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The study of extinction by neutrons reveals many features of the extinction problem: theory and 
practical cases, polarised and unpolarised neutron cases. Special attention is given to the usual 
extinction corrections for neutron diffraction experiments, showing the relative importance of 
structure factor, wavelength, Lorentz factor, mosaic and the path of neutrons through the crystal. 
Two problems are reviewed: (a) how to detect the presence of extinction in both cases of a single 
crystal experiment with polarised and unpolarised neutrons; and (b) after experimental evidence 
for extinction in a neutron diffraction experiment, how to follow a reliable way to correct the 
neutron diffraction data in both cases of polarised and unpolarised neutron experiments. Some 
examples are given. 

1. Introduction 

Extinction can be treated through various models originating in either kinematical 
(intensity coupling) or dynamical (wave coupling) theories. The dynamical theory is 
the more general but can only be applied to crystals that are perfect or show only small 
distortions. The kinematical theory is the limit of the dynamical in the case of small 
coherent domains or short wavelengths; it is widely used in structural crystallography. 
For most crystals the situation is intermediate between these two extreme cases 
and extinction models ;u-e necessary to obtain precise Fourier components (structure 
factors) and the electronic and magnetic distribution in molecules and crystals. 

Kato (1976) partially reconciled the two approaches, solving Takagi's (1969) 
equations in a statistical way and under definite conditions. For an optical coherence 
length T smaller than the extinction distance A, he obtained intensity coupling 
equations which were shown to be identical with those employed to describe mosaic 
theories (Becker 1977). The solution to these equations has been examined by 
Zachariasen (1967), Werner (1974) and Becker and Coppens (1974; henceforth BC). 
For a more experimental viewpoint, the importance of collimation (Dietrich and 
Als-Nielsen 1965; Bogdanov and Menshikov 1976), the determination of mosaic 
(Schneider 1974), and the correlation between scale factor, thermal parameter and 
extinction must be examined in detail (Bonnet et al. 1976; henceforth BDBF) for the 
purpQSe of obtaining structure factors better than 1 %. 
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Recently Kulda (1984, 1987) pointed out that the treatment based on the energy 
transport equation (ETE) (Zachariasen 1967, 1968) suffers from certain deficiencies, 
of which the most important seems to be its failure to describe primary extinction. 
But again, in the limit of secondary extinction and after consideration of the different 
approaches, it can be concluded that the use of ETE is physically correct, the 
remaining problem being to find an adequate expression for the coherent scattering 
cross section o-(€). 

The general situation of extinction models manifests itself as a difficult 
correspondence between theory and experiment, with the result that theoreticians 
are led, for the sake of simplicity, to use a phenomenological formalism in order 
to obtain formulae that can be built into a refinement program. New models have 
new parameters which give rise to new effects in the extinction corrections, but the 
phenomenological aspect of the solutions shows the difficulty of adequately describing 
what happens in real crystals. 

Careful examination for the presence of extinction and for the validity of the 
corrections is then needed; often, one must test the adequacy of these extinction 
corrections. 

2. Parameters of BC Formalism within the Limit of the Darwin Transfer Equations 

We describe the features of the BC formalism to reveal the connection between 
the different parameters: 

(1) The most important limitation is due to its kinematical nature; the model uses 
the ETE (see equations in BC lOa, b, c). The diffracting cross section per unit volume 
and intensity o-(€) (where € is any angular departure from the Bragg conditions) is 
assumed to be constant inside the crystal and dependent only on the size and shape of 
the average mosaic domain (BC 4). The domains are assumed to be of the same size 
and nearly spherical in shape. The angular distribution of these domains is W(Ll) 
and, in many cases, is assumed to be gaussian (mosaic 1J). 

(2) The extinction coefficient Y", is defined by 

P(ns- I) = Jo(ncm-2 S-I) Q:cm- I) Llv(cm3)y"" 

where P denotes the diffracted power in the rocking curve method, .fo is the incident 
intensity, and the macroscopic diffracting power is Q - 11.3 N~ F 2/sin26, where A 
is the wavelength, F the structure factor, 6 the Bragg angle and Nc the number of 
unit cells per cm3. Further, Ll v is the volume of the sample and Y", the macroscopic 
extinction factor taking account of absorption (henceforth Y", is assumed equal to y). 

In fact, instead of considering the decrease of .fo in the volume Ll v of the crystal 
due to secondary extinction effects, we consider the integration of the diffracting cross 
section o-(€) convoluted with the extinction function </>(0-) due to o-(€): 

yQ= f o-(€)</>(o-(€)d€. 

(3) BC derived o-(€) for a convex crystal: 

o-(€) = Q f sin21T€/1J' dv, 
Llv L\v (1T€/1J')2 1J' 

(1) 
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where '1'j' is the broadening due to the finite dimension I of the diffracting region, so 
that '1'( = AI I sin 20 = d/ I cos 0, where d is the (hkl) interspacing. 

(4) The general solution allowing for multiple scattering (ETE) can be 
approximated by a power series in cr (see Be 18a, b), where terms with power 
2p correspond to the (2p)-fold rescattering contribution. 

(5) The cross section cr(e) has to be averaged over the angular domain distribution 
W(Ll) of the mosaic model. The result is that the broadening of cr(e) is generally the 
convolution of two parts, a particle size broadening '1'( and a mosaic broadening '1'1. 
lt is trivial to assume that 

'1'1"2 = '1'1'2 + 27TT/2 • 

(6) As y is the quantity of ultimate interest, an analytical expression is sought 
(Be 37): 

y = {l+2X+AX2/(I+Bx)J-~, (2) 

where X describes the strength of the reflection (hkl); X = j QT/T/" (Be 42), with 
l' the mean path length through the crystal. 

Finally, to summarise this section, there exists a reasonable approximation of the 
ETE for crystals of general shape in the whole range of Bragg angles (Be 18a, b) 
and an analytical fit of y (Be 37) that can be used for either primary or secondary 
extinction. 

3. Simple Calculations with a Simple Structure 

At this stage of the discussion, it becomes useful to look at some practical 
calculations. To obtain a simple view of the intervening parameters, we examine the 
expression for the diffracted power with extinction correction expanded to the first 
order. For the primary extinction, one has with the preceding formalism (Be 37) 

Yp = I-X p' Xp = j QI/T/' = j(ANc F l)2 . (3) 

For -a given incident beam direction (a given e), primary and secondary extinction 
effects may, to a first approximation, be considered independent. The same assumption 
used in averaging over various values of e leads to y - yp(Xp) Ys(yp Xs), which can 
be written as 

d A2(F Nc)2 l' ) 
y = {l- j(AF Nc l)2l( 1- jyP cos 0 I (d/ I cos 0)2 +27TT/2J~ . (4) 

Then the diffracted power is written as 

P = JO Q!1vy. (5) 

Let us now consider a single crystal of Aueu3 (1' - a·1 cm) studied by neutron 
diffraction with A - I A. Table I gives the calculated diffraction schema for 
reflections at low and high angles (a = 3·74 A and '1'1 = I '). The scattering lengths of 
Au and eu are respectively a·763xlO- 12 and a·769xlO- 12 cm. The structure 
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Table 1. Calculated data for the AuCu3 compound 

F o (deg.) d (A.) FNc dlcosO (A.) 

100 7·7 3·74 1·lxlO-4 3·77 
111 II 13·4 2·16 0·059 2·22 
620 II 57·7 0·59 0·059 1·10 
621 58·9 0·58 1·lxlO- 4 1·12 

factors fall into two groups: (I) superlattice reflections with mixed indices [Au-Cu: 
F(I) = -0·006x 1O- 12 cm]; and (II) fundamental reflections with (hkl) all even or 
all odd [Au+3Cu: F(II) = 3.07xlO- 12 cm]. 

With the BC formalism, a strong secondary extinction appears for TJ < I' [27TTJ2 = 

(7.5xlO-4)2]; calculation shows that for 1- 0.20JLm, the (111) reflection has an 
extinction mainly driven by the particle size TJ' and the (620) reflection has the 
same extinction mainly driven by the mosaic spread TJ. For I - 1 JLm, the primary 
extinction of F(II) is Yp - 0·998, but yields yp - 0·77 for 1= 10 JLm; in all cases, 
the primary extinction of F(I) is negligible. For I - 1 JLm, the secondary extinction 
of the (111) reflection is y s - 0.34, and y s - 0·66 for the (620) reflection; in all 
cases, the secondary extinction of F(I) is negligible. 

This typical example shows the connection between the different parameters, and 
shows that the results are often surprising and change strongly with other experiIDental 
conditions (wavelength). 

4. Experimental Tests of the BC Formalism 

The failure to describe primary extinction in this kinematical model suggests that 
the BC formalism should be applied to severe extinction cases to test the reliability 
of the method. The problem is the adequacy of such tests. Essentially the secondary 
extinction correction must cancel the disproportion introduced by the extinction 
between strong and weak reflections. X rays, which concentrate strong reflections 
at low Bragg angles due to the form factor, the sin28 term, and thermal vibrations, 
cannot be a good tool to reveal extinction and to decide the best model; but with 
4npolarised neutrons, the absence of the form factor for the nuclear structure factor 
FN,partially breaks the correlation between Jo, yand B. 

The unique way to probe a model is to vary in a known way the parameters and to 
compare with the observed data. These parameters are the wavelength, the structure 
factors and the pathlength T; the fitted parameters are the particle size, the mosaic 
spread and the shape of the distributions of O'(e) and W(.:i). We now examine two 
experiments carried out by varying the wavelength or the structure factors. 

(a) Change of the Wavelength 

The experiment (Delapalme et al. 1978) was carried out during a study of the 
magnetisation density in URh3 which has the AuCu3 structure and, as discussed 
above, possesses two groups of structure factors. As a first attempt to assess the degree 
of extinction, integrated intensities were collected at A = 1·05 A on a conventional 
four-circle diffractometer at the Argonne National Laboratory. The resulting fit 
yielded y min - 0·3. Because this value of y gives a large correction, we have 
further examined the extinction by measuring a limited set of integrated intensities at 
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11.= 0·757 and 0·527 A on the 09 four-circle diffractometer at ILL. The structure 
factors were then placed on an absolute scale by using the weak superlattice reflections, 
which exhibit negligible extinction. Finally, all structure factors were refined together 
with common extinction and thermal parameters. 
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Fig. 1. Graph of Yobs versus Ycalc from BC extinction theory for 
URh3. Only the strong reflections at each wavelength are plotted: open 
circles, 1· 05 A; solid circles, 0 ·757 A; and triangles, 0·527 A. The 
weak reflections have Y > 0·95. 

The first result was that the Zachariasen formula was inadequate to deal with 
the entire set of structure factors; for large extinction, y is overestimated. Using 
the BC formalism with the parameters I = 14(3) J-Lm and TJ = O· 34(3)' and with a 
Lorentzian shape for u(e), we obtained a residue (0·015) with thermal parameters 
Bu = 0.25(3) A2 and BRh = 0.32(3) A2. To illustrate the extent of agreement for 
the extinction, we have plotted Yobs against Y calc for the strong reflections from each 
wavelength experiment in Fig. 1. The result is surprisingly good considering the large 
range of variation in Yobs (0.3 " Y " 0.75). 

(b) Change of Structure Factor Values using Polarised Neutron Diffraction (BDBF) 

In testing extinction effects, we saw that difficulties arise from the unknown values 
of the scale factor and thermal vibration parameters included in equation (5). Contrary 
to the X-ray case, neutron diffraction studies measure strong reflections over a large 
range of Bragg angle, thus avoiding biased correlations between Y and the thermal 
parameters B. As pointed out by BOBF, polarised neutron experiments are an 
excellent tool for testing extinction models because one measures directly the absolute 
value of the cross-term between nuclear and magnetic structure factors. BOBF and 
Oelapalme (1979) pointed out the experimental conditions where the flipping ratio R 
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can be simply written as the ratio of the diffracted power P( +) for the up and down 
spins of incident neutrons: 

P(+) F~ y+ (FN + FM)2y+ y+ 
R=--=--= =R-

P(_) F~y- (FN-FM)2y- 0 y-
(6) 

where FN and FM are the nuclear and magnetic structure factors of a given reflection 
(hkl), and y± are the extinction corrections corresponding to F±. In equation (6) 
it is assumed that an integration over E has been performed by the wavelength band 
and the collimation. 

For polarised neutrons, the flipping ratio measurements lead to an absolute value of 
R, without any scale factor, because we compare directly P( + ) and P( -). Moreover, 
by utilising reflections at low Bragg angles where thermal parameters B are not of 
great importance and totally cancel for compounds with the same B values for the 
different atoms, we note that for ferro- or ferri-magnetic centrosymmetric structure 
with I R-11 > 0·1, polarised neutron experiments are very dependent on extinction 
and provide original tests for extinction models. 

Writing equation (6) as 

R = RoY+/y- = Ro{1-e(l,'11)}, (7) 

we show that one can calculate R from a linear relationship of its kinematical value 
Ro' where e is a function of the particle size, the mosaic spread and the shape of the 
distributions for U(E) and W(~). 

In other words, if one knows the right expression to correct for the extinction, it 
is possible to find only two adjustable parameters (/ and '11) which align perfectly all 
experimental values of R along the line of (7); the reliability of the model used to 
correct the extinction can be judged from the deviation of the experimental R values 
from the calculated relation (7). 

In the practical case of our study on yttrium-iron-gamet (YIG) (BDBF), the fact 
that we could consistently align the experimental R values corresponding to different 
crystals (1,2,3,4), different thicknesses and different wavelengths, with only two fitted 
parameters [/ - 17(3) I'm and '11 - 6(3)"] and a Lorentzian distribution for U(E), 
suggests that this type of correction could be quite general (see Fig. 2). Detailed 
experimental information can be found in BDBF and Delapalme (1979). 

5. Detection and Correction 

An important step in visualising extinction effects is to consider Fig. 3 which shows 
that there is a progressive deviation of the observed reflecting power &t 0 from the 
calculated &t e = QT/'11". For example, looking at &t e1' we observe &t 01 which 
leads to the conclusion of no extinction effects. But looking at &t e2' we observe 
&t ~2 instead of the real value &t 02. For polarised neutron experiments, one sees 
that measuring a theoretical value Re - &t~/&t~, we observed R~ - &t~t/&t~2 
instead of Ro - &tt2/&t;;-2. In other words, assuming that we can write (4) as 
y± = 1- K F~, for small values of'Y = FM/ FN the flipping ratio can be written as 

R - (1+4'Y){1-K(F~-F:JJ = (1+4'Y){1-4KF~'YJ, 
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Fig. 2. Measured flipping ratio R as a function of I el with a Lorentzian extinction correction for 
four samples of yttrium-iron-garnet: YIG-I (circles), YIG-2 (open squares), YIG-3 (triangles) 
and YIG-4 (solid squares). A comparison with the straight line (7) is made for (a) 2!0 and (b) 
642 reflections. 

and can be seriously damped by the term in braces, which represents the calculated 
extinction correction for very small 'Y values. 

Moreover, we can conceive of ca!!e8 where 4K F~ 'Y becomes negligible but is equal 
to 4"1; in these cases negligible extinction leads to a 100% extinction correction. This 
effect has been seen often with magnetisation density measurements of compounds in 
a weak paramagnetic state. 
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Fig. 3. Observed reflecting power ~ 0 versus calculated ~ c. 
Extinction effects correspond to the deviation from the first bisector. 

6. Limiting Cases and Conclusions 

We saw that Fig. 3 is an important tool in understanding extinction effects. For 
two samples, a metallic compound URh3 and the YIG oxide, we showed that a good 
extinction correction can be applied with reasonable fitted parameters (1 ..;; I ..;; 15 ,.., m 
and O· 1 < 'TJ < 1 '). Finally, in the case of polarised neutron experiments, we saw that 
an important change in the value of the structure factors (± FM ) is a reliable test to 
evaluate the best extinction correction for a given sample [Lorentzian shape for o-(E) 
in the case of YIG]. It remains that the detection of extinction effects depends on 
the variation of !!ll ~2 or R~2 with the wavelength. Indeed, the wavelength is the only 
other parameter which can be varied easily without sample modification. 

However, one sees clearly in Fig. 3 that, ifthe extinction is very strong (strong FN ), 

only good statistics in the meaSurement of !!ll ~ or R~ can detect significant changes 
with the wavelength and, in some cases (small FM ), the change of !!ll ~3 -!!ll ~2 can be 
more easily obtained than that of R~3 - R~2. 

Finally, if it is meaningful to correct for extinction within the BC formalism, it is 
useful to draw the universal curve of Fig. 3 and then to have an estimate of the degree 
of extinction in a particular experiment; moreover, this curve can disclose which is 
the most reliable experiment to obtain the fitted parameters (I, 'TJ) and to correct for 
extinction effects. 

As pointed out by Kato (1976, 1979, 1980) and Kulda (1984, 1987), there remains 
the important failure to describe primary extinction; Models based on elastically 
deformed domains are certainly welcome, but the difficulty will remain for a long 
time of finding the experimental conditions of real primary extinction to test these 
new models. 
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