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Abstract

The sources of errors in the analysis of X-ray diffraction profiles are described, and recipes are given
to minimise or eliminate these errors. It is proposed that a sample at high temperatures is used
as a standard. The influence of measurement statistics on the Fourier transform of deconvoluted
functions is demonstrated through computer simulations. The necessity for smoothing procedures
is stressed. It is shown how the parameter step width, number of sampling points, and position
of origin for the Fourier transformation can be optimised, and thus a reliable basis can be created
for the interpretation of the Fourier transform in terms of crystallite size, size distribution, and
microstrain.

1. Introduction

Peak width analysis and peak profile analysis have become established methods
to analyse crystallite size, crystallite size distribution, and microstrain in powder
samples or in polycrystalline thin films. Among many various procedures which have
been developed to extract these parameters from measured peak profiles, the so-called
Fourier methods form an essential part. The most commonly known Fourier method
is the one described by Warren and Averbach (1952) and Warren (1959) which uses
multiple lines. The other Fourier methods are single line methods (Pines and Sirenko
1962; Gangulee 1974; Mignot and Rondot 1975).

This paper describes, after a review of the procedures mentioned has been given,
how errors affect the results of profile analysis. Recipes are given on how these errors
can be avoided or their effects can be minimised.

2. Procedures in Fourier Methods

For evaluations employing any of the procedures mentioned, one needs the Fourier
transform F(n) of the pure broadening function f(x) of the sample which is generally
gained by employing the Stokes (1938) correction. This requires the measurement
of the broadened sample profile A(x) and of a standard profile g(x), where g(x) is
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characteristic for the diffractometer at a certain diffraction angle and for the spectral
distribution of the radiation used at this angle:

F(n) = H(n)/G(n), 1)

where H(n) and G(n) are the Fourier transforms of the sample profile and standard
profile respectively.

(a) Warren—Averbach Method

According to Warren and Averbach (1952), the real part of the Fourier transform
of a broadening function can be split into an order dependent and an order independent
term describing an average column length in crystallites and microstrain:

A( n) — A( n)size A( n)strain , ‘ (2)

where
A(n)f = % - %3 fi = np i, ©)
A(n)*™™ = (eos{2m 1 Z(n)}). ©)

Here N, is the average number of unit cell pairs along a crystallite chord, where the
cells forming a pair are » unit cells apart. This average N, can also be expressed in
terms of a column length distribution, where p; di is the fraction of columns with
a length between i and i+di cells (Bertaut 1950; Warren 1959). The order of a
reflection is denoted by /, and Z(n) is the absolute displacement in unit cells of two
cells which are n cells apart. Later a quantity €(n) will be introduced, which stands
for a relative distortion [e(n) = Z(n)/n]. For the separation of size and strain, we
make use of the fact that 4(n)*® is independent of /, while 4(n)*™®" is not:

In A(n) = In A(n)"* + In A(n)*™™"
= In A(n)"* + In¢cos{2m le(nm)n}>. S)
The cosine and the logarithm of the second term are expanded leading to
In A(n) = In A(n)** —272 Pe(n)*>n? . (6)

The slopes of graphs of In A(n) as a function of /2 for every n yield therefore values
for the microstrain <e(n)?>)>. The intercepts yield values for In 4(n)*?°. From these
one can calculate an average column length by using

dA(n)size 3 1 Jw

1
dn A’3 pldiz —F for n—->0, (7)

i=n 3
and the column length distribution

d2 A( n)size _ _p_n

= . 8
e N ®
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(b) Single Line Evaluations

Most schemes in single line evaluations start with the assumption that particle
size causes peak broadening in the shape of a Lorentzian curve, while microstrains
broaden a peak to Gaussian shape. The measured peak is then a convolution of both
shapes. It is possible to separate the two effects using the Fourier transform of the
broadening function:

A(n) — A(n)Lorentz A(n)Gauss — e_ane_b,ﬁ' (9)

The contributions from both functions can be separated again by taking the logarithm

In A(n) = —an—bn® = — .1% —2m2 IS n?, (10)
3

where (€?) is an average strain independent of n. Equation (10) is then a second
degree polynomial. The coefficients can be evaluated with, for example, a least-squares
fit. This replacement of 4(n)%®" by exp(— 22 I2{e2)n?) is equivalent to the Warren
(1959) expression for A(n)*™®", It is allowed if the strain distribution is assumed to
be Gaussian and not dependent on », because the Fourier transform of a Gaussian
curve is a Gaussian curve again.

The replacement of In A(n)L°™"2 by — n/ N; can be explained by assuming that the
sample contains only columns with a single length of i cells. Then the integral over
the column length distribution function (7) is always equal to 1 if n < i. The slope of
the A(n)*Z® curve is therefore constant and equal to —1/ N;. Since A(0) is normalised
to 1, the equation for the curve is A(n)%2 = 1 —n/ N; and In A(n)**® = —n/ N; for
small n/N;.

This method described is similar to a non-Fourier method which uses the Voigt
function (de Keijser et al. 1982), a convolution of Lorentzian and Gaussian curves, to
separate size and strain effects. The results of both methods are, however, not directly
comparable (Delhez et al. 1982). In contrast to the single line method described,
other procedures do assume that strain is a function of n (Gangulee 1974; Mignot
and Rondot 1975). This assumption is probably closer to reality. Most often strains
are assumed to decrease with 1/n (Rothman and Cohen 1969). Equation (9) becomes
then, after an expansion of the exponential function,

A(n) = (1—an)(1—cn). 11

The coefficients are then evaluated from pairs of Fourier coefficients or from least-
squares fits of the whole curve.

3. Errors in Profile Analysis and Recipes for Minimising Them
(a) Designing the Experiment—Choice of a Standard Material

In designing the experiment, one should try to eliminate as many sources of errors
as possible. This begins with the selection of peaks, and of the radiation used. Peaks
with as little overlap as possible should be selected. By choosing a suitable wavelength
they can be shifted to diffraction angles where broadening effects can be detected with
more accuracy. The use of an incident beam monochromator eliminates the need to
correct for Ka, radiation. Powder samples have to be prepared carefully concerning
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geometry and packing density (for thin films, these two parameters can easily be kept
constant). The biggest problem is, however, the choice of a standard material.

The Stokes correction (1) requires the measurement of a standard which does
not exhibit any line broadening due to sample properties, and which, in the ideal
case, is the same material as the sample. An ideal standard is practically never
available. Non-ideal standards often have different transparency, geometry (thickness,
dimensions, packing density), and show peaks at different diffraction angles compared
with the sample. If particle size in a standard is too large, its peaks will be composed
of a small number of peaks from these large crystallites. This peak is then much
narrower than an ideal standard peak and contains structure which a peak from a
ideal powder sample would not show. Strong texture, which occurs for example in

thin films, also influences peak shape.
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Fig. 1. The 222 reflection of an Al(1%Ti) thin film measured with
Cr radiation at room temperature and at 475°C. The peak at room
temperature is broadened by microstrain. The strain relaxes at high

temperatures.

Several papers have been published which describe the effects of non-ideal standards
in profile analysis and show how these errors can be minimised (de Keijser et al
1978; Delhez et al. 1979). This paper describes a method for producing an almost
ideal standard. Here the sample at high temperatures is used as its own standard.
It is known that crystallites grow at high temperatures and that defects can be
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annealed. It is also known that high temperature affects a peak profile only slightly.
The Debye—Waller factor contains a sinf term which describes the influence of
temperature on a diffraction profile. This influence, however, is only noticeable over
a large range of sinf. The peaks used for standards in profile analysis are supposed
to be narrow, so their profile stays practically unchanged. The advantage of this
method is that transparency and geometry of the standard are very close to that of
the sample. The disadvantage is that the method can be applied only to selected
materials whose particles actually grow to sufficient size or whose strains disappear
at high temperatures. Figs 1 and 2 show two examples where the high temperature
standard could be applied. Fig. 1 shows the Ka;—a, doublet of the 222 reflection
(Cr radiation) of an Al layer (doped with Ti) at room temperature and at 475°C. The
peak at room temperature is broadened by microstrain. This broadening disappears
at high temperature and returns after cooling, so the peak at high temperature is
therefore close to a low strain state. Temperature expansion and the relaxation of
macrostrains (G6bel 1986) shift the position of the peak, so that it does not represent
an ideal standard in this point. On a sin@ scale this effect seems to be negligible
though. The second example (Fig. 2) shows a high temperature measurement of ZnO
powder. At room temperature the sample has a crystallite size of approximately
5Snm. At high temperatures, the crystallites start to grow and the peaks become
narrower. Instead of using a separate measurement of annealed ZnO powder as a
standard, a measurement of the sample at high temperature after sufficient annealing
time is used as a standard. The problem of having to prepare an identical powder
sample for a standard measurement has thus been eliminated.

—1100°C
AT=100K
30 34 X\300°C

20 (degrees)

Fig. 2. High temperature measurement of ZnO powder between 300°C
and 1100°C. The peaks at high temperature become narrower due to
the growth of particles.

(b) Measurement Statistics and the Application of Smoothing Procedures

One of the most serious errors which can be made in profile analysis is using
data for profile evaluations which are just sufficient for phase identification. Profile
analysis requires definitely better counting statistics.
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Fig. 3. (a) Lorentzian functions with various maximum intensities and superimposed statistics
(256 points and coordinate x in real space). (b) Real part of the Fourier transform of the
deconvoluted curves from (a) (coordinate n in reciprocal space).

The effect of poor counting statistics on the Fourier transform of a deconvoluted
function and on the results of profile analysis will be shown by computer simulations.
A Lorentzian function of 0-15° full width at half maximum (FWHM) was chosen
to represent a standard profile. The broadening of the sample profile was assumed
to be 20%, leading to a Lorentzian function with FWHM = 0.18°. The profiles
were sampled at 256 points, the sampling interval being 0-02°. The profiles were
then superimposed by artificial statistics. Sample and standard profiles with various
maximum intensity ... are shown in Fig. 3a. The Fourier transforms of the
pure broadening functions were calculated with a fast Fourier transform algorithm
(Brigham 1974) and are displayed in Fig. 3b5. The imaginary part of the functions is
zero because the symmetrical functions were transformed with the maximum being
the origin for transformation.
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The upper part of Fig. 3, representing the best statistics (I,,, = 107), shows a
smooth decrease of the real Fourier coefficients 4(7). At large values of » the Fourier
transform of the deconvoluted curve begins to show erratic oscillations. This is due
to the finite range effect (Young et al 1967) which causes small oscillations on the
A(n) curve that are of the order of A(n) for high values of # in Fig. 3. The limited
precision of computer calculated numbers and measurement statistics contribute to
this effect. By applying the deconvolution theorem (1) (which means division by a
small number that fluctuates erratically around zero) the small oscillations in the
Fourier transforms of both functions become suddenly obvious. :

If one examines the peaks in the middle of Fig. 3 (I,,, = 10%), one finds erratic
oscillations at much lower values of n. These again were enlarged by the division
which is applied to calculate the deconvoluted Fourier transform. This happens
although the statistics added to the pure profiles cannot be detected by eye. The
peaks at the bottom of Fig. 3 (I,,, = 10%) display this effect even more, although to
the eye the statistics may still look sufficiently good. Even the starting values of A4(n)
have been affected. This effect is even more obvious if one approaches the limits of
detection of peak broadening. If the Fourier transforms of the two profiles are close
to each other, the errors described start at very low values of n.

All this has serious consequences for the following steps of analysis. If one positions
the peaks from this example at for example 40°26, applies Cu Ka, radiation for
the following calculations, and assumes that only particle size broadened the peak,
one finds an average column length of 99 nm for smooth peaks. The peaks with a
maximum intensity of 103, however, showed in a number of evaluations fluctuations
of the particle size between 93 and 105 nm, i.e. of the order of 5%. For the peaks with
I, = 10° the effect is still present, the particle size varying between 98 and 100 nm.
For the maximum intensity of 10° the evaluated particle size is finally constant.

If these findings are applied not only to a particle size evaluation but to a complete
Warren—Averbach analysis, one can conclude that an evaluation of a strain curve
according to equation (6) becomes almost impossible with raw data. The number »
of valid strain values will be quite limited by the early starting spurious oscillations.
Physically impossible negative values for {e(n)*>> will appear. The errors in the
A(n)*?® which are then found by extrapolation of (6) will be even more pronounced
than in pure crystallite size evaluations. Concerning the column length distributions
(8), it is obvious that the second derivative of the shown Fourier transforms with
erratic oscillations will not yield any physical information.

The errors described can fortunately be minimised by applying smoothing procedures
to the measured profiles. In addition to the application of simple smoothing procedures,
smoothing can also be done by least-squares fits of measured data with analytical
functions. This has the advantage of performing background subtraction and Ka,
correction (if necessary) at the same time. Peaks can be extracted from superpositions
and intensities can be recalculated at any value on a sin@ scale. The disadvantage of
this method is that by forcing simple profiles like Gaussian or Lorentzian curves on
the measured data, some of the information in the measurement is lost. A ‘bendable’
function such as the split Pearson VII function is better suited to approximate a
measured profile.

It must not be forgotten, however, that smoothing does not yield an unambiguous
result. Depending on the counting statistics, smoothing yields a bandwidth of possible
solutions in the measured range of a profile, with the band being narrower the
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better the statistics. If the desired profile has, for example, been extracted from
a superposition of peaks, or if a profile is extrapolated far into the tails of a peak
(this is necessary to minimise the finite range effect), these extrapolated values differ
more from the ‘true’ values if they were extrapolated from a broad band of possible
smoothing solutions.

Fig. 4. Creation of a hook effect in the Fourier transform of a deconvoluted function by an
incorrect extrapolation of the measured profiles.

Among the commonly known analytical functions, the split Pearson VII functions
yield the best smoothing results. A danger existing lies in the correlation between
FWHM and exponent in the Pearson VII function. A bandwidth of combinations of
FWHMs and exponents fit a peak equally well. Extrapolation from the fitted range
into the tails of a peak depends, however, strongly on the exponent. Errors may
arise especially with small peak broadenings. Fig. 4 shows two symmetrical Pearson
VII functions (FWMHg,pe = 0-18%xpgumpe = 10 and FWMH,p45r4 = 0-15°,
€XPgtandara = 0+9). The Fourier transform of the deconvoluted function shows a large
hook effect. This means that the standard curve 2, although it looks narrower to
the eye than the sample curve 1 at for example half height, is actually broader than
the sample curve in the tails of the peaks. Theory requires, however, that peaks are
broadened symmetrically, i.e. that the sample peak is broader than the standard peak
over its whole extrapolated range. In practice this possible error can be eliminated by
making sure that a least-squares fit program selects from the band of combinations
of FWHMs and exponents the one solution that describes the standard peak with
higher exponents than the sample peak (a curve with a high exponent falls faster to
zero than a curve with low exponent). The sample curve then always lies above the
standard curve. This procedure does not solve the problem of extrapolation but it
excludes a physical impossibility. One could also use fitted data only in the range they
were measured in, and extrapolate with other procedures which have more physical
meaning (Delhez et al. 1986).

(c) Fourier Transformation and Stokes Correction

The calculation of Fourier transforms is usually done with sampling points
equidistant on a sin@ scale which is equivalent to a linear reciprocal length scale. This
requires the calculation or interpolation of sampling points from reduced data (e.g.
least-squares fit results or spline functions). Corrections of the profile according to the
Lorentz factor, polarisation factor, and Debye-Waller factor can be included here.

By using fast Fourier transform algorithms, modern computers can do a Fourier
transformation on a large number of sampling points virtually instantaneously. If one
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uses an algorithm for complex functions, one can transform sample peak and standard
peak at the same time (independent of the sampling interval on each peak). Since the
measured profiles are real values and contain no imaginary part, one can store the
two functions in the real part and in the imaginary part, respectively, of the complex
function to be transformed. The Fourier transforms of the two measured profiles can
be extracted from the Fourier transform of the complex function (Brigham 1974).
The computation time for the two necessary Fourier transformations (per peak used
in the evaluation) can thus be cut by half.

Several parameters have to be optimised for the Fourier transformation to avoid
errors which can hardly be corrected later. Of importance are three parameters,
namely sampling interval on the measured profile, number of sampling points (these
two determine the range for transformation), and position of origin for the Fourier
transformation. What one would like to have for the interpretation in terms of
size, size distribution, and strain is a smooth curve with small sampling interval and
physically valid values up to high harmonic numbers n. In the ideal case, this Fourier
transform does not contain any imaginary part, and the real part is larger than zero
over its whole range.

The effect of using a finite range for transformation has been mentioned already. It
results in a convolution of the Fourier transform of the sample broadening function
with the Fourier transform of a slit function. The larger the range which is used for
transformation, the narrower the function

FT¥ = S(n) = sin(wnx)/mn, 12)
and the less is its influence on the true profile H(n) in the convolution
H(n) = H_(n) S(n). (13)

Therefore, to minimise the effect of finite range, the measured peak should be narrow
compared with the range in which it is sampled. This is the reason why a profile
should be extrapolated into the tails.

Table 1. Number of sampling points above half height of a peak necessary
to avoid aliasing of the Fourier transform

A(n) Lorentzian Modified Lorentzian Gaussian
10—2 4(0) 5 4 4
10—3 4(0) 5 5 4
10— A4(0) 6 5 5
103 4(0) 8 7 5
10— % 4(0) 10 9 6

A large range for transformation can be achieved by either a large sampling
interval, by a large number of sampling points or by both. The sampling theorem
(Brigham 1974) states that sampling of a profile at intervals x causes a periodicity
in the Fourier transform with the period being 1/x. The Fourier transform of the
profile is thus repeated every 1/x. If the Fourier transform of a profile has not fallen
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to practically zero after 1/2x, the A(n) at high values of n will be erroneous due to
overlap with the peak of the next period. This phenomenon is called aliasing. To
avoid aliasing, the sampling interval on the measured profile must therefore be small.
How small it has to be cannot be stated in absolute units. The user has to define a
lower limit for 4(n), e.g. A(n) = 10~3 4(0), where the limit depends on the accuracy
of the computer calculations. From this, one can calculate a relation between FWHM
of a certain peak shape and the sampling interval of the peak (Young et al 1967).
The problem of determining the best sampling interval is thus reduced to sampling
in a way which puts a certain number of points above half the height of the peak.
Table 1 gives these numbers calculated for Lorentzian, modified Lorentzian (Pearson
VII with exponent 2), and Gaussian curves for various low limits of A(n).

This result also shows how to minimise the finite slit effect. At an optimised
sampling interval, the number of sampling points has to be increased. This increase
of the transformed range also has the positive effect that the sampling interval of
the Fourier transform decreases correspondingly. This means that the following
interpretation of the A(#) can be done with fine spaced values. A small sampling
interval is also important for another reason. Young et al (1967) showed that a
residual constant background on a profile affects 4(0) but does not change the other
A(n). Also, the necessary truncation affects 4(0) which describes the area of a peak.
It is therefore desirable to evaluate values as close to 4(0) as possible which can be
gained by using a small interval.

FT standard
FT standard M

FTsample FTsample
(9) (b

Fig. 5. Fourier transform of standard peak and sample peak: (@) with step width optimised for
the standard peak and (b) with step width optimised for the sample peak.

After standard peak and sample peak have been Fourier transformed, the Stokes
correction has to be applied. Here a problem arises if both peaks had largely different
width and were transformed with the same step width. If the step width was optimised
for the standard peak (see Fig. 5a), the Fourier transform of the sample peak will fall
to zero quickly (no aliasing but only few values that can be used for the evaluation).
The A(n) at high n will be superimposed by statistical fluctuations originating in
computation errors, and by regular oscillations originating in the finite range. The
curve will, in addition, be broadened considerably by the convolution with the Fourier
transform of the slit function. If the step width, on the other hand, is optimised for
the sample profile (Fig. 5b), the Fourier transform of the standard will be aliased.
This is not a very critical problem as long as moderate peak broadenings are involved
and as long as no evaluations of size distribution functions are planned where accurate
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A(n) at high n are needed. If peak broadening is very large, aliasing will however
heavily affect all values of the standard’s Fourier transform. The problem can be
solved by optimising step widths for both sample and standard profile. The sampling
interval for the sample peak will be larger than for the standard peak, since the sample
peak is always broader than the standard peak. If the number of sampling points is
equal for sample and standard, the sampling interval of the Fourier transforms will
therefore be smaller for the sample. The correct 4(n) of the standard can then be
found by interpolation at the interval that was calcuated for the sample.

Applied to multiple line analysis, one can conclude that each peak requires its own
step width. The Fourier interval for the adjacent steps of evaluation is best chosen
from the Fourier interval of the broadest sample peak. The Fourier transforms of all
other peaks can then be interpolated at this sampling interval.

A(n) Fig. 6. Fourier transform of a

Ay(n) symmetrical function. For 4(n) the
origin for transformation coincides with
the symmetry axis of the profile, while
n—» Ay(n) and By(n) are the real and
imaginary parts with the origin for
By(n) transformation shifted by (1/1024)27.

The choice of origin for the Fourier transformation is of great importance for
the results in profile analysis. If A(x) is a peak profile whose Fourier transform is
H(n), and h)(x) is the same profile shifted by x, relative to the origin used for the
transformation of A(x), the Fourier transform of /;(x) can be written as

H(n) = 4(n) +1 B,(n)
= {A(n) +i B(n)} expQmi xy n)

= A(n) cos(2mwxy n) — B(n) sin(27 x, n)

+i{ A(n) sinQmxy n) + B(n) cosQmxy n)}, (149
A(n) = A(n) cos2m xy n) — B(n) sinQQmxy n), (15)
B(n) = A(n) sinQQm xy n) + B(n) cos(Qmxy n), (16)

where A4,(n) and B,(n) are real and imaginary part of the shifted function /;(x), and
A(n) and B(n) are for the unshifted function. According to Warren and Averbach
(1952) only symmetrical broadenings are treated. Asymmetries in the measured
profiles are supposed to be properties of the diffractometer (i.e. the sample profile
is asymmetric because the standard profile is asymmetric). The deconvolution of
both measured profiles leads according to theory to a symmetrical profile which may,
however, be shifted relative to its symmetry axis. This happens because the origins
of the two measured functions are not fixed, but are chosen for example at their
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maximum. If the pure broadening function is symmetrical, its imaginary part B(n)
in (15) and (16) is zero. In this case the shift x; of the broadening function A (x)
can be determined from the slope of the B;(n) for n — 0 in (16) (Delhez et al. 1979;
de Keijser et al. 1980). With this value, the A(n) for the unshifted function A(x)
can be reestablished according to (15). This method is of limited accuracy since the
slope of B,(n) for n— 0 cannot be determined accurately. The error becomes smaller
with decreasing interval of the Fourier transform. If the Fourier coefficients of the
shifted function are used for further evaluations (Warren—Averbach or single line),
large errors result. The A4,(n) of the shifted function are generally smaller than the
A(n) of the unshifted function (see Fig. 6). This will lead to erroneous strain values,
depending on which peak in the analysis was displaced (equation 6). The extrapolated
A(n)*2¢ values will in accordance be also erroneous. Equation (15) shows that 4;(n)
will be negative for certain combinations of x, and n. This limits the number of
values of »n that can be used for the evaluation of (5). In practice it often happens
that the function A(x) is not symmetrical, although it is supposed to be. In this case
an iterative procedure can be applied which varies x, and searches for a minimum
for | B(n)|. With this x, one can again reestablish the 4;(n). Another method to
handle asymmetric or displaced functions is described in the review article by Delhez
et al. (1982).

4. Conclusions

Many errors in Fourier methods do occur before the Fourier transform of the
broadening function is actually interpreted in terms of crystallite size, size distribution
and microstrain. Errors can be made in designing and performing the measurement, .
and in calculating the Fourier transform of the pure broadening function. This paper
showed how these errors can be minimised or eliminated, and thus a good basis for
the various evaluation methods can be created. This does, however, not yet guarantee
reliable results. There are limitations and approximations inherent in the evaluation
methods described in Section 1 (de Keijser et al. 1977; Delhez and Mittemeijer 1976).
Also the theoretical models with their assumptions as the basis for these methods do
not necessarily meet reality. Results are expressed in terms of parameters like column
length distributions or root-mean-square strain which cannot readily be compared
with more understandable parameters. Although this problem exists, profile analysis
can give comparable results which describe the state of strain in a sample and give
an impression of the crystallite sizes present.
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