2 = m3, and ~(l11213) is satisfied. 

Matrix Elements of the Angular Momentum Operators 

The nonvanishing matrix elements of the raising and lowering operators j± = 
jx ± ijy are (Rose 1957) 

(j m ± 11J±lj m) = [j(j + 1) - m(m ± 1)]1/2 

= [(j =r= m)(j ± m + 1)]1/2. 
(B44) 

The raising and lowering operators are not Hermitianj instead, J~ = j_. By 
inverting the definitions of these operators, we obtain jx = t(J+ + j_) and jy = 
-t(J+ - J-) and the corresponding matrix elements 

[.7~)Lm = (jJ.lIJxljm) = ~{8/J,m+1[j(j + 1) - m(m + 1)]1/2 

+ 8/J,m-1[j(j + 1) - m(m - 1)P/2}, 

[.7~j)Lm = (jJ.lIJyljm) = ~{-8/J,m+1[j(j + 1) - m(m + 1)P/2 

+ 8/J,m-t[j(j + 1) - m(m - 1)]1/2}. 

The Wigner-Eckhart Theorem 

(B45) 

(B46) 

The Wigner rotation matrices can be used to develop an elegant proof of the 
Wigner-Eckhart theorem, 

(j'J.lITkqljm) = C(j,k,j'jm,q,J.l)(j'II7(k)llj}, (B47) 

where (j'II1(k)lli) is a reduced matrix elementj for details, see Cushing (1975). 
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Differential Equations 

The operators 

, a ., ~-i~~, 
Jx = i cos a cot,B aa + z sm a a,B sin,B or 

/j ., f.I a . a. sin a a 
'" y = z sm a cot f.J aa - z cos a a,B - Z sin ,B or ' 

, a 
Jz = -i­

or 

satisfy the relation (Biedenharn and Louck 1981) 

, (j) , j , 'j 
:J i 1) (a,,B,r) = -Ji 1) (a,,B,r)· 

(B48) 

(B49) 

(B50) 

(B51) 

The the operator on the left-hand side of Eq. (B50) is a matrix operator, but 
the operator on the right-hand side is a differential operator. The minus sign in 
Eq. (B 50) is essential so that the differential and matrix operators satisfy the same 
commutation relations j x j = ij and j(j) x j(j) = ij(j). The operators 
(B49)-(B51) are the angular momentum operators associated with a space-fixed 
coordinate system. It should be noted that 

}; = ei' j and };, = ii .j. 
The differential operators satisfy the commutation relations 

[};, jj] = ijk. 

The space-fixed raising j+ and j_ operators are 

j+ = jx + ijy, 

j- = jx - ijy. 

(B52) 

(B53) 

(B54) 

The corresponding operators associated with the body-fixed coordinate system 
are 

jx' = (cos a cos,B cos r - sin a sin r)jx + (sin a cos,B cos r + cos a sin r)jy 

- sin ,B cos r jz , 
(B55) 

jy' = - ( cos a cos ,B sin r + sin a cos r )jx + ( - sin a cos ,B sin r + cos a cos r )jy 

+ sin ,B sin r jz , 

jz' = sin,B cos ajx + sin,B sin o:Jy + cos ,Bjz, 

or, equivalently, 

(B56) 
(B57) 

jj' = LRij'(a,,B,r)ji = LjiRij'(a,,B,r) { Z=x,y,Z; (B58) ., '" J =x,y,z. 

These body-fixed operators satisfy an equation analogous to Eq. (B49), 

, j , (j) " j 
1) (a,,B,r):Ji' = -:1;,1) (a,,B,r) (B59) 
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and the commutation relations 

[Jil, jjl] = -ijkl. (B60) 

[Note: The commutation relation for the body-fixed operators have a factor of -i, 
but the space-fixed operators (Eq. B53) have a factor of +i.] The body-fixed raising 
and lowering operators are 

j+1 = jxl - ijyl, (B61) 

j_1 = jxl + ijyl. (B62) 

[Note: As a result of the minus sign in Eq. (B61) the equations that define the 
body-fixed raising and lowering operators differ from the equations that define the 
space-fixed raising and lowering operators; see Eqs (B54) and (B55)]. The body­
fixed and space-fixed components of the angular momentum operators commute, 
l.e. 

[Ji, jd = O. (B63) 

The total angular momentum of the system is a constant of the motion, so 

j2 = j;1 + j;1 + j}1 = j; + j; + j}. (B64) 

The operators j2, jz and jzl form a complete set of commuting operators. Their 
eigenvalue equations are 

A 2 j* . . j* 
J VI" mea, (3,,) = J(J + 1)VI" mea, (3, ,), 

jz Vi" m (a, (3,,) = J-lVi"m(a,{3,,), 

j z IVi"m(a,{3,,) = mVi"m(a,{3,,). 

(B65) 

(B66) 

(B67) 

In (B 66) jz is the component of the angular momentum operator along the space­
fixed z axis; jzl in (B67) is the component of the angular momentum operator 
along the body-fixed z axis (symmetry axis). 

The raising and lowering operators satisfy the following relations: 

A j* .. 1/2 j* 
J±Vl" m(a,{3,,) = [(rfJ-l)(J±J-l+ 1)] VI"±1m(a,{3,,), 

A r .. 1/2 r J±IVI" m(a,{3,,) = [(J =f m)(J ± m + 1)] VI"m±1(a,{3,,). 

(B68) 

(B69) 

The following relation is useful for determining the elements of the Wigner rotation 
matrix (Biedenharn and Louck 1981): 

Vr (a (3 ) _ [ (j + J-l)!(j + m)! ] 1/2 ( A )j-I" (A )j-m '* 

I"m , " - (2j)!(j-J-l)!(2j)!(j-m)! J- J-I V;j(a,{3,,), 

where 
2j 

V};(a,{3,,) = exp(ija) (cos~) exp(ih). 

(B70) 

(B71) 

The spherical components of the angular momentum operators are related to the 
raising and lowering operators (Weissbluth 1979) by 

A 1 A 

J+1 = - hJ+, 
1 A 

:r - r.;J-, "-1 - v2 and JO = Jz. (B72) 
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Hence the square of the total angular momentum operator is 

1 

j2 = L (-1)qjqj_q 
q=-1 

= -2j+1j-1 + jo(jo -1) 

= -2j-1j+1 + jo(jo + 1). 

Eigenfunctions of the Symmetric Top 

(B73) 

The Wigner rotation matrix elements are proportional to the orthonormal eigen­
functions Rj/Jm(a, (3, I) of the symmetric top Hamiltonian (Biedenharn and Louck 
1981) 

[ 1 A2 A2 1 A2] .• 
21x' (:lx l + :lyl) + 2Izl :lzl V~ m(a,(3,/) 

- [_1 .(. 1) ~ (J:... _ J:...) 2] Vi" ( (3 ) - 21x, J J + + 2 lzl lx' m /J m a, 'I' (B74) 

where lx'= lyl, and lzl are the principal moments of inertia, Jl is the component of 
angular momentum along the space-fixed z axis and m is the component of angular 
momentum along the body-fixed symmetry axis. In particular, the normalized 
symmetric top eigenfunctions are (Burke and Chandra 1972) 

( 2i+1)1/2 .• 
Rj/Jm(a, (3, I) = --s,;:2. V~ m (a, (3, I)· 

Because the Wigner rotation matrix in the passive convention (Steinborn and Rue­
denberg 1973) is the Hermitian conjugate of the Wigner rotation matrix in this 
appendix, the matrix elements Vi m (a, (3, I) are (unnormalized) eigenfunctions of 
the symmetric top Hamiltonian when the passive convention is used. 

Recursion Relations 

The following recursion relations, which can be derived from the Clebsch-Gordan 
series (B26), are useful for calculating Wigner rotation matrices (Biedenharn and 
Louck 1981): 

[(j - m)(j + m + 1)]1/2 sin(3d~,m+1«(3) 

+[(j + m)(j - m + 1)P/2 sin(3d~,m_1«(3) = 2(m cos (3 - Jl)dt,m «(3) , (B75) 

[(j + m)(j - m + 1)]1/2d~,m_1«(3) 

+[(j + Jl)(j - Jl + 1)]1/2d~_1,m«(3) = (m - Jl) cot ~dt,m«(3). (B76) 
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Projection Operators 

A j 
The operators 'P m defined by (Biedenharn and Louck 1981) 

, j;'" (j) - Ij 

P~ == II ..., y J.t 
/J=-j m-J.t 
/JT-m 

are idempotent, i,e, 
Aj Aj Aj 

'P m'P m = 'P m' 

They are also mutually exclusive, 

A j A j 

'P m'P m' = ° for m -:f m/, 

and form a resolution of the identity, i,e, 

j , 

L P~ = Ij, 

m=-j 

Therefore the matrices P ~ are projection operators, 

493 

(B77) 

(B78) 

(B79) 

(B80) 

Using these operators, we can write the spectral resolution (Cushing 1975) of 

IT ~j) as 

A (j) _ ~ A j 
:T y - L...J m'P m' 

m=-j 

For any well-defined function F, one has 

F[IT~)l = t F(m)P~, 
A j 

Therefore one can determine d (fJ) as 

m=-j 

, C') j , 
AJ AJ ""' AJ 
d (fJ) = exp( -ifJ:T y ) = L...J exp( -iJ.tfJ)'P m' 

/J=-j 

Solution of Laplace's Equation in Four Space 

(B81) 

(B82) 

(B83) 

The elements of the Wigner rotation matrix elements are eigenfunctions of the 
Laplacian in four space (Judd 1975) 

\l~V~ m(a,fJ,,) = 0, (B84) 

where 
{)2 {)2 {)2 {)2 

\l~ = '2i2" + '2i2" + !:l 2 + '2i2"' 
uXo uX1 uX2 uX3 

(B85) 
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i(1 + cos (3)2 

~ sin (3(1 + cos (3) 

dZ((3) = j'isinZ (3 

~ sin (3(1 - cos (3) 

i(1- cos (3)2 

Wigner rotation matrices for j = 1/2, j = 1, j = 3/2, j = 2 

( I!.' I!.) 1/2 cos 2 -sm 2 
d ((3) = . 

sm% cos % 

-~ 
cos (3 

-V3 cos % sin % 
cos3 % - 2 cos % sin2 % 
2 cosz % sin % - sin3 % 

V3 cos % sinz % 

V3 cos % sin2 % 
sin3 % - 2 cos2 % sin % 
cos3 % - 2 cos % sin Z % 

V3 cos2 % sin % 

-~ sin (3(1 + cos (3) j'isin2 (3 -~ sin(3(1- cos (3) 

~(2cos2 (3 + cos (3 -1) -.fi sin (3 cos (3 -~(2 cos2 (3 - cos (3 - 1) 

.fi sin (3 cos (3 ~ cosZ (3 - ~ -.fi sin (3 cos (3 

_~(2cos2 (3 - cos (3 - 1) -.fi sin (3 cos (3 ~(2 cos2 (3 + cos (3 - 1) 

~ sin (3( 1 - cos (3) j'isin2 (3 ~ sin(3(1 + cos (3) 

i(1- cos (3)2 

-~ sin(3(1- cos (3) 

j'isin2 (3 

-~ sin(3(1 + cos (3) 

i(1+ cos (3)2 
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Calculation of the Wigner Rotation Matrices 

There are several methods that one can use to obtain dim (,8), including 

(i) explicit expressions in terms of the hyper geometric function or Jacobi poly-
nomials (B7 or B9); 

(ii) differential equations (B 71); 
(iii) recursion relations (B76 and B77); 
(iv) projection operators (B84); 
(v) boson operator techniques (Biedenharn and Louck 1981, Chapter 5). 

Appendix C: The Passive Convention 

In the text of this paper and in Appendix B, we used predominantly the active 
convention for rotations. For the convenience of readers who prefer the passive 
convention, we here express some of the most important results from this paper in 
this convention. The equation numbers in this appendix refer to the corresponding 
equation (in the active convention) in the text or in Appendix B. 

• The passive Euler angle rotation matrix: 

(
COS a sin a 0) (cos /3 0 

R (p ) ( a, /3 , 'Y) = . - sin a cos a 0 . 0 1 
o 0 1 sin/3 0 

- sin (3) ( co~ 'Y 
o - Slll'Y 

cos /3 0 

• Definition of the Wigner rotation matrix: 

1Jt m(a,/3,'Y) = Upl exp(i'Yjzll) exp(i/3jyl)exp(iajz)ljm) 

= exp(ip'Y)Upl exp(i/3jy)ljm) exp(ima) 

= exp( ip'Y )dtm (/3) exp( ima). 

Slll'Y 
COS'Y 

o D 
(34) 

(B6) 

Note that dim(/3) in the passive convention can be determined from Eqs (B7) or 
(B8) by replacing /3 by -/3 in the right-hand side of these equations. 

• Effect of the passive rotation operator on an angular momentum eigenket: 

+j 

Jj,m)2 = k(p)(a,/3,'Y)lj,m)l = L Ij,ph 1Jt,m(a,/3,'Y). (54) 
JJ=-j 

• Rotation of spherical harmonics: 

+l 

Yt(B2,<P2) = L Y:(B1,<pd1J~,m (a,/3,'Y). 
JJ=-£ 

A I 
• Relation of the elements of'D (a, /3, 'Y) to the spherical harmonics: 

( 
4 ) 1/2 

1J!n o(a,/3,'Y) = 21: 1 Yim(/3,'Y), 

( 4 ) 1/2 
1J~ m (a, /3, 'Y) = 21: 1 Yi~m(/3, a), 

using the phase convention of Condon and Short ley (1953). 

(63) 

(BI8) 

(BI9) 
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• Eigenvalue equations for the Wigner rotation matrices: 

j2Vt m(o:,{3,'Y) = j(j + 1)Vt m(o:,{3,'Y), 

jzv~ m(o:,{3,'Y) = mV~ m(o:,{3,'Y) 

jz'v~ m(o:,{3,'Y) = f-tV~ m(o:,{3,'Y) 

space-fixed z axis, 

body-fixed z axis. 

• Effect of the raising and lowering operators on the rotation matrices: 

j±v~ m(o:,{3,'Y) 

j±,v~ m(o:,{3,'Y) 

[(j =f f-t)(j ± f-t + 1 )]1/2 V~±1m (0:, (3, 'Y), 

[(j =f m)(j ± m + 1)]1/2 V~m±1(0:, (3, 'Y). 

• The time-independent Schrodinger equation for a symmetric top: 

[ 1 '2 '2 1 '2] . 
2Ix' (Jx' + J y') + 2Iz' Jz' V~ m(o:,{3,'Y) 

= [2Lj(j+1)+~(L - L)m2]V~m(0:,{3,'Y)' 
• Normalized eigenfunctions of the symmetric top: 

( 2j+1)1/2 . 
RjjJm(o:,{3,'Y) = ~ . V~ jJ(o:,{3,'Y). 
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(B65) 

(B66) 

(B67) 

(B68) 

(B69) 

(B74) 
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