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Abstract 

A renormalisation method is developed in which g-boson coupling effects in a transformed 
Hamiltonian are minimised. The unitary transformation upon which this is based is that proposed 
by Otsuka and Ginocchio (1985). The conditions under which the g-boson coupling is eliminated 
are specified under various approximations and resulting spectra are compared with the exact 
ones obtained from diagonalisation of an exact s-d-g boson Hamiltonian. 

1. Introduction 

The interacting boson models have had considerable success when used 
phenomenologically to describe the properties oflow lying collective states in even-even 
medium to heavy mass nuclei (Arima and Iachello 1981; Elliott 1985; and references 
therein). By and large, all such studies have been restricted to a model scheme of N, 
sand d bosons only. But there is an ever increasing amount of experimental data that 
is evidence of the need to extend the interacting boson approximation (IBA) beyond 
the simple s-d truncation (Wood 1984; Arima 1984) and such is particularly the case 
when the nuclei in question exhibit strongly deformed (rotational) characteristics. 
The most obvious extension is to incorporate g-boson effects in view of the important 
roles played by pairs of nucleons coupled to a J of 4 in the intrinsic states of strongly 
deformed nuclear systems (Otsuka 1981 a, 1981 b; Yoshinaga et af. 1984; Bes et af. 
1982; van Egmond and Allaart 1984; Scholten 1983). Typically such G-pairs account 
for 10 to 15% of the absolute binding energy and intrinsic quadrupole moments of the 
systems (the Sand D pairs accounting for virtually all of the remainder). However, 
the most marked effect is shown upon the moment of inertia of the ground state band. 
Removal of the G-pair effects reduced the 'exact' value by a factor of i. Similar 
effects of the G-pairs have been found from analyses of the intrinsic states of first 
excited 0+ bands (Bohr and Mottelson 1982; Dieperink and Scholten 1983). 

But g-boson effects have been incorporated in select phenomenological model 
studies. The SU(15) group theoretic model has been studied (Wu and Zhou 1984) and 
applied to 168Er, improving upon the SU(6) prescriptions by providing the additional 
(and observed) 3i, ot, 2j and 4i bands of states in the energy spectrum. Also, 
from a schematic model (van Isacker et af. 1982), g-boson effects were significant in 
the IBA assessment of the spectrum and electromagnetic transition rates of 156Gd. 
However, it is not a trivial matter to extend the usual IBA studies to incorporate 
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g-bosons. Indeed in IBA-1, the most general Hamiltonian involves nine parameters 
under the restriction to just s- and d-bosons (although only three or four are usually 
allowed to be variable). When the g-boson is included, one then has 32 parameters 
from which to choose. Clearly an approximation method is called for. 

The most obvious approximation scheme is perturbation theory and such was done 
(Scholten 1983) in a microscopic model study of the IBA for nuclei of vibrational 
limit character. Thereby the macroscopic IBA parameter values could be specified 
from an underlying microscopic model of nuclear structure. But perturbation theory 
is not the appropriate method when rotational limit nuclei are considered and an 
alternative approach is required such as a renormalisation scheme as recently proposed 
(Otsuka and Ginocchio 1985). This method is studied herein and critique given of 
some of the inherent assumptions. Various approximations and applications of this 
renormalisation method are presented. 

The transformation method and its application to individual boson operators are 
described in Section 2. In Section 3, the transformation is applied to the Hamiltonian, 
first by using the transformation upon individual boson operators and then by 
considering the transformation of operator products. Numerical evaluations have 
been made and the results are presented and discussed in Section 4. 

2. Unitary Transformation Theory 

Consider the simple, IBA-II, Hamiltonian that was used by Otsuka and Ginocchio 
(1985), namely 

(1) 

in which the superscript in parentheses denotes proton (1T) and neutron (v) bosons 
of s(l=O), d(l=2) and g(l=4) type whose energies are Ed and Eg with respect to 
the s-boson energy. The interaction, which has a strength parameter j, is of proton 
quadrupole-neutron quadrupole form with components 

Q(x) _ (x) {(dt )(2) (t d )(2) J (x) {(dt d )(2) J 
m - ql (x) ~x) m + S(x) (x) m + q2 (x) (x) m 

(x) {( t d )(2) (dt - )(2) J (x) {( t - )(2) J + q3 g(x) (x) m + (x) g(x) m + q4 g(x) g(x) m • (2) 

The product parentheses denote standard angular momentum coupling with, for 
example, 

(3) 

and the tilde is used to specify the components of irreducible spherical tensor operators, 
viz. 

s = S, (4) 

As alluded to in the Introduction, save for very special values of the component 
strengths q~X), this Hamiltonian is not readily diagonalised due to the inclusion of the 
g-boson terms, and we seek a unitary transformation 

U = exp(Z) , (5) 
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with an appropriate choice for the antihermitian operator Z that enables us to define 
an approximate (transformed) Hamiltonian in which g-boson coupling is minimised 
(and then neglected). Thus we have 

-1 'sci' 
U H U -+ H effective' (6) 

and, with 

-1 1 UHU = H+[Z,H]+-[Z,[Z,H]]+ ... , 
2! . 

(7) 

if 

[Z, [Z, H]] - -112 H , 

U H U- 1 = H COS(lI) +(1ll1)sin(lI)[Z, H], (8) 

gives a simple structure from which the effective Hamiltonian may be extracted. The 
latter condition transpires not to be the case for the Hamiltonian of (2) and the 
transformation now to be determined. 

Following the Otsuka-Ginocchio method (referred to hereafter as the OG method) 
we use the antihermitian operator 

Z - 8 Q{'II') .,.{v) +8 .n(v) E{'II') 
- (v) • J:!.' ('II') \t.. , (9) 

wherein 

.,.{ x) {( t d- )(2) (df .. )(2) J 
J:!.' = g{x) (x) - (x) g{x) , (10) 

and 8 (x) are coupling angles to be chosen in each application to minimise the g-d 
boson coupling interaction terms in the transformed Hamiltonian. 

Consider now the actions of this transformation upon individual boson operators. 
To develop the effects we require the commutators of Z with the individual boson 
operators. They are derived in Appendix A and approximate to the set 

[Z, sf] = [Z, S] = 0, 

[Z df ] - 8 (Q{'II') t )(2) , (v) - (v) g{v) , 

[Z, d{v)] = 8{v)( Q<'II') 9{v)i2) , 

[Z,gtV)] = -8{v) v~ (Q<'II')dtv/4) , 

[Z,9{v)] = -8{v) v~ (Q<'II')d{v»{4) , (11) 

for neutrons and, by symmetry, to an identical set for protons. These results were 
obtained by OG under the assumption that the quadrupole operators Q<x) commuted 
with any operator as though they are C-numbers. This is a far more stringent 
condition than is necessary as all terms from the complete set of commutators that 
have been omitted involve components of the 'antiquadrupole' operator E{x). 
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It is sufficient, therefore, to restrict consideration to systems that resemble axially 
symmetric rotors, whence for any states from a single intrinsic determinant we have 

(12) 

and thus terms with E~x) can be neglected to give the commutators of (11). 
The double commutators of Z may then be derived as specified in Appendix B to 

be 

[Z, [Z, X(v)]]a = ~p A~J X(v)P 

= ~ K C~) ( (e-'1r) Q('1r»<K) X(v)} ~2) , (13) 

[Z, [Z, l(v)]]a = ~P B~J l(v)P 

= ~ K D~) ( (Q('1r) Q('1r»<K) l(v)} ~4) , (14) 

for X(v) being dtv) or d(v) and Y(v) being gtV) or B(v). With a symmetry for proton 
boson results, the coefficients are 

A~J = -6~v)(-t~m(24a-p-mp+mI2a) 

x (24 -pp+ ml2 m)Q<:') Q~'1r21J_m' 

B~J = -vj6~v)(-t~m(22a-P-mP+mI4a) 

x (24P+ m -P12 m)e-:/ ~'1r21J_m' 

C~ = -6~v){5(2K+l)}t W(24K2; 22), 

D~ = -vj6~v){5(2K+l)}! W(42K2; 24). 

(15) 

(16) 

(17) 

(18) 

The utility of the transformation scheme requires these double commutators to 
relate simply to the boson operator with which one started. OG achieved this by 
noting the dominance of the K = 0 Racah coefficient and so restricting the summation 
in (15) and (16). With K = 0 clearly we have 

(19) 

as required. The nonzero K components are not negligible, however. They may 
be included within the desired residual form for the double commutators under the 
assumption that the nuclear states to be considered only have large expectation values 
for the zero projection components of the operator (e-'1r) (f'1r»<K), or equivalently 
there is diagonal dominance in expectation values of AaIJ and BalJ so that 

~:J - -6~v)~m(_)mw..m(f:) Q~~8aP' 

8:J - -6~v) ~m( _)m W~m e-:) e-~~8alJ· 

(20) 

(21) 
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Using the expansions (17) and (18) in the relevant expressions (13) and (14) for 
the double commutators with the zero projection restriction gives, alternatively, 

[Z, [Z, X(v)]]a = -Of v) l:K<I> G~~( - )<I>Q~'IT) Q~~ X(v)a' (22) 

[Z, [Z, l(v)]]a = -v'~ Of v) l:K<I> H~~( - )<I>Q~) Q~~ l(v)a' (23) 

Table 1. Weight coefficients Warn 

m a 
0 1 2 

2 -0·11904 -0·27777 -0·55556 
1 -0·23810 -0·31745 -0·27777 
0 -0·28572 -0·23810 -0·11905 

-1 -0·23810 -0·12700 -0·03968 
-2 -0·11904 -0·03968 -0·00794 

~m Warn -1·0 -1·0 -1·0 

Table 2. Weight coefficients G~~ 

p. <I> K=O K=2 K=4 ~K cf.K) ",<I> 

0 ±2 0·2 -0·0816 0·0007 0·1191 
±1 0·2 0·0408 -0·0027 0·2381 

0 0·2 0·0816 0·0040 0·2856 

~<I> da~ 1·0 0·0 0·0 ~K<I> da~ = 1·0 

±2 0·2 -0·0408 -0·0005 0·1597 
±1 0·2 0·0204 0·0018 0·2222 

0 0·2 0·0408 -0·0026 0·2382 

~<I> a1f 1·0 0·0 0·0 ~K<I> a1f = 1·0 
2 ±2 0·2 0·0816 0·0001 0·2817 

±1 0·2 -0·0408 -0·0005 0·1587 
0 0·2 -0·0816 0·0008 0·1192 

~<I> ~f 1·0 0·0 0·0 ~K<I> ~f = 1·0 

The weight functions Jv,.m and G~~ are given in Tables I and 2 respectively from 
which it is evident that no single entry dominates. The simplifying approximation 
used by OG therefore hlUst relate to the expectation values of the double commutators. 
Indeed if 

as assumed by OG, one also requires the K = 0 approximations to give identical 
weight values for different ,." in (22) and (23). 
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However, if instead we assume that 

for all 4>, (24) 

then. we may close the summations (over m for JYam or over K and 4> for q~) to 
obtam 

[Z, [Z, d1v)]] - -OtV)(Q(1T)2)d1v) ' 

[Z, [Z, U(v)]] - - ~ Otv>< Q<1T)2)U(v) ' 

with equivalent results for d(v) and g1v) and for the proton boson operators. 

(25) 

From Table 2, it is true that the K = 0 values are the largest and that their sum 
(over 4» gives unity. Thereby the K = 0 approximation as used by OG may be 
reasonable, but only if the assumption as specified by (24) is used. 

The single and double commutators of Z with the individual boson operators 
(11) and (25) then permit the transformation of the individual boson operators to be 
determined. As is developed in Appendix C, these are 

(26) 

U d1v)a U- l - cos(1](V»d1v)a 

+( Q(1T)2)-! sin(1](v»( Q(1T) g1v»~) , (27) 

U g1v)a U- l - cos(1](V),)g1v)a 

_ (Q(1T)2) - t sin( 1](v»( Q(1T) d1v»~4) , (28) 

in which 

(29) 

and with similar results for the other and proton boson operators. 

3. Transformation of the Hamiltonian 

(a) Using the Transformed Single Boson Operators 

The IBA-II Hamiltonian specified in (1) involves operators that are composites of 
the six s-d-g single boson operators and which one may transform using 

Ust U- l = st 
a a' 

U d! U- l = cos(1]) d! + sin(1]) D!. 

U g! U- l = cos(1]') g! - sin(1]') G!, (30) 
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with an equivalent set for the transformed annihilation operators and in which 

Dt = (.niv)2)-t(Q(v)nt )(2) 
(IT)a~' ::1(11') a ' 

(31) 

The number operators are considered first and, with proton results being obtained 
simply by a complete interchange of the ('IT) and (v) labels in the neutron results, we 
have 

so that 

Nd = U(dtv). d(v» U- 1 

= };m (- )m{ cos(1) dtv)m + sin(1) Dtv)mJ 

x {cos(1) d(v)_ m + sin(1) D(v)_ m J , 

, 2 t - ·2 t-
N d = cos (1) d(v)· d(v) + sm (1) D(v)· D(v) 

t - t-+ COS(1) sin(1){ d(v)· D(v) + D(v) . d(v) J . (32) 

Then, by expanding the ~v) operators and using the recoupling procedure as specified 
in Appendix 0, one obtains 

Nd = cos2(1) dtv) . d(v) 

+ sin2(1)( Q<v)2) -1 }; K 5 W(2424; 2K)( Q<1T) Q<1T»<K) . (gtv) 9(v»<K) 

+ sin(1) cos(1)(QM2)-! { Q<1T) • (dtv) 9(v/2) 

+ Q<1T) . (gtv) d(v»(2) J • (33) 

We assume that the third term gives zero condensed state matrix elements and in the 
OG limit (K = 0) this reduces to 

Nd - cos2(1) dtv) . d(v) + l sin2(1)(gtV) . 9(v» . (34) 

In .like fashion the g-boson number operator transforms as 

N ' U t - U- 1 2( ') t -g = g(v) • g(v) = cOS.1) g(v)· g(v) 

+( Q<1T)2)-1 sin2(1)')}; K 9 W(2222; 4K)( Q<1T) Q(lT»<K) . (dtv) d(v»<K) 

_(Q<1T)2)-t sin(1)') COS(1)') { Q<1T). (dtv) 9tv»(2) + Q<1T). (gtV) d(v/2)J , (35) 

and which under the same constraints that led to the result given by (34) becomes 

N' . 2(') t - 9· 2( ') dt d-
g - cos 1) g(v)· g(v) + B sm 1) (v)· (v)· (36) 
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The interaction component of the Hamiltonian is 

and it transforms to 

Using the transformation equations of the individual hosons· one may obtain (see 
Appendix E) 

in which 

+ 9\0) sin2(~)(Q(.)2) -I l: KX', ( - )<+ .. S(ZK' + 1)\ [; ; :] 

x(2K'a-EIKa-E)(Q(v)Q(v»(K')(nt y- )(K) 
E 17(1T) (1T) a-E 

2 2 

+ q~1T) sin2('r}')(Q(v)2)-1l:KK'E (_ t+ K'[5(2K' + I)]! 4 4 

2 2 

x (2 K' a-EI K a_E)(Q(v) Q(v»(K')(dt a )(K) 
. E (1T) (1T) a-E 

Q(1T) _ (1T) () {( t a )(2) (dt )(2) J 
(sd)a - ql cos 'r} S(1T) (1T) a + (1T).I(1T) a 

(1T) 2( )(dt d- )(2) + q2 COS 'r} (1T) (1T) a , 

p(1T) _ {( t ii )(K) (dt - )(K) J 
K,'y - Y(1T) (1T) 'Y + (1T) Y(1T) 'Y • 

(39) 

(40) 

For simplicity we apply the 00 approximation to each transformed quadrupole 
operator in the interaction expression separately, that is to use K' = 0 in (38) so that 
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1
2 4 2] 

- q~'IT) sin(7J') sin(7J)3v5 4 2 2 J1~2 

220 

= Q~:l)a + q~'IT) sin2(7J')! W(2242; 22)( d~'IT) d('IT»~) 

+(g~'IT) 9('IT»~2){ q~'IT) cos2(7J') + q~'IT) sin2(7J)V! W(4422; 22)} 

+pt2 q~'IT){cos(7J)cos(7J') - sin(7J)sin(7J')3v! W(2442; 22)}. (41) 

The last term (d-g coupling) is eliminated if the angles (7J,7J') are such that 

cos(7J)cos(7J') - sin(7J) sin(7J') 3v! W(2422; 22) = 0, 

and as 7J' = V~ 7J this constant is equivalent to tan(7J)tan(7J') = 94, so that 

7J(x) = 8 (x)( Q('IT)2)! - 90", 

and with this choice. 

U ,.{'IT) U-l ('IT) (){(dt )(2) (t d- )(2)) ~a - ql cos 7J ('IT) .\('IT) a + S('IT) ('IT) a 

(d~'IT) d('IT»~){ q~'IT) COS2(7J) + q~'IT) sin2(7J') W(2244; 22)} 

+(g~'IT) 9('IT»~){ q~'IT) cos2(7J') + q~'IT) sin2(7J) V! W(4422; 22)} 

= (d~'IT) d('IT»~)(0.094q~'IT» 

+(g~'IT) 9('IT»~){ q~'IT)(0.152)+ q~'IT)(0.05)}. 

(42) 

(43) 

This phase angle then gives the number operator transformation from (34) and (36) 
of 

N~ = ~(g~v) . Il(v» , 

N~ = 0.152(g~v)' 9(v» +0· 305( d~v)' d(v»' 
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Thus the transformed Hamiltonian becomes 

U H U- 1 - l:T {O. 305E~)( diT) . d(T» 

+(O.ll1E~) +0.152E~»(9iT)· 9(T»} 

f(O 0088 (11') (v»(dt d- )(2) (dt d- )(2) - • q4 q4 (11') (11') • (v) (v) 

K. Amos et 01. 

But this method is not favoured as every single boson operator is separately transformed 
and thus in product terms, and especially for the interaction specified in (37), the 
attendant errors of approximation are multiply compounded. Indeed, the number 
operators having a leading term in their transformation equations (equations 33 and 
35) varying as the square of a cosine insures that the Hamiltonian cannot transform, 
obviously by this means, to appear as the form (8). Hence we consider instead the 
transformations of products of operators. 

(b) Transformation of H via Its Commutators 

As derived previously, the transformation of H is 

-1 1 
UHU = H+[Z,H]+ 2![Z,[Z,H]]+ ... , (45) 

so that we now seek the single and double commutators of the Hamiltonian (1) with 
Z (specified in equation 9). 

The single commutators of all components of H and Z are derived in Appendix 
F, as are the single commutators of Z with select operator combinations that will be 
of later use. Using 

[z dt ] - 8 (Q(1I') t )(2) , (v)/J - (v) 9(v) /J ' (46) 

[Z t ] - ./58 (Q(1I')dt )(4) , 9(v)/J - - v '9 (v) (v) /J ' (47) 

we obtain 

[Z ( t d- )(2)] 8 {Q(1I')( t - )(4)} (2) , s(v) (v) a = (v) s(v) 9(v) a' (48c) 

[z (dt - )(2)] _ 8 {,.(11')( t )(4)} (2) , (v) S(v) a - (v) \,!' 9(v) .!(v) a' (48d) 

[Z,(div) d(V»~A)] = 8(v)l:K,. Q~1I')<K2a-I'I'IAa) 

X {5(2K + I)}! W(22K2; 4A)Pta_,.(A), (48e) 

[Z,(9iv)9(v»~A)] = -8(v)l:K,. ~1I')<K2a-I'I'IAa){5(2K+l)}! 

(48t) 
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[Z,(drv)g(V»~A)] = 8(v)l:.Kp. Q~1T)<K2a-ILILIAa){5(2K+1)1! 

x { W(22K4; 4A)(grv) g(v»~KJ.p. -( - i+ K W(24K2; 2A)(drv) d(v»~KJ.p.1 ' (48g) 

[Z, (grv) d(v»~A)] = 8(v) l:.Kp. Q~) <K2 a-IL ILl Aa){ 5(2K + 1) It 

x (- )A+K { W(22K4; 4A)(grv) g(v»~KJ.p. 

-(-i+K W(24K2; 2A)(drv) d(v»~KJ.p.I, (48h) 

[Z, Q~)] = 8(v)l:.Kp. Q~)<K2a-ILILI2a){5(2K+1)lt 

x [q~v) V 415 I) K4 { (srv) g(v»~4~ p. + (grv) ~v»~4~ p.l 

+ q(v) W(22K2' 42)p'v) (2) 
2 'K,a-p. 

+ q~v) {1 +( - )Kl { W(22K4; 42)(grv) g(v»~KJ.p. 

-( _)K W(24K2; 22)(drv) d(v»~KJ.p.1 

_ q~v)( _)K W(24K4; 22)P;~a_".<2)] 

in which, with p(v) as given by (40), 

p'v) (A) (t d )(K) ( )K+A(dt - )(K) K,'Y = g(v) (v) 'Y + - (v) g(v) 'Y . 

(48i) 

(49) 

These commutators then allow the specification of the commutator of H with Z since 

[Z, H] = l:.T {E~)[~T)' drT) . d(T)] 

+E~)[~T)' grT)' g(T)] - fl:.m( - )mQ~';;)[~T)' Q~]l , (50) 

and using (48a), (48b) and (48i) we get 

[Z, H] = l:.T 8(T)(E~) -E~» Q(-T) . p(T) - f l:.T 8(T) l:. mp. (_)m 

X Q~';;) Q~-T)l:.K<K2 m-ILILI2 m){5(2K+1)lt 

x [q~T) I)K4 V 415 {(srV) g(v)i:l-p. +(grV) s(v»~~p.l 

+ {q~T) W(22K2; 42) - q~T)( _)K W(24K4; 22) I P;(,m_p.(2) 

+ q~T){1 +( - )Kj{ W(22K4; 42)(grT) g(T»~P. 

-( _)K W(24K2; 22)(drT) d(T»~P.j]. (51) 
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If we define the (T) dependent terms collectively as n<;(,m-IJ. in the above, angular 
momentum coupling gives 

[z H] = l: (J (E(T) _ E(T» Q( -T) peT) 
, T (T) d g • 

-fl: (J l: 5(Q(-T)Q(-T»(K) neT) 
T (T) K . K' 

from which, in the K = 0 OG limit, one readily obtains 

in which 

x (Q( - T)2)( ~ gtT) . 9(T) -1 dtT) . aCT»~ J 

= l:T(J (T) 11 AcT) dtT) . aCT) - ~ AcT) gtT) . 9(T) 

+(E~)-4T»Q(-T). p(T)J, 

(52) 

(53) 

(54) 

This reduced form of the single commutator of Hand Z is particularly convenient 
for use in deriving the forms of the multiple commutators of H with Z, as it enables 
the series expansion of U H U- 1 to be condensed. 

The double commutator is 

[Z, [Z, H]] - l:T (J(T) I (E~) -Er»[Z, Q(-T) . p(T)]_ f q~T) 

x 2V5 (OC-T)2)(~[Z, gtT). 9(T)]- HZ, dtT)· aCT)]) J , (55) 

and using the results derived in Appendix F, in the K = 0 OG limit we get 

[Z, [Z, H]] - l:T (J(T) 8E(T) I (J(T) j(Q0)"i)(j gtT)· 9(T) - dtT)· aCT»~ 

+(J(_T) j q~-T)( OCT) P(T»(j gt-T). 9(-T) - dt-T) . a(_T» J 

+ l:T (J(T) 5a(T)(~ Q(-T) . p(T»(J(T) ' 

and which by using T --+ -T in the sum over the (J(_T) term above gives 

[Z, [Z, H]] = l:T I (J~T) 8E(T) j(Q(-T)2)(j gtT)· 9(T) - dtT)· aCT»~ 

+ (J(_T) (J(T) 8E(-T)j q~T)(Q(-T) p( T»(~ gtT). 9(T) - dtT)· aCT»~ 

+ (J~T) aCT) ¥ Q( -T) . peT) J 

_ ~ (J2 ~ (T) f.) dt d- ~ (J2 ~ (T) 5 f.) t -
- - ~T (T) uE /J(T) (T)· (T) + ~T (T) uE 9 /J(T) geT) . geT) 

+ l: (J2 14 aCT) Q( -T) peT) 
T (T)"9 ., (56) 
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in which, with a(T) as defined in (54), we have 

(57) 

Consider first the circumstances in which (Q<-T)p( T» is negligible. In such cases 
the transformation angles decouple so that 

(58) 

and we get 

[Z, [Z, H]] - l:T e~T)( - qT) 8E(T) dtT)· d(T) + j qT) 8E(T) gtT) . 9(T) 

+ 14a Q(-T) p(T» T (T) • • (60) 

The nth commutator, defined by 

[Z, [Z, [Z, ... [Z, H] ... ]]] = [ ](n) , (61) 

can then be found by induction [subscripts (r) are omitted whenever superfluous for 
simplicity] as 

](3) - l:T e~T){ -lIabat . d +j(lIa )bgt . 9 -11 bBEQ<-T). PI , 

](4) - l:T etT) { 11 b28Eat . d - j( 11 b2)8Egt . 9 

etc. (62) 

Using these commutator results in the series expansion of the transformed 
Hamiltonian (45) gives 

U H U-1 - l:T dtT). d(T) { E~) + a(T)(9/14 qT»! sin @(T) 

+(98E(T)/14)(OO8 @(T)-I)1 

+l:T gtT)· 9(T) { E~) -(5a(T/9)(9/14qT»i sin @(T) 

-(58E(T) /14)(008 @(T)-I)1 

+l:T Q<-T) . p(T){ - f 12 + 8E(T)(9/14qT»i sin @(T) 

-(a(T)1 qT»(OO8 @(T)-l)1 +l:T if 12)Q<-T) . (p(T) - Q<T» , (63) 
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in which 

(64) 

If we then assume that the residual interaction is 

_ Q(-T) (p(T)_ Q(T» Q(-T) Q(T) 
. - (sd)· (sd) 

(65) 

in which Q~:~) is an s-d boson space quadrupole operator then, under the condition 
on the coupling angle @(T) that 

8E(T)(9b(T/14)tsin @(T) -a(T) cos @(T)+a(T)-t/qT) = 0, (66) 

we have 

UHU- 1 ~ (A(T) dt d- l/Q(-T) Q(T» 
-- 6.T Ed (T)· (T) - 2" (sd)· (sd) 

( t - )(2) (t - )(2) J H. H. x g( -T) g( -T) . g(T) g(T) = (sd) + (g) , (67) 

in which the 'new' single boson energies are 

e~) = E~) + a(T)(9/14b(T»! sin @(T)+(98E(T)/14)(cos @(T)-I), (68) 

e¥) = E¥) - ~ a(T)(9/14qT»! sin @(T) - ~(98E(T) I 14)(cos @(T)-I), (69) 

having a separation 

8e(T) = 8E(T) + ¥ a(T)(9/14qT»! sin @(T)+8E(T)(COS @(T)-I) 

= (14a~T/9 qT»! sin @(T)+8E(T) cos @(T) . (70) 

Consider now circumstances in which (Q<x) P(x» is treated to first order. With 
results obtained previously but given again for convenience, namely 

H - ~ «T)dt d- + (T) t - l/Q(-T) Q(T» - 6.T Ed (T)· (T) Egg(T) . g(T) - 2" • , 

[Z dt d-] () Q(-T) p(T) 
, (T)· (T) = (T) . , 

and, from Appendix F, as 

(72) 
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n 

2 

3 

4 

s 

6 

7 

8 

n 

2 

3 

4 

S 

6 

7 

Table 3. Expansion functions c)n) (= _ ; q n» 

Subscripts (T) are omitted wherever possible and ( -) signifies ( - T) 

('Y(x»O terms ('Y(x»l terms Higher order terms 

ea 

-e2 ME -ee( -)'Y( _)8E(-) 

-e3(~b)a - ee~ _ )(~'Y( _ »a( _) 

e4(~b)b8E e3e( _ )(~ b)'Y( _ )8E( -) e2e~ _ )(~)'Y'Y( _)8E 

+ eel_ )(~ '" _ »'Y( _ )8E( -) 

eS(¥b)2a e3e~ _ )(~ b)(¥'Y( _ »a( _) 

+ eet _ )(¥ '" _ »(~'Y( _ »a( _) 

e3e~ _) (¥)2'Y'Y( _)a 

-e6(¥b)2b8E . - eSe( _ )(~ b)(~'Y( _» b8E( -) _e4e~ _ )(¥'Y)(¥'Y( _»ME 

- e3el_ (~'" _ »(~'Y( _» b8E( -) - e2et _)(¥ '" -»(~'Y)'Y( _)8E 

- e4_ )(~ '" _ »2'Y( _ )8E( -) - e4e~ _)(¥ b)(¥'Y>'Y( _ )8E 

e3el_)(~'Y)(¥'Y(_» 'Y(..:)8E(-) 

_e7(~b)3a - eSe~ _ )(¥ b)2 (~'Y( _ »a( _) -eSe~_) (~b)(~'Y)(¥'Y(_»a 
- e3et _ )(¥ b)(~ b( _» (~'Y( _ »a( _) - e3et _) (~b( _ »(~'Y)(~'Y( _ »a 

- eet _ )(~ b( _ »2(¥'Y( _ »a( _) -eSe~~)(¥b) (¥'Y)(¥'Y(_»a 

-e3et_)(~'Y)(¥'Y( _»2a(_) 

e8(~ b)3 ME e7e(_)(~b)2 (~'Y(_»Ml-) 
+ eSel_ )(¥ b)(¥'Y( _ »b8E 11 terms 

+ e3e~ _ (~b( _»2(~'Y( _»b8E(-) 

+ eel-)(¥ b( _ »3'Y( _ )8E( -) 

Table 4. Expansion functions v< n) 

Subscripts (T) are omitted wherever possible and ( -) signifies (- T) 

('Y(x»O terms 

e8E 

e2(~a) 

-e3(~b)8E 

- e4(~ b)(~a) 

eS(~b)28E 

e6(~ b)2(~a) 

-e7(¥b)38E 

- e2e~ _ )(~'Y( _ »8E( -) 

- e2e~ _ )(~'Y( _ »(~a( _» 
e4e(_)(~b)(~'Y(_» 8E(-) 

+ e2el_ )(~ b( _ »(~'Y( _ »8E( -) 

e4e2_)(~b)(~'Y (_»(~a(_» 
+ e2e~ _ )(~ b( _ »(~'Y( _ »(~a( _» 

- e6e( _ )(~ b)2 (~'Y( _ »8E( -) . 

-e4el_l~b)(¥b(_» (~'Y(_»8E(-) 
-e2e(_)(~b(_»2(~'Y(_» 8E(-) 

Higher order terms 

- eSe~ _ )(~ b) (~'Y)(~'Y( _ »8E 

- e3e1-1 (~b( - »(~'Y)(~'Y( _ »8E 

- e e( _ )(~'Y)(~'Y( _ »(~ b)8E 

-eSe~ _ )(~ b( _ »(~'Y)(~'Y( _ »8E 

8 - e8(~ b)3(~a) - e6e~ _ )(~ b) 2(¥'Y( _»(~a( _» 
- e2et _ )(~ b( _ »2(~'Y( _» (~a( _» 4 terms 

- e4et _ )(~ b)(~ b( _» (~'Y( _ »(¥a( _» 
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Hamiltonian, namely as given by (67), but where now the 'new' boson energies are 

E~) = E~) + (9afT/14qT»! sin 4>(T) + (98E(T) 1 14)(cos 4>(T) -1) 

+ ")'(-T) 8E(-T) ft(qT) q-T»-! {4>(T) 4>(-T/(4>fT) -4>f-T» }(cos 4>(T) - cos 4>(-T» 

+ ")'(-T) a(-T)ft(qT) bf-T»-! {4>(-T/(4>fT) -4>f-T») 

(80) 

and E¥) is shifted from E¥) by - ~ of the above corrections. 
The coupling angles to eliminate any e--T) • peT) component in the transformed 

Hamiltonian are now determined as solutions of the coupled algebraic equations 

(81) 

+ ")'(-T) 8l-)(9/14bfT) q-T»! {4>(T/(4>fT) -4>f-T») {4>(-T) sin 4>(T) -4>(T/(4>fT) -4>f-T») 

+ ")'(-T) a(_T/{ qT) q-T)(4)fT)-4>f-T))){ 4>f-T)(1- cos4>(T»-4>fT)(1- COS4>(T») = o. 

With weak coupling, 4>("':') - 4>(+) -~, and in the limit ~ - 0, the foregoing 
reduce to 

A 9 ~ 
Ed = Ed-r.r uE 

+ sin 4>{ (9/14b)!a -"),8E(9/14b)!4> -(9/14b)!"),a/2b) 

+ cos4>{ ft 8E + (9/14 b)! ")'a4>/2 b) , 

-!f +alb -"),alb2 + sin4>{(9/14b)!8E -(9/14b)!")'8E/2b +"),a4>/2b2 ) 

+ cos4>{ -alb +"),alb2 +(9/14b)!"),8E4>/2b) = 0, 

wherein the (r) labels have been omitted as they are then irrelevant. 

(82) 

(83) 

The structure of the transformed Hamiltonian in either approximation (zero or 
first order in ")') is, as given in (67), 

UHU- 1 = H(sd)+HW 

~ A(T) dt d- f .nCW) Q(v) - ~T Ed (T)· (T) - ~(sd)· (sd) , (84) 

if the single boson splittings are large (whence H W can be neglected in a study of 
low excitation spectra). 

A crucial factor in the above scheme is that the residual interaction, the s-d 
quadrupole-quadrupole force, has not been altered in strengths (f, %, 92) from 
that s-d-g form with which we started. All that has been obtained with these 
approximations to a transformation scheme· is a splitting of d- and g-boson kinetic 
energies which, while minimising g-boson content in low excitation states, does not 
substantially influence the moments of intertia. This effect is described in detail in the 
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next subsection and, as a result, a better approximation is needed if the method is to 
achieve the desired result of a reasonable spectrum comparison. Thus, we consider: 

(c) An Extended Model-I 

In the preceding subsection, select parts of the interaction in the Hamiltonian 
were treated as a perturbation, and in particular, the s-d interaction term (involving 
qiT». This is inadequate in view of the important role such terms play in defining the 
moments of inertia associated with the exact Hamiltonian spectrum. 

Noting that the previous results (59)-(63) for ql = 0 are unchanged, a better 
approximation is to consider 

the latter term now providing a better treatment of the s-d coupling under 
transformation. With 

(86) 

f ('IT) (v) {( t d- )(2) (dt )(2) l {( t d- )(2) (dt )(2) l 
- - ql ql S('IT) ('IT) + ('IT) .!('IT) . S(v) (v) + (v) .!(v) , 

the transformation follows simply since sand st both commute with Z (and so U), 
so that we have the further simplification 

(87) 

U T U- 1 - - f( q~'IT) cos 1}('IT»( q~v) cos 1}(v» 

x {(s~'IT) d('IT)i2) +( d~'IT).!('IT/2) l . {(s~v) d(v/2) +( d~v) .!(v/2) l . (88) 

Thus, ignoring the g-boson Hamiltonian of (67), we get 

UHU - 1 ~ (A(T) dt d- lfQ(-T)' Q(T)') 
- ~T Ed (T)' (T) - 2 (sd)' (sd)' (89) 

in which 

Q (T)' (T) {( t d- )(2) (dt )(2) l (T)(dt d- )(2) 
(sd) = ql cos 1}(T) S(T) (T) + (T) .!(T) + q2 (T) (T) , (90) 

and with 

determined by the critical coupling angles 8(T)' as given by the condition (81). 
Herein we have made use of the (approximate) transformation of the individual 

d-boson operator on a select part of the residual interaction. But one may consider 
a different approximation scheme with the transformation of the complete residual 
interactions: 
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(d) An Extended Model-II 

The previous results (59)-(63), under the OG approximation, were obtained by 
treating the residual interaction 

as a perturbation, i.e. with H = H' +..1, 

(92) 

But as 

-1 1 
U..1U = ..1+[Z,..1]+2'[Z,[Z,..1]]+ ... , 

an approximation scheme to express the commutators of ..1 with Z in a convenient 
form is possible. Such is developed in Appendix G giving 

[Z,..1] ::::: -!I l:T Q(T). V(T)( -O(_T) X<-T», 

[Z,[Z,..1]]::::: -!/l:T Q(-T). V(T)(O(_T) X<-T»(O(T) X<T», (93) 

from which all higher order commutators can be readily deduced in terms of operators 
Q<a). Veal and Q< -a). Veal and the scale factors involving the d- and g-boson numbers, 

x<a) _ 2 q(a)(n(a) _ S neal) 
-3'3 d ~a' (94) 

The transformation series then has the form 

U..1 U- 1 _ - ill: .ni-T) V<T)(1 + 2. (0 X<T»(O X<-T» . 2 T ~'. 2' (T) (-T) 

+ ;, (O(T) X<T»(O(_T) X<-T)i+ .. .) 

_ ill: .niT) V(T)(_O X<-T» + 2. (-0 X<-T»2(_0 X<T» 2 T~'· (-T) 3' (-T) (T) 

(95) 

and which, with 

(96) 
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is 

U ~ U-I = - j/l:T (j-T). V<T)( 1 + ;, xfT) xf-T) + :, XtT) Xt-T) + .. .) 

II ~ niT) V<T)( 2 1 42 1 6 4 ) + 2 ~T ~-. X(T) + 3' X(_T) X(T) + 5' X(_T) X(T) + ... 

I/~ Q(-T) V<T) h( ) = - 2 ~T . cos 4:T) 4: -T) 

(97) 

Using the critical angles O(±T) as determined by the condition of(81) (and assuming 
that O(T) X(T) have the same overall sign for both values of or), the transformation now 
takes the form 

U H U-I - l:T {E~) dtT) . d(T) + E~) gtT) . U(T) 

(98) 

+ jl(fT). V<T)(O(_T) X<-T) /O(T) X<T»t sinh(O(T) O(_T) X<T) X(-T»t I . 

If the transformation raises the individual g-boson energies Eg sufficiently, the 
low lying spectrum will have little dependence upon the (now uncoupled) g-boson 
Hamiltonian, so that 

UHU- I ~ {A(T) dt d- II h(..I..(T»Q(-T) Q(T) - ~T Ed (T)' (T) - I cos 'I' (LId)' (LId) 

(99) 

Reorganising (98) gives for the equal neutron-proton boson system (cf>(T) = cf» 

UHU- I = l:TE~)(dtT)' 4T»-j/cosh(cf» Q. Q 

+ jl exp cf>( (j1T) . (j1T) + Q(v) . Q(v». (100) 

4. A Test Case 

An exact H-g boson spectrum has been evaluated for the specific Hamiltonian 

where Q<x) is the SU(3) model H-g boson quadrupole operator for which 

q~x) = 2(7/5)! :::: 2.37, 

q~x) = 18/(35)! :::: 3.04, 

q~x) = -1l/(14)i :::: -2.94, 

q~x) = -3(1l/7)! :::: -3.76. 

(101) 

(102) 

The resulting excitation spectrum of a four boson (two proton-two neutron) system 
up to 30 MeV excitation is shown in the first (left-hand) column of Fig. 1. 



654 

20 

10 

-- --4-------------- --1---------- -- -- -------------== ::3~:::::::::::== 
- -- 2--------------- --0-------------

--4 

--2 
--0 

K. Amos etaL 

3 

2 

:: ~::~~~-~~~~~~ =/--6/= ; 
- -- 3------------- ---1 

-- -- 2 --- -----------, 

-- -- 1 --- -------- --

-- ---8----

-- ---6----

.,--- 4 
-4 

=~~~:~~=~-2---2 
- ---0-- E )0 -------

Hsd, 

SU(3) 

Ground 
state 
.band 

Other 
states 

UHU-I 

(HscJ> 

Hsd 

Fig. 1. Exact spectrum from the s-d-g test case Hamiltonian (column I), its ground state 
(column 2) and the other low excitation states (column 3) compared with those obtained by using 
the simplest approximation to the transformed Hamiltonian and by simply omitting all g-bosons 
components in the exact calculation (columns 4 and 5 respectively). 

For the ground state band, (Q2) and (QP) are approximately 14 and 1·4 
respectively and the overall binding energy is 143 MeV. The ground state band from 
this SU(3) model s-d-g Hamiltonian is displayed by itself in the second column of 
Fig. 1 with the other states shown in column 3. These other bands start with the 
L = 1 component of the band for which f-spin is approximately its maximum value 
minus one. 

A second reference spectrum is shown in the rightmost column of Fig. 1 (and 
designated by the label Hsd). This was obtained by simply setting q~T) and q~T) to zero 
in the test case model Hamiltonian (101) and obtaining the associated exact spectrum. 
The binding energy in this case reduces to 108 MeV and clearly the moment of 
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inertia is smaller than that associated with the s-d-g model results (to about i of the 
s-d-g model value in fact). This is exactly the result obtained from analyses of the 
contributions of S, D and G fermion pairs in the intrinsic states of deformed nuclei 
(Bes et aL 1982; Yoshinaga et aL 1984; van Egmond and Allaart 1984). 

Using the weak coupling conditions for eliminating d-g boson coupling in the 
ground state band (equation 83), we obtain the constraint upon the transformation 
angle as 

-j +alb -'Yalb2+('Ya</>/2b2)sin</> +(alb)('Ylb -l)cos</> = 0, (103) 

and which is 4·2 -~.7cos</> +</> sin </> = 0; a solution of which is -22.5°. Thus, as 
</>(T) = (14b(T/9)!O(T)' we find that O(T) = -7.6°. This solution is almost independent 
of the exact value of'Ylb «1) and, as 'Ylb - 0·3 for (QP) - 0.I(Q2), the solution 
is independent therefore of the exact choice of (QP). This 'stable' solution· then 
determines the transformed single boson energies to be 

E~) - -4·9 MeV; E~) - 2·7 MeV, (104) 

giving the desired splitting between single boson energies that enables us to neglect 
the g-boson term (to first order) in the transformed Hamiltonian, so that 

This is simply the s-d boson Hamiltonian obtained by setting q3 and q4 to zero in 
(101) to which is added a d-boson kinetic energy term. It is not surprising, therefore, 
that the transformed Hamiltonian spectrum is very similar to the pure s-d boson 
model spectrum, as is evident when the results are compared as in Fig. 1. There is a 
marked improvement in the absolute binding energy (to a value of 122 MeV) but the 
moment of inertia of the ground state band is essentially unchanged and very much 
smaller than that given by the s-d-g boson model calculations. 

The most crucial factor in determining the splittings of the ground states in the 
s-d model calculations is the value of q~T) and, in the OG study, a sizeable reduction 
of these values is quoted to give a match to their 'exact' s-d-g boson spectrum. In 
so doing, however, the other bands are pushed even lower in the resulting spectrum. 
But, in view of the assumptions made with this transformation model, it is really only 
pertinent to discuss the ground state band. 

Thus one must look more carefully at the OG study since both their and our 
(weak coupling model) calculations produce a splitting of the d- and g-boson energies. 
We do note, however, that our complete development of their approach (leading to 
equation 44) gives a splitting that depends upon the original single boson energies E~) 
and E~). With our test case (degenerate zero energies) no splitting then results. But 
it is the interaction that is primarily responsible for the state splittings (moment of 
inertia). OG selected only one leading term and used the approximate transformations 
of individual boson operators, whence they obtained an effective s-d boson Q<1T). Q<v) 
interaction with component coefficients q~T) scaling as cos2, from the original q~T). As 

• An alternative solution for cfJ is -2650 when -yl b is 0·1, but it is unstable as it varies markedly 
with the exact choice of -y 1 b. 
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we shall see, this has a significant effect on the ground state band moment of inertia 
but there are very many comparable terms in the full expansion of the transformed 
interaction that have been omitted. 

The extended model I has a resultant s-d boson Hamiltonian as given by (89) in 
which the quadrupole operator coefficients q~T) are varied from those values given in 
(102), with 

q1T) _ q1T) cos« Q<T)2)!O(T)' 

For the test case data this gives q1T) _ 0·88 q1T ). The resulting spectrum from this 
approximation to the transformed s-d-g Hamiltonian is shown in Fig. 2 by the middle 
column, designated by If;). The exact spectrum, and the previously discussed first 
order perturbation approximation results, are given in the first and second columns 
respectively. Clearly this extended model I has slightly improved the ground state 
band moment of inertia, but not enough to give a satisfactory approximation to that 
exact spectrum. The lower f-spin band is reasonably placed but the binding energy is 
now just 106 MeV (compared with the exact result of 143 MeV). 
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Fig. 2. Spectra of the various approximate forms of the . transformed, test case s-d-g boson 
Hamiltonian compared with the exact results. Details of the entries are specified in the text. 
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It is obvious, however, that the s-d coupling parameter in the effective Hamiltonian 
is an important factor in the definition of the moment of inertia for the ground state 
band. The spectrum given in the column labelled H~~' in Fig. 2 results when one uses 
in extended model I calculations q~T) _ O. 7 q~T). This ad hoc adjustment obviously 
improves the ground state band comparison, but at the expense of a binding energy 
of just 85 MeV and an overdrastic depression of the lower f-spin band. Neither of 
these latter factors were considered in the OG study, whence a further reduction of 
q~T) would indeed give a match to the exact ground state band spectrum. 

The extended model II offers new possibilities as the transformed Hamiltonian in 
this case takes the form 

U H U- I - l:T (E~) d~T) • d(T) -! cosh( cf>(T»( Q~~). Q~~» 

I . h(A. ) Q(T) Q(T)} . + 2 sm 'f'(T) (sd) • (sd) , (105) 

in which, with E~) again being -4·9 MeV, cf>(T) ~ _~q~T) JV<;>O(T) depends upon 
the d-boson number. With O(T) being - 7 . 6° and with N<;) = 2, 

U H U- I - -4.9l:T d~T). d(T) -1.05Q~;J). Q~~) 

+O,} 6( Q~;J) . Q~;J) + Q~~) . Q~~» 

- H(sd) +0.16l:T(Q~~/, (106) 

where H(sd) is essentially the Hamiltonian that gave the results listed in column 4 of 
Fig. 1. 

The resulting spectrum is given as the last column, labelled n<;J, in Fig. 2. The 
associated binding energy is 104 MeV whence this extended model II has actually made 
agreement worse. This is a somewhat disheartening result since the extended model 
II accounts for more terms in the infinite series resulting from the transformation 
than any of the other approximations. At least this is further convincing evidence. 
that g-boson effects should not be treated by any perturbation scheme or other weak 
coupling approach, if the system under study shows rotational band characteristics. 

Given the need to retain g-boson interactions, we then considered restricting 
the exact boson model calculations by limiting the number of g-bosons in all state 
prescriptions. The results are displayed in Fig. 3. From left to right the spectra are 
those of the unrestricted (four boson) calculation of the test s-d-g Hamiltonian, a 
calculation in which only one g-boson (of proton and/or neutron type) is permitted, 
and the s-d limit (no g-bosons) respectively. Binding energies from these calculations 
are, in order, 143, 138 and 108 MeV. Clearly, the one g-boson limit calculation gives 
the best approximation to the exact spectrum of all the approximation calculations 
reported here. 

5. Conclusions 

The (sdg) model of Otsuka and Ginocchio (1985) has been investigated in detail. 
The simple double commutator approximation used to close the renormalisation series 
has been extended to allow exact summation to all orders but still only within the 
K = 0 OG restriction. Clearly the diverse schemes by which we have been able to 
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Fig. 3. Spectra from the many boson, shell model calculations of the 
test s-d-g boson Hamiltonian. Details are specified in the text. 

sum (in simple form) selective parts of the transformed residual interaction all fail to 
include those contributions that are essential to map the exact spectrum. 

We confirm the result that the effect of the renormalisation on the single particle 
energy spectrum is to lower Ed and raise Eg• But a proper treatment of the two 
body interaction is much more difficult. We have shown that it is possible to select 
one or few terms in the series to approximate the correct moment of inertia in the 
ground state band, but then the positions of the excited bands are very doubtful. The 
renormalisation model provides a qualitative guide to gross structure of the s-d-g 
boson system, but as yet cannot be used as a quantitative tool. 

In spite of earlier promise, a consistent, systematic and accurate summation 
(approximation) strategy is difficult to achieve. The explicit inclusion of a few 
g-bosons in any shell model calculation seems less fraught with uncertainties. 
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Appendix A: Commutators of Boson Operators 

The So, d- and g-boson operators (for a given particle type that SUbscript is omitted) 
satisfy the commutator relations 

[dlL , ti!] = [gIL' g!] = 81Lv ' 

[dw ti!1 = [Uw g!] = (-) 1L8_ lLv ' 

[s, st] = [s, st] = I, 

(AU) 

(A 1.2) 

(A 1.3) 

from which it is straightforward to ascertain that the mth component of the quadrupole 
operator (of the same particle type) satisfies the set 

t -[Qm> S ] = - ql d m , 

[Qm> st] = ql ~m' 

- n+1 - -[Qm' d n] = (-) (ql s8m,_n+ lh(22 - n m+ nl2 m)dm+ n 

+ tb(24 - n m+ nl2 m)Um+n) , 

[qm' cit] = (_)n(ql st8_ mn +lh(22 -n m+ nl2 m)d;"+n 

+ tb(24 - n m+ nl2 m)g;"+n)' 

[Qm' Un] = (- )n+l(tb(42 - n m+ nl2 m)dm+ n 

+q4(44 - n m+ nl2 m)Um+n) , 

(A2.1) 

(A2.2) 

(A2.3) 

(A2.4) 

(A2.5) 
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[Qm,gt] = (-)n(~(42-nm+nI2m)d;"+n 

+q4(44 -n m+nl2 m)g;"+n)' 

K. Amos etaL 

(A2.6) 

Clearly Qm never commute with the boson operators (of the same type) and thus they 
do not commute with any operator as if they are C-numbers which was assumed by 
Otsuka and Ginocchio (OG) (1985). 

To evaluate the commutators of Z (given by equation 11), one also needs the 
product operator commutators 

[(gt d)~)", d!] = (-)"(42 JL-aaI2JL)g!-" , 

[(gtd)~),..Ua] = (-)"+1(42aJL- a I2JL)da_,, , 

[(~g)~)", da] = (-)a+l(24aJL- a I2JL)Ua_" , 

[(~ g)~)", g!] = (- )a(24 JL-a al2 JL)d!-". 

(A3.1) 

(A3.2) 

(A3.3) 

(A3.4) 

Consider the action of Z upon the individual neutrons boson operators (proton 
and neutron cases have symmetry): 

where 

[Z, Qv)a] = 1:" (-)" {8(v) Q1T)"[l;1:v)-,, Qv)a] 

+8(1T)[QV),,· Qv)a]~v)-,,}' 

EI3 = (gt d)~)-(~ g)~), 

and by using (AI), (A2) and (A3) one obtains 

where 

[Z, s(v)] = -8(1T) 'It (v)(d(v) . ~1T»' 

[Z, srv)] = 8(1T) ql(v)(drv)' ~1T»' 
- _ -(2) - (2) 

[Z, d(v)a] - 8(V)(Q1T) g(v»a -(l1v)~1T»a , 

[Z, drv)a] = 8(V)(Q1T) grV»~)+(Lrv) ~1T»~)' 

[Z, U(v)a] = - V ~ 8(v)( Qv) d(1T»~4) 

-V~ [(~d(v) + ~ U(v»~1T)]~4), 

[Z, grV)a] = -V ~ 8(V)(Q1T) drV»~4) 

+V~ [(~drv) + q4 grV»~1T)]~4), 

and similarly for 4..v)' 

(A4) 

(AS) 

(A6.1) 

(A6.2) 

(A6.3) 

(A6.4) 

(A6.5) 

(A6.6) 

(A7) 
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Appendix B: Derivation of the Double Commutators 

Using the approximate commutators of Z with any boson operator that is specified 
in the text (equation 13), it is evident that 

[Z,[Z,SJ] = [Z,[Z,st]] = 0, 

and that for other (neutron) operators (x, y) 

The d-boson Operator Commutators 

We consider 

and, using the definition of Z (equations 11 and 12), we get 

~2) = () {() [Q('IT) E(v) (,.('IT)9- )(2)] 
a (v) (v) . ,~' (v) a 

+ ()('IT)[Q(v) . E('IT), (Q('IT) g(v»~2)]} 

= l:mm' (- )m<24 m' a- m'12a){ ()tv)[Q~) E~)m' Q<;) g(v)a- m'] 

+ ()(v) ()('IT)[Q<':;) E~~, Q<;'J g(v)a-m']}' 

Using the identity 

(Bl) 

(B2) 

(B3) 

(B4) 

[AB, CD] = A[B, C]D+AC[B, D]+[A, C]DB+ C[A, D]B, (B5) 

we have 

A12) == l:mm"( - )m<24 m" a- m"ll a) (B6) 

x {()tv) Q~)[E~)m' Q<;'J]g(v)a-m" + ()tv) Q~) Q<;'J[E~)m,g(v)a_m"] 

+()tv)[Q~), Q<;'J]g(v)a-m" E~)m+()tv) Q~[Q~), g(v)a-m,,]E~)m 

+() () Q(v)[ .-.l'IT) Q('IT)] - () () Q(v) Q('IT)[E('IT) - ] 
(v) ('IT) m.c,:.. m' m" 9(v)a- m" + (v) ('IT) m m" - m' 9(v)a- m" 

+ () () [,.(v) Q('IT)] - .-.l'IT) () () Q('IT) [ ,.(v) - ] E('IT) } (v) ('IT) ~;", m" 9(v)a-m" .c,:"m+ (v) ('IT) m"~;'" 9(v)a-m" -m' 

Of these eight components, the commutators of entries 1, 3, 4, 6 and 7 are identically 
zero, so that 

x<;) = l:mm,,(-)m<24m"a-m"12a){()tv) e-:') d;>'[E~)m,g(v)a-m"] (B7) 

+ ()(v) ()('IT) e-~[E~~, Q<;'J]g(v)a_ m" + ()(v) ()('IT) Q<;'J[ Q<':;), g(v)a- m,,]E~~} , 
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the latter two terms of which, by our assumptions on the intrinsic state, are very 
much less in expectation than the first. Thus, with the approximation by which the 
single commutators of Z were determined, we have 

x<;) = [Z,[Z,d(v)a]] = 0fv)l:mm,,(24m"a-m"12a) 

Q(1I') Q(1I')[E(v) - ] 
x m m" -m' g(v)a-rrl' . (BS) 

The definition of E~) m and the relevant commutation relations then give the result 

x~) = [Z, [Z, d(v)a]] = 0fv) l:mm'm" (24 m" a- m"12a) 

( ) m(42 " "12' )[ t d- -. ].nC1I') Q(1I') x - - m - m m - m g(v)-m-rrl' (v)rrI" g(v)a-m" 5.tm rrI" 

that contracts to 

x<;) = -Ofv) l:mrrl (- )rrI'(24a- m- m" m" + ml2a) 

x (42 - m' - m m/12 - m)Q<:') Q~1I'2m_rrl' d(v)rrI" (B9) 

which, using standard angular momentum algebra, is also given by 

- 2 1 
[Z, [Z, d(v)a]] = -O(v) l:K [5(2K + 1)]2 

x W(24K2; 22)[( Q(1I') Q(1I'»(K) d(v)]~) . (BlO) 

A similar reduction for dtv)a gives 

[Z, [Z, dtv)a]] = -Ofv) l:mm' (- )rrI(24a- m' m' + ml2a) (Bll) 

x (24 - m' m+ m/ 12 m)Q<:') Q~1I'2m'_m dtv)rrI 

= -Ofv) l:K [5(2K + l)]~ W(24K2; 22)[(Q(1I')Q(1I'»(K) dtv)]~) . 

Symmetry gives the results for the double commutators of the d-boson proton 
operators. 

The g-boson Operator Commutators 

We consider 

Identical arguments to those given in the d-boson commutator reductions give 

X~4) = -vi 0fv) l:mrrl (_)rrI(42 m'- m - m/ 12 - m) 

x(22a- m- m m+ m/14a)a<;) ~1I'2m_rrI 9(v)rrI' (B13) 
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which reduces further to 

and with similar results for gtv)a and the proton g-boson. 

The K = 0 Otsuka-Ginocchio Limits 

The K = 0 limit approximation greatly simplifies the foregoing results with 

X(2) _ _ 02 • /5 W(2222' 02)(Q(1T) Q(1T»(O) d a (v) v, (v)a 

= _02 ./1 (Q(1T)Q(1T»(O)d (v) V 5 (v)a' 

and, by averaging over the proton space, 

<x(2) = _02 11: «_)mQ(1T) Q(1T) )d 
a (v) 5 m m - m (v)a 

where, assuming a zero projection scheme, 

Likewise, we have 

X(4) __ • /5 02 • /5 W(4422' 02)(Q(1T) "(1T»(O)g-a V~ MV , ~. Ma 

_ ./502 ./51: ( )m ,.(1T)Q(1T) -
- - V ~ (v) V ~ m - ~m - m g(v)a ' 

so that, under the same approximations as above, we have 

<r 4» - 502 (ri1T)2)-
a - -~ (v)~' g(v)a' 

Zero Projection Model 
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(BI5) 

(BI6) 

(BI7) 

(BI8) 

(BI9) 

With the zero projection assumption, the K =1= 0 terms in the expressions for 
<X~p) may be summed or equivalently, using (B9), 

<r.,2» - -O~v)1:m«_)mQ<;) Q~~)d(v)a(~<22 mal4 m+ai) 

- _02 (ri1T)2)d - (v) ~' (v)a ' (B20) 

if 

« _ )m Q<;) Q~~) = !< Q~1T) Q~1T» for all m. (B21) 

Likewise from (B13) we have 

<r.,4» - -O~v)V~1:m«_)mQ<;) Q~~)g(v)a(V~<22 ma-mI4a)2) 

_ 5 02 (ri1T)2)-- - ~ (v)~' g(v)a , (B22) 

under the same approximation (equation B21). 
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Appendix C: Transformed Boson Operators 

For any single boson operator x, its transformed version is 

X' = UxU- 1 

1 1 
= x+ [Z, x] + 21 [Z, [Z, x]] + 31 [Z, [Z, [Z, x]]] ... , (Cl) 

and, given that 

then 

[Z, [Z, x]] = -'Y2 x, 

I 1 2 1 22 
x =x-21'Yx+41(-'Y)x+ ... 

1 2 1 2 2 
+[Z,x]- 31'Y [Z,x] + 51(-'Y) [Z,x]+ ... 

= xcos'Y+[Z,x].!.sin'Y. 
'Y 

(C2) 

(C3) 

For the d-boson operator dlv)' our development has given (equations 11 and 25) 

[Z dt ] - 8 (Q('II'):t )(2) , (v) - (v) g(v) , 

so that with 'Y being (Q<'II')2)! 8 (v), 

(dlv)a)' = dlv)a cos [(Q(1r)2)!8(v)] 

+ (Q('II')2) - i sin [( Q<'II')2)! 8(v)]( Q('II') glv»~2) . (C4) 

Similarly the g-boson commutators are 

[Z, glv)] = -vi 8(v)(Q('II')dlv/ 4) , 

[Z, [Z, glv)]] = - i8~v)( Q<'II')2)glv) , 

with 

(glv)a)' = glv)a cos [vi 8(v)( Q<'II')2)~] 

-( Q<'II')2)-i sin [vi (Q<'II')2)~8(v)](Q<'II') dlv»~4) . (C5) 
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Appendix D: Angular Momentum Recoupling Terms 

The d-boson number operator in the transformed Hamiltonian contains two terms 
that can be recoupled as 

Term I = l:mH,<24E m-E12 m)( -)m<24 -E' - m+E'12 - m) 

Q(1T) Q(1T) t -
x E -E g(v)m-E g(v)- m+E' 

= l:mEE'KK' ( - )m<24E m-E12 m)<24 -E' - m+E'12 - m) 

x <22E-E'1 K E-E')<44 m-EE' - ml K' E' -E) 

x (Q(1T) Q(1T»(K) (gt g- )(K') 
E-E' (v) (v) E'-E 

Term 2 = d t (Q(1T)g- )(2) (v) • (v) 

= l:mE(-)m<24E m-E12 m)d~v)_m Q~1T) ii(v)m-E 

Q(1T) (dt - )(2) = . (v) g(v) . 

(Dl) 

(D2) 

The g-boson number operator contains two similar terms which upon recoupling 
are 

Term 1 = l:mEE,(-)m<22Em-EI4m)<22-E'E'-mI4-m) 

x <22 E -E'I K E-E')<2 2 m-E E' - ml K' E' -E) 

x (Q(1T) Q(1T»(K) (dt a )(K') 
E-E' (v) (v) E'-E 

= 9 W(2222· 4K)(Q(1T) Q(1T»(K) (dt a )(K) , . (v) (v) , 

Term 2 = .(Q(1T) dt )(4) g- = Q(1T) (dt g- )(2) (v) . (v) . (v) (v) . 

Appendix E: Transformation of the Operators Q<:) 

Using the single boson operator transformation relations with 

and 

(D3) 

(D4) 

(EI) 
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we obtain from the definition of Q<;) 

U Q(1T) U- I = q(1T) cos 'YI[(dt ,\:, )(2) + (/ J )(2)] 
m I"' (1T) "1.1T) m (1T) (1T) m 

+ q~1T) sin 'Y/[(Di1T) .\(1T»)<;') + (Si1T) D(1T»)<;')] 

+ q (1T) COS2 'YI(dt J )(2) + q(1T) sin2 'YI(Dt D )(2) 
2 "' (1T) (1T) m 2 "' (1T) (1T) m 

(1T) . [(dt D- )(2) (Dt d- )(2)] 
+ q2 sm'Y/ cos 'Y/ (1T) (11') m + (1T) (1T) m 

(1T) '[( t d- )(2) (dt - )(2)] 
+ q3 cos'Y/ cos'Y/ g(1T) (1T) m + (1T) g(1T) m 

(1T). • '[( Gt D- )(2) (Dt 0.- )(2)] 
- q3 sm'Y/ sm 'Y/ (1T) (1T) m + (1T) (1T) m 

(1T) . '[( Gt d- )(2) (dt 0.- )(2)] 
- q3 cos'Y/ sm 'Y/ (1T) (1T) m + (1T) (1T) m 

+ q~1T) sin 'Y/ cos 'Y/'[(gi1T) D(1T»)<;') + (Di1T) 9(1T»)<;'>] 

+q(1T)COS2 'Y1'(gt g- )(2)+q(1T)sin2 'Y1'(d G. )(2) 
4 "' (1T) (1T) m 4 "' (1T) (1T) m 

(1T) ,. '[( t 0.- )(2) (Gt - )(2)] 
- q4 cos'Y/ sm'Y/ g(1T) (1T) m + (1T) g(1T) m • (E2) 

All terms that involve only one capital designated operator will be ignored, since we 
have an interaction of the form V = - /Q(1T). Q(v), whence the approximation 

all 'Y (E3) 

to be used in the development will ensure the single operator (D or G) terms vanish. 
Thus, with 

n.1T) = (1T) [( dt )(2) (t J )(2)] ~sd)m - ql COS'Y/ (1T) .\(1T) m + S(1T) (1T) m 

(1T) 2 (dt d- )(2) 
+ q2 cos 'Y/ (1T) (1T) m , (E4) 

we have 

U Q(m1T) U- I _ Q(1T) + Q(1T) 
(sd)m (sO)m 

(1T) '[( t d- )(2) (dt - )(2)] 
+ q3 COS'Y/ cos 'Y/ g(1T). (1T) m + (1T) g(1T) m 

- q~1T) sin'Y/ sin 'Y/'[( G11T) D(1T»)<;'> + (Di1T) G(1T»)<;'>] 

(1T) , 2 '( Gt 0.- )(2) (1T) 2 '( t - )(2) 
+ q4 sm 'Y/ (1T) (1T) m + q4 cos 'Y/ g(1T) g(1T) m , (E5) 

in which the only term of Q~:6)m to be retained initially is 

Q (1T) (1T) • 2 (Dt D- )(2) 
(sO) m - q2 sm 'Y/ (1T) (1T) m • (E6) 



Renormalisation of g-boson Effects 667 

The (Dt D)(2) Terms 

These are terms of the form 

which recouple to 

F = q~1I')sin27J(Q<v)2)-1l:KK'aJi(-)a+Ji(_)K' 

x [5(2K' + 1)]!(2 K' m -a-131 K m-a-l3) 

2 K'J ( .nlv) Q(v»(K') (t - )(K) 
2 2~' a+Ji g(1I') g(1I') m-a-Ji' 

4 K 

(E7) 

The ( Gf 6)(2) Terms 

This term has the form 

Term = q~1I') sin2 7J'[( (fv) dt1l'/4)( (fv) d(1I'/4)]~ 

= q~1I')sin27J'(Q<v)2)-1l:EaJiKK.(44E m-E12 m) 

x (22aE-aI4E)(2213 m-E-1314 m-E)(22E-a m-E-131 K m-a-l3) 

x (22 a 131 K' a + 13)( (fv) (fv»~~Ji( dt1l') d(1I'/-:'-a-Ji ' 

which recouples to be 

Term = q~1I')sin27J'(Q<v)2)-1l:KK'aJi(-)a+Ji(_)K' 

x [5(2K' + 1)]!(2 K' m -a-131 K m-a-l3) 

The (Gf D)(2) and (Dt 6)(2) Terms 

These involve components 

(Gt1l') D(1I'»~ = (Q<v)2)-1l:aJiE(24E m-E12 m) 

x (24aE-aI2E)(2213 m-E-1314 m-E) 

x (f;) (f;) gt1l')E-a d(1I')m-E-Ji ' 

(ES) 
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which recouple to 

Likewise, recoupling gives 

2 2 K' 

x <2 K' m -a-,81 K m-a-,8) 2 4 2 

4 2 K 

2 2 

x <2 K' m -a-,81 K m-a-,8) 4 2 

2 4 

x (Q(v) Q(v»(K') (gt a )(K) 
a+/3 (11") (11") m-a-/3' (ElO) 

Thus, by using the results specified by (E7), (E8), (E9) and (ElO) in the expansion of 
U Q~) U- 1 (as given in E5), we obtain the transformed components of the quadrupole 
operator: 

U Q(1I") U- 1 = Q(1I") + q(1I") cos2 .... '(gt (], )(2) 
m (sd) m 4 "' (11") "'\11") m 

(11") '[( t d- )(2) (dt - )(2)] + q3 cos'Y/ cos 'Y/ g(1I") (11") m + (1T) g(1I") m 

- q~1I") sin'Y/ sin 'Y/'(Q<v)2)-1 ~KK'a/3 (- )a+/3( - )K'l4(2K' + l)! 
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1
2 2 K'] 

x(2K'm -a-PIK m-a-p> 2 4 2 

4 2 K 

(Q(V) nlv»(K') [( t d )(K) (dt - )(K) ] x ~'a+/3 g(1f) (1f) m-a-/3 + (1f) g(1f) m-a-/3 ' (Ell) 

in which Q~:J) is the s-d boson quadrupole operator. 
In the OG limit we get 

U nl1f) U- 1 _ Qi(1f) + q(1f) cos2 -n'(gt g- )(2) 
~m (sd) m 4 ., (1f) (1f) m 

+ q~1f) sin2 TJ(gl1f) U(1f»<;')V ! W(2244; 22) 

+ q(1T) sin2 -n'(dt d )(2) 1 W(2244· 22) 
4 ., (1T) (1f) m '5 ' 

+ q~1T) cos TJ cos TJ'[(gl1T) d(1T»<;/ +( dl1T) U(1T»<;/] 

- q~1T) sin TJ sin TJ'[(gl1T) d(1f»<;/ + (dl1T) U(1T»<;/] 3V j W(2442; 22) 

Q(1T) (1f) . 2 , 1 W(2244. 22)(dt d- )(2) = (sd)m + q4 S10 TJ '5 ' (1f) (1f) m 

+ [q~1T) COS2 TJ' + q~1T) sin2 TJ V j W(2244; 22)](gl1f) U(1f»<;') 

+q~1f)[COSTJCOSTJ' -3vj W(2442; 22)sinTJsinTJ'] 

x [(gl1T) d(1T»<;/ + (dl1T) U(1T»<;/] . 

Appendix F: Single Commutators of Z with Composite Operators 

(EI2) 

Neutron boson operator products will be considered only herein, it being understood 
that proton results can simply be obtained by symmetry. In the development, the 
commutators of single boson operators, viz. 

[~v)' slv)] = 0, 

[~v)' div)a] = 8(v)(Q(1T)giv»~)' 

[~v)' giv)a] = - V j 8 (v) ( Q(1f) div»~4) , 

with a comparable set for the annihilation operators will be used. 

Operators of the Form (div) d(v»{A) 

This commutator expands as 

(Fl.l) 

(F1.2) 

(F1.3) 
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and by using equation (Fl.2) and standard angular momentum coupling we get 

[~v),(dtv) d(v»~)] = 8(v)1: KI1 ¢1T)(K2a-JLJLIAa) 

x [S(2K + I)]! W(22K2; 4A) P<;'~-I1(A), (F3) 

in which 

p..,v) (A) (t a )(K) ( )K+A(dt - )(K) K,1 = 9(v) (v) 1 + - (v) 9(v) 1 . 

The number operator is a special case since for A = 0 

(dtv) 4v»~0) = 1:E ( - )E dtV)E d(v)_Jv 5 

t -= (d(v)· d(v»/vS. 

Thus, as K = 2 for A = 0 in (F3), we have 

[~v)' dtv)· d(v)] = 8(v) (f1T) . p(v) , 

in which 

p(v) _ p(v)(O) - [( t d- ) (dt - )](2) 
1 - 21 - 9(v) (v) + (v) 9(v) 1 . 

Operators of the Form (9tv) ~v/A) 

(F4) 

(FS) 

(F6) 

(F7) 

As with the foregoing, the commutator of any such operator with ~v) expands as 

[~v)' (9tv) 9(v»~A)] = 1:E (44E a-EIAa) 

x {[~v)' 9tV)E]9(v)a-E + 9tV)E[~V) . 9(V)a-E]} , (FS) 

and, by using equation (Fl.3) with standard angular momentum coupling, we have 

[~v),(9tv)9(v»~A)] = -8(v)1:KI1 (f;)(K2a-JLJLIAa) 

x (- )A+K[S(2K + l)]i W(24K4; 2A) Pt.~_,.(A). (F9) 

The g-boson number operator is a special case (A = a = 0) since 

( t - )(0) _ 1: ( )m 1 t - _ 1 t -
9(v) 9(v) 0 - m - 3 9(v) m 9(v)- m - 39(v)· 9(v) , 

so that with A = 0 and thus K = 2 in (F9), we have 

[~v)' 9tv)· 9(v)] = -8(v) (f1T) . p(v) , 

with p(v) as defined in (F7). 

(FlO) 

(FH) 



Renormalisation of g-boson Effects 

The s-d Coupling Operator 

In the quadrupole operator, there is an ~ boson coupling term: 

X(2) _ (t d )(2) (dt )(2) (v)a - s(v) (v) a + (v) ",v) a . 

This has particularly simple commutators with 21:v) namely 

[21:v), A1~~a] = 8(v) 1:1' Q~1T)(24f.La-f.L12a) 

x [(stV) Y(v»~4~/t + (gtV) ",v»~4~/t]. 

Operators of the Form (dtv) Y(v»CA) and (gtV) d(v»fA) 

Expansion of the commutators of the first operator gives 

[21:v), (dtv) Y(V»~A)] = 1:E (24E a-EIA a) 
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(F12) 

(F13) 

x {[21:v), dtV)E]Y(V)a-E + dtV)E[21:V)' Y(v)a-E] I , (F14) 

and by using the basic commutator equations (Fl.2) and (Fl.3) we get 

[21:v), (dtv) Y(V»~A)] = 1:E/t (2 4 E a,....E I A a)8(v) Q~) 

x «24 f.L E- f.L12 E)giv)E-/t Y(v)a-E 

s t --11 9 (22 f.L a - E- f.L14a-E)d(v)E d(v)a-E-/t) ' 

and which with standard angular momentum recoupling reduces to 

[21:v), (div) Y(V»~A)] = 8(v) 1: K/t Q~1T)(K 2 a-f.L I A a) 

x [5(2K + 1)]![ W(22K4; 4A)(gtv) Y(v»~KJ./t 

-( -l+K W(24K2; 2A)(dtv) d(v»~KJ./t]. (F15) 

An identical development gives 

[21:v)' (giv) d(V»~A)] = 8 (v) 1: K/t (K 2 a - f.L f.L I A a) 

x (_l+K[5(2K + 1)]![ W(22K4; 4A)(giv) Y(v»~KJ./t 

-( - )A+K W(24K2; 2A)(dtv) d(v»~KJ./t]. 

Combinations Operators pM and P;~(A) 

(F16) 

Using the definition (F7) of p<v) and the results given in (FI5) and (FI6), one 
readily obtains for A = 2 
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[~v)' p~)] = (1(v)l:K,. Q~1T)<K2a-,."'.I.12a>[5(2K+I)]! 

x [1 +( - )K][ W(22K4; 42)(giv) g(v»~KJ.,. 

-( _)K W(24K2; 22)(div) a(v»~KJ.,.]. 

Likewise from the definitions (F4) of jM one gets 

x [W(22J4; 4K)(giv) g(v»~"!.,. -( - )K+J W(24J2; 2K)(div) a(v»~"!.,.] 

x [( _ )K+J +( _ )A+K]. 

The s-d-g Boson Quadrupole Operators 

(FI7) 

(FIg) 

With components of the quadrupole operator Q<;) as defined by (2), and using the 
results obtained in this Appendix, we have 

x { q\v) 8 K4[(siv) g(v»~4~,. + (giv) "v»~4~,.]hI45 

+ q~v) W(22K2; 42)[(giv) a(v»~KJ.,. +( - )K(div) g(v»~KJ.,.] 

+ q~v)[1 +( - )<K)][ W(22K4; 42)(giv) g(v»~KJ.,. -( _)K W(24K2; 22)(div) a(v»~KJ.,.] 

(FI9) 

In the 00 approximation only K = 0 terms are retained and the above simplifies 
dramatically to 

[ 7. Q(v)] (1 Q(1T) (v)(2:t - 2 dt a) ,v), a - (v) a q3 ~ g(v) . g(v) - s (v)' (v), 

which, averaged over a condensed neutron state, is 

where 

The s-g Hexadecapole Operator 

Using 

X(4) (t - )(4) (:t - )(4) 
a = s(v) g(v) a + g(v) s(v) a , 

(F20) 

(F2I) 
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it is easy to deduce that 

[~v)' X~4)] = S~V)[~v)' 9(v)a]+[~v)' g~v)ahv) 

= -V~ O(v):I.Jl <2 2,." a- ""14a)Q~1T)(s~V) d(v)a-Jl + dtv)a-Jl ~v» 

= -O(v) :I.JlK Q~1T)<K2a-""""14a) 

Commutator [Z, Q<-T) . p(T)] 

We have 

and which, by using the results of (F17) and (F19), is 

[Z, Q(-T). p(T)] = :I. m( - )mO(_T) :I.JlK Q~)[5(2K + l)]t 

in which 

x <K2 - m-II. 11.12 _ m)ti-T) p(T) ,..,.. K,- m-Jl m 

+:I. m( -)mO(T) :I.KJl Q~:/ Q~-T)<K2 m-,.",.,,12 m) 

x [5(2K + 1)]~[1 +( - )K][ W(22K4; 42)(g~T) 9(T»<:!-Jl 

+[q~T) W(22K2; 42)- q~T)( _)K W(24K4; 22)]PP,,(2) 

+ q~T)[1 +( - )K][ W(22K4; 42)(g~T) 9(T»~K) 

K t - (K) -( -) W(24K2; 22)(d(T) d(T»'Y ]. 

Coupling the relevant operators via 
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(F22) 

(F24) 

(F25) 

= :I. mJl (_)m+ Jl(-)K<22,." mlK m+"")Q~) P~[5/(2K+l)]! 

= (- )K[5/(2K + l)]h(m+Jl) (- )m-Jl( Q<T) p(T»<"'~Jl' 
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gives 

= l:mfL (- )K<2 2 m- I-L I-LI K m-I-L)[S/(2K + I)]! Q~';;) Q~-T)( _ )m+fL 

= [S/(2K + I)]! l:(-m+fL) (-)m-fL(Q(-T)Q(-T»~~+fL' 

[Z, Q(-T). p(T)] = S8(T)l:K[1+(-)K](Q(-T)Q(-T»<K) 

x [W(22K4; 42)(g~T) U(T»<K) -( _)K W(24K2; 22)(d~T) d(T»<K)] 

Applying the K = 0 00 limit gives 

+8(_T) Sy ~ (Q(T)p(T»n~-T) 

= 8 (T) 2( ~)[ ~ g~T) . U(T) - ~ d~T) . d(T)] 

+8~_T) 2(Q+T) P(+T»q~-T)[~ g~-T)' U(-T) - ~ d~_T)' d(_T)] 

= 8(T) !(Q<-T)2)[ij g~T)' U(T) - d~T)' d(T)] 

Then, with T = l:T <iT) Q( -T) . p(T), we get 

where 

If ( Q P) is negligible then we get 

(F26) 

(F27) 

(F28) 
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Appendix G: Commutators of the Residual Interaction 

To within the scaling of - !f, the residual interaction has the form 

where 

V(7-) = Q(T) _ P(T) 

+ q~T)[(siT) d(T)i2) + (diT) S(T/2)] 

+ q~T)( diT) d(T/2) + q~T)(giT) 9(T»(2) . 

We seek the commutations of A with Z where 

Z = ~1T)+~V) 

= l:T 8(T) ~ -T) . [(giT) d(T)i2) -( diT) 9(T)i2)] 

= l:T 8(T) Q(-T) . E(T) , 

675 

(Gl) 

(G2) 

(G3) 

and these will involve four basic commutators of ~T) with Q<~:), Q<~)"" V~-T) and 
V(T) 

1.1 • 

Basic Commutators 

(a) [~T)' Q<~:)]: 

[~T)' Q<~:)] = l:E8(T)(-n~~ET) ~T), Q~-T)] _ o. 

(b) [~T)' Q<~)I.I]: 
This commutator has been developed in Appendix F to be 

[~T)' ~~)I.I] = 8(T) l:JE [5(2J + I)]! 

(G4) 

x <J2 -po-EEI2 _po>Q~-T) nY!_I.I_E' (G5) 

and which in the OG limit (J = 0) is 

in which 

[~T)' ~~~] = -8(T) i q~T)(diT)· d(T)-j giT)· 9(T»Q<:::) 

= -8 X(T)Q(-T) 
(T) -1.1 ' (G6) 

(G7) 
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(c) [~T)' V~-T)]: 

Using the expansion of ~T) this commutator is 

[ 7. V(-T)] = 8 l: (_)a[Q(-T) E(T) V(-T)] 
\T)' 11- (T) a -a a' 11-

= 8 l: (_)a[Q(-T) V(-T)]E(T) 
(T) a -a' 11- a· 

We recall that this commutator will be used in the evaluation of terms of the form 

(G8) 

which, on averaging over T-space, involves 

(G9) 

as previously assumed. Thus we ignore terms involving the commutators [~T)' V~-T»). 

(d) [~T)' V~)]: 
Using the results derived in Appendix F for the commutators of Z with each 

component of the interaction operator V~), we obtain 

[~T)' V~)] = 8(T)l:JE[5(2J+I)]t(J2JL-EJLI2JL)Q~-T) 

X ! (8 J4 q1T) Iv 45)[(S~T) 9(T)i4) +(g~T) s(T»)(4\_E 

+[q~T) W(22J2; 42)_(_)Jq~T) W(24J4; 22)] 

x [( d~T) 9~T)iJ) +( _)J (g~T) d(T»)(J)]I1-_E J ' (GlO) 

with J restricted to values of 2 or 4 in the second term by angular momentum 
selection and symmetry. 

This commutator is required to evaluate terms of the form 

and, in the OG approximation, with 

then 

(F) - l:TI1-8(T)(Q(-T)2)l:J[5(2J+l)]t 

x (J 2 0 JL 12 JL)! 8 J4( q~T) IV 45)[(S~T) 9(T»)(4) +(g~T) S(T»)(4)] 

+' q~T)'[( d~T) 9(T»)~J) + ( - iJ)(g~T) d(T»)~J)] J = 0, 

(Gll) 

(GI2) 

(G13) 
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since, for J equal to 2 or 4, 

Single Commutator of Z 

With .d as defined by (Gl), the single commutator with Z is 

[Z,.d] = [~1T)' Q(v). y(1T) + Q(1T). y(v)] 

+ [~v)' Q(v). V<1T) + Q(1T). y(v)] 

= 1:" (-)" ([~1T)' Q<~~] v<,.1T) + Q~~[~1T)' y~1T)] 

+[~1T)' Q<~~] v<;)+ Q~~[~1T)' Y~)] 

+[~v)' Q~~] v<,.1T) + Q~~[~v)' v<,.1T)] 

+[~v)' Q<~~] v<;)+ Q<~~[~v)' Y~)]}, 

and using (G4), mindful that averages will be used, we get 

[Z,.d] - 1:" (-)" ([~1T)' Q~~] Y~) + [~v)' Q<~~] Y~)} 

= 1:T" (- )"[~T)' Q<~~] v<,.-T) . 

The result given in (06) thus makes 
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(GI4) 

(GI5) 

(GI6) 

(017) 

where x<a) is as defined in (G7). This result may now be used to obtain a convenient 
approximate form for the double commutator. 

Structure of the Double Commutator 

[Z, [Z,.d)) = [~1T)+ ~v)' 1:i -8(T) X<T»Q<-T). V<-T)] 

= -8(1T){[~1T)' X<1T)Q<V). v<v)]+[~v)' X<1T)Q(V). y(v)]} 

-8(v) ([~1T)' X<v) Q<1T). V<1T)] + [~v)' x<v) Q(1T). y(1T)]} 

= 1:T (-8(T»{[~T)' X(T) Q(-T). y(-T)]+[~_T)' X<T) Q(-T). y(-T»)) 

= 1:T (-8(T»{ [~T)' X<T)] Q(-T). y(-T) + X<T)[~T)' Q(-T). V<-T)] 

+[~-T)' X<T)]Q(-T). y(-T)+X<T)[~_T)' Q(-T). y(-T)]} . (018) 

Thus there are four commutators to consider: 
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(a) [~T)' Q<-T). V(~T>]: 

As ~T) involves E(T) , this commutator will always be a function of E(T) the 
average of which we assume is negligible. The term in the expression of the double 
commutator (018) involving this commutator may then be neglected. 

(b) [~T)' Q(T). V(T)]: 

Expanding the scalar product gives 

and, by using the results obtained previously of (06) and (010)-(014), we may use 

- (J X<T) Q(-T) V<T) 
- - (T) • (G20) 

or, as is required in (018), 

(c) [~-T)' X(T)]: 

The definition of ~-T) shows that this commutator will involve the antiquadrupole 
operator E(T) and so given the assumptions used heretofore, this component in the 
expression (018) for the double commutator can be eliminated. 

(d) [~T)' X(T)]: 

Using the definition of X(T) this commutator is 

[~T)' X(T)] = ! q~T) (J(T) ([~T)' d1T) • d(T)] 

- j [~T)' g1T) • 9(T)]} • 

Using the results (F6) and (Fll) this gives 

[ 7. X<T)] _ 2 q(T) 14 (J2 nC-T) P(T) 
\T)' - 3 3 T (T)~' . • 

Thus the double commutator as given by (018) becomes 

[Z, [Z, .0::1]] - l:T (-(J(T»{! q~T) ~ (J~T) Q<-T). P(T) Q<-T). V(-T) 

(G22) 

(G23) 

+ X<T)( -(J(T»X<-T) Q<T). V(T)} • (G24) 

With the requirement that 

( _)a nC-T) Q(-T) = l(rl-T)2)8 
~ci /3 S ~. a.-/3 ' 
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the leading term above involves an operator of the form P{T}. V(-T} whose expectation 
in the condensate vanishes. Thus, we have our approximate form for the double 
commutator as 

(025) 
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