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Abstract 

The treatment of non-systematic multiple-beam effects in dynamical diffraction is extended. 
Expressions for Bloch wave degeneracies are given in the centrosymmetrical four-beam case and 
for some symmetrical directions. These degeneracies can be determined experimentally either as 
critical voltages or by locating the exact diffraction condition at a fixed voltage. The accuracy 
when applied to structure factor determination is comparable with the systematical critical voltage, 
namely 1% in UfT The three-beam case 0, g, h is treated as well in the non-centrosymmetrical 
case, where it can be used for determination of phases. It is shown that the contrast features 
can be represented .by an effective structure factor defined by the gap at the dispersion surface. 
From the variation in the gap with diffraction condition, a method to determine the three-phase 
structure invariant I\J = <I> 9 + <I> _ h + <I> h _ 9 is given. The method is based upon the contrast 
asymmetry in the weaker diffracted beam and can be applied in Kikuchi, convergent beam or 
channelling patterns. Calculations relating to channelling in backscattering are also presented. 

1. Introduction 

Electron diffraction is a sensitive tool for structure studies, not only because the 
scattering may be recorded from very small crystal volumes. Electron scattering is 
sensitive to details in the average crystal structure, for example to the valence electron 
distribution through the form factor (Z - F)/ s2 and to atomic displacements because 
of the short wavelength. However, exploitation of these properties has so far been 
limited. Due to the complications arising from multiple-beam dynamical scattering, it 
is not straightforward to define magnitudes comparable with the integrated intensities 
in X-ray or neutron diffraction which can be precisely measured from the experimental 
pattern and interpreted directly in terms of crystal structure. An important aim 
in theoretical studies is therefore to establish such magnitudes, which should relate 
to measurable features in the diffraction pattern, also in the presence of extensive 
dynamical scattering. 

A set of such features, which appears in various types of diffraction patterns 
and in diffraction contrast, can be interpreted by two-beam-like expressions, namely 
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thickness fringes (Ichimiya et al. 1973), s-fringes in convergent beam discs (Goodman 
and Lehmpfuhl 1967), the split at Kikuchi line intersections (Gjfllnnes and Hfilier 
1971) and integrated intensity across the Kikuchi line (Steeds and Vincent 1983; 
Taftfll and Metzger 1985). These measurements can all be related to an extinction 
distance or gap at the dispersion surface, corresponding to an effective structure 
factor Ueff, when several interacting beams are present. Hence, they may be termed 
two-beam--or rather 'two Bloch wave'-features. Similar effects, including split line 
intersections, can be studied quantitatively in backscattering channelling patterns 
from bulk specimens as well (Marthinsen and Hfilier 1986). 

A special case of such dynamical interactions occurs when Ueff is zero. The 
best known example is the systematic critical voltage (Watanabe et al. 1969). This 
is a special case of the degenerate solution in the three-beam centrosymmetrica1 
case discussed by Gjfllnnes and Hfilier (1971) and by Hurley and Moodie (1980). 
In fact a wide range of degeneracies can be observed in a variety of diffraction 
experiments: Kikuchi patterns, convergent beam patterns and in backscattering 
channelling patterns. Measurement of the conditions for non-systematic degeneracies 
may offer a considerably extended scope for accurate determination of structure 
factors with electrons. 

E 

Fig. 1. Three-beam case 0, g, h, 
h where x, y are coordinates for the 

projected centre of the Ewald sphere, 
with the exact three-beam condition 
8g = 8h = 0 as the origin. 

In the present paper the previous analytical treatment of the non-systematic 
three-beam case is extended in two directions: the four-beam centrosymmetrica1 case 
and the non-centrosymmetrical three-beam case. The dynamical effects in the latter 
case may prove to be of value in early stages of structure determination, for example, 
in combination with X-ray diffraction, by providing phases for a starting set in 
standard crystallographic programs. 
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2. Three- and Four-beam Centrosymmetrical Case 

A general three-beam case is illustrated in Fig. 1. The diffraction condition can be 
described either by the projection of the centre of the Ewald sphere onto the plane of 
the projection or by the excitation errors sg,h for the two reflections g and h. Let us 
refer briefly to a previous treatment of the centrosymmetrical three-beam case. The 
three-beam eigenvalue equation for the anpassung -y, as derived from the matrix 

r
- 2k-Y 

Ug 

Uh 

Ug 

2ksg -2k-y 

Ug_ h 

U
h 1 Ug_ h , 

2ksh-2k-y 

(1) 

where Ug are structure factors (in A -2), Sg excitation errors and k = 271'/'11. the wave 
number in vacuum, can be written in the form 

(2ksg-2k-y + U;;2k-y)(2ksh-2k-y + U1/2k-y) 

= (Ug_ h + Ug Uh/2k-y)2. (2) 

This is seen to represent a hyperbola in the (s9' sh) plane. When the right-hand side 
is zero, the hyperbola degenerates into two straight lines which intersect at the point 

2ksg = Ui Ug_ h/ Uh - Uhf Ug_ h) , 2ksh = Uh( Ug_ h/ Ug - U/ Ug_ h) , (3) 

which corresponds to a degenerate solution of the eigenvalue equation in the three­
beam case. Experimentally this condition can be obtained by varying either the 
excitation errors through the diffraction condition or the primary voltage and thus 
the mass ratio m/"'o. In principle two excitation errors can be measured, but cases 
where one of them is zero may be better suited to accurate measurement-as is the 
case with the systematic second order critical voltage. In many interesting cases 
one of the structure factors involved (e.g. Ug) will be appreciably weaker than the 
others; then, one excitation error (Sg) will be quite small and the other (sh) may be 
represented by the first term only in the expression (3), which then will correspond 
to the so-called Bethe potential (see e.g. Hfllier and Marthinsen 1983). 

The three-beam expression is a useful approximation in many cases, with multiple­
beam calculations reserved for refinement. In other cases four strongly excited beams 
may be excited and it is of interest to derive corresponding equations in this case, 
especially for the degeneracies. From the symmetrical matrix 

-2k-y Ug Uh Uf 

Ug 2ksg -2k-y Ug_ h Ug - f 
I. (4) 

Uh Ug_ h 2ksh-2k-y Uh- f 

Uf Ug- f Uh- f 2ksf -2k-y 
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we obtain the relation 

where 

(l/2kyiXgXhxf-QlXg-b2 Xh-c2Xf +2abc = 0, 

Xg = _4k2y2+4k2YSg+ U;, 

Xf = -4k2y2+4k2YSf+ U}, 

b = 2ky Ug- f + Ug Uf ' 

Xh = -4k2y2+4k2YSh+ U~, 

a = 2ky Uh- f + Uh Uf ' 

c = 2kyUg_ h+ Ug Uh. 

In order to compare with equation (2) we may rewrite (5) in the form 

(Xg - bl Xf)(Xg - al Xh) = (c - abl xfi , 

(5) 

(5a) 

which can be regarded as the intersection with the plane Xf = const. When Xf __ 00, 

the form (2) is retrieved, i.e. Xg Xh = c2. If the right-hand side is put equal to zero, 
we obtain again two straight lines which intersect at the point 

Xg = bcla, Xh = aclb, Xf = ablc, (6) 

which corresponds to a degenerate solution in the four-beam case. The three excitation 
errors cannot be varied independently and hence (6) must be supplemented by a 
relation between sg' sh and sf . 
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Fig. 2. Two four"beam configurations with (a) symmetry 2mm and (b) symmetry 2. 

Many cases can be evaluated by making use of symmetry. Consider the diamond 
shaped configuration of beams in Fig. 2a, which is seen to have the symmetry 2m 
about the centre. Along one of the mirror lines one Bloch wave solution will be 
antisymmetrical (m'), the remaining three will be symmetrical (m). The condition 
for degeneracy can be found by introducing the eigenvalue y for the antisymmetrical 
Bloch wave, namely £0 = - cg, ch = cf = 0, with the eigenvalue Y3 = - Ug, into 
the eigenvalue equation derived from the matrix corresponding to the symmetrical 
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Bloch waves, namely 

I Ug-2ky 

2Uh 

2Uh 

i.e. into the eigenvalue equation 

2Uh 

2ksh-2ky 

Uh- f 

453 

2Uh I 
Uh- f ' 

2ksf -2ky 

(7) 

(Ug-2ky)(2ksh-2ky)(2ksf -2ky)+4 U~ Uh- f -( Ug-2ky) uLf 

-2(2ksh-2ky) Uh-2(2ksf -2ky) U~ = o. (7a) 

A condition for a degenerate eigenvalue is then found by inserting y = - Ug in this 
equation: 

(2ksh+ Ug - UV Ug)(2ksf + Ug - U~/ Ug) = (Uf - h - U~/ Ugi, (8) 

which can be used to determine the position of the degeneracy across the Kikuchi line 
g. We may write sh,f = s(l±x), where S is the excitation error at the symmetrical 
position in the centre of the four-beam configuration in Fig. 2a and x the distance 
from this position along the mirror line Sg = o. The two positions of the degenerate 
points on that line are found by inserting these expressions for the excitation errors 
in (8): 

(2ks)2 x2 = 4k2(s+ Ug- Uh-f)(S+ Ug+ Uh- f -2 U~/ Ug). (9) 

The two points will merge into one degeneracy, at the symmetrical point, for a critical 
voltage given by 

2ks = 2U~/Ug- Ug- Uh- f . (9a) 

The degeneracy is observed as a vanishing contrast of the Kikuchi or Kossel line 9 
below a non-systematic critical voltage Yc, as seen in the wide angle convergent beam 
patterns of 242 in ZnS reproduced in Fig. 3. A sketch of a four-beam dispersion 
surface along the mirror line (S242 = 0) corresponding to a situation below the critical 
voltage is shown in Fig. 4. 

Structure factor information can be obtained from measurement either of the 
distance 2x between the two degenerate points at a given primary voltage (Fig. 3 a) 
or of the critical voltage at which the degeneracy appears at the symmetrical position 
(Fig. 3b). This critical voltage was determined experimentally to 152+5 kV (nominal 
voltage). The calculated four-beam value using Doyle and Turner (1968) atomic 
scattering factors for neutral atoms was 165 k V. The same value was obtained from a 
dynamical calculation with 100 beams which, however, may be regarded as fortuitous. 



(a) (b) (c) 

Fig. 3. Convergent beampattems from ZnS showing extinctions appearing in the 242 reflection (a) below, (b) near and (c) above the critical voltage. 

~ 
V> 
~ 

~ 

J. 
'" g 
~ 
I:> ,.... 



Non-systematic Three-beam Effects 455 

m 

Fig. 4. Schematic of a section of the 
four-beam dispersion surface .along the 
mirror line m in the configuration 2a, 
corresponding to the lower voltage in 
Fig.3a. 

3. Non-centrosymmetrical Case 

In the non-centrosymmetrical case, the three-beam non-systematic degeneracy does 
not appear. The right-hand side of the three-beam equation corresponding to (2) 
becomes 

( Ug_ h + Ug Uh/2 k'Y) x complex conjugate, (10) 

which cannot become zero for real 'Y. A minimum value of the gap width is obtained, 
however. The diffraction condition corresponding to this minimum can be used 
to determine a relation between structure factors, if the phase invariant is not too 
different from zero or 1T. The intensity observed at this minimum will depend upon 
the three-phase invariant l/I. A better option for determination of the phase invariant 
is offered by the variation of the gap, as seen in the contrast variation in the weaker 
beam with the excitation error of the coupled beam. In this case a perturbation 
expression based upon the Bethe approximation can be used (Hfllier and Marthinsen 
1983): 

I ~ft'l = I Ugl[{1-1 Uh Ug_hlUhl cos l/I/2ksgJ 2 

+ I Uh Ug_hl Ug2kshl2 sin2 l/1]t . (11) 

This expression for the gap, which may be generalised to include further beams, 
includes correction terms which are either symmetrical or antisymmetrical in Sg. It is 
seen that the antisymmetrical character is most pronounced at l/I = 0 and disappears 
for l/I = !1T. The asymmetry of the gap, as measured by the contrast in Kikuchi or 
channelling pattern, is thus sensitive to the invariant phase angle l/I. Equation (11) is 
found to include the main features of the full dynamical calculations presented below. 

We have investigated this dependence theoretically, using an example from GaP. 
With structure factor data as given in Table 1, the phase invariant angle is l/I = 61°. 
Calculations can be referred to Fig. 5, which shows the orientation of the coordinate 
axes x and y relative to the Kikuchi line positions' 9 and h. The hyperbolic curves 
representing the position of the gaps at the dispersion surface are indicated; 9 is taken 
as the weaker diffracted beam. 
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Fig. S. Schematic representation of 
the position of the gap at the 
dispersion surface projected onto the 
gh plane. The circle indicates the 
position of minimum gap. 

Table 1. Fourier coefficients U 9 in GaP at 40 kV 

Reflection 

9 
h 

h-g 

I<' 

hkl 

442 
351 
TI3 

Q~ 0.25~~ 
'-' 

'1i 
~ .. 90° 

" Two-beam 

-0·50 -0·25 

Uhkl (A -2) 

o 

0·17 
0·42 
0·95 

X (A-I) 

61° 

6 hkl (deg.) 

o 
-27 

34 

Fig. 6. Variation of the effective structure factor I ~ffl with x for different 
values of the three-phase structure invariant. 

For each value of x a section along the y-direction through the three-beam 
dispersion surface was calculated according to standard dynamical theory, using the 
data for GaP 351 and 442 given in Table 1. In this way the position of the gap 
as well as its width was determined. The effective structure factor I U~ff I, given by 
the calculated gap along the 9 segments of Fig. 5, is shown in Fig. 6 as function of 
x for four values of the phase angle ijJ, keeping the amplitudes of the structure 
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(b) 
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Fig. 7. Calculated asymmetry ratio 1) as a function of x: (a) the weaker beam 9 and (b) the 
stronger beam h. 

(a) (b) 

(c) 

Fig. 8. Calculated channelling contrast for the 351 and 442 three-beam case in GaP: (a) 1/1 = 61°, 
(b) 1/1 = 0 and (c) Ij1 = 90°. 
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factors constant. It is seen that zero gap is obtained only for the phase angle zero, i.e. 
the centrosymmetrical case, when the asymmetry is maximum. As the phase angle 
increases, the asymmetry decreases and vanishes completely at ljJ = 90°. 

Based on these results we may define an effective structure factor asymmetry ratio 
by the values at x and - x, i.e. TJ = U~ff(x)/ U~ff( - x). The variation of this ratio 
with x is shown in Fig. 7 for four values of the phase invariant ljJ. The curves in 
Fig. 7 a correspond to the weaker beam g, whereas Fig. 7 b corresponds to the stronger 
h. The asymmetry effect is much less pronounced in Fig. 7 b, as is indeed expected 
from equation (11). Similar curves in the X-ray case, based on intensities from the 
second Bethe approximation, have been given by Juretschke (1982). 

The above analysis suggests that the three-phase invariant for a non­
centrosymmetrical crystal may be determined by measuring this asymmetry, i.e. 
by comparing calculated and experimentally determined asymmetries in magnitudes 
reflecting the gap at the dispersion surface. 

The asymmetry ratio may in principle be extracted from many types of experimental 
patterns, for example Kikuchi patterns, CBEn patterns and backscattering channelling 
patterns; see the calculations reproduced in Fig. 8. Various systematic and non­
systematic multiple-beam effects have recently been demonstrated in backscattering 
by Marthinsen and H9Iier (1986). The line contrast in these patterns is approximately 
proportional to the dispersion surface gap width, as in the Kikuchi line case. The 
difference between the centrosymmetrical case ljJ = 0, the actual value ljJ = 61°, and 
the value ljJ = 90° is clearly seen. 

4. Conclusions 

The three-beam effects in centrosymmetrical and non-centrosymmetrical crystals 
offer several magnitudes which can be measured by electron diffraction techniques 
and yield accurate information about amplitude and phase of structure factors. 
The non-systematic critical voltage effect in the centrosymmetrical case offers a 
considerable extension compared with the systematic case, and does not depend on 
instruments working in the MV range. Contrast anomalies corresponding to Bloch 
wave degeneracies may be measured either as critical voltages at special diffraction 
conditions or by measuring the position of contrast anomalies in the CBEn, Kikuchi 
or channelling pattern for a given voltage. The accuracy of measurement may 
approach the systematic case. 

The asymmetry effect in the general non-centrosymmetrical case can be used to 
determine the three-phase structure invariant ljJ. Calculations of both effects can be 
carried out to a fair approximation using three or four beams only, in some cases by 
using the Bethe potential as an approximation to the effective structure factor Ueff• 

Full dynamical multiple-beam calculations can then be reserved for the refinement. 
Measurement of the effects can be carried out in several diffraction experiments; 

convergent beam diffraction, Kikuchi patterns or channelling patterns obtained in 
reflection geometry. The latter type of experiment can be carried out on bulk crystals. 



Non-systematic Three-beam Effects 

References 
Doyle, P., and Turner, P. (1968). Acta Cryst. 23, 390-7. 
Ojt'lnnes, J., and Ht'lier, R. (1971). Acta Cryst. A 27,313-16. 
Goodman, P., and Lehmpfuhl, G. (1967). Acta Cryst. 22, 14-24. 
Ht'lier, K., and Marthinsen, K. (1983). Acta Cryst. A 39,854-60. 
Hurley, A, and Moodie, A. F. (1980). Acta Cryst. A 36, 737-8. 
Ichimiya, A, Arii, T., Uyeda, R., and Fukuhara, A. (1973). Acta Cryst. A 29, 724-5. 
Juretschke, R. (1982). Phys. Lett. A 92, 183-5. 
Marthinsen, K., and Ht'lier, R. (1986). Acta Cryst. A 42, 484-92. 
Steeds, J. W., and Vincent, R. (1983). J. Microsc. Spectrosc. Electron. 8, 419-30. 
Taftt'l, J., and Metzger, T. H. (1985). J. AppL Cryst. 6, 1l0-l3. 
Watanabe, D., Uyeda, R., and Fukuhara, A (1969). Acta Cryst. A 24, 138-40. 

459 

Manuscript received 25 August, accepted 27 November 1987 




