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Abstract 

We have analysed the inverse problem for self-induced transparency with degenerate energy 
levels (DSIl) via the Riemann-Hilbert methodology with second order poles. The required 
formulae are deduced in detail and the corresponding soliton solutions are obtained. It is noticed 
that the profile of the single soliton is not of the usual sech type. 

1. Introduction 

At present there exist two or three different approaches to the inverse scattering 
problem. One of the most elegant formulations of DSIT is via the Riemann-Hilbert 
problem as proposed by the Russian school (Novikov et af. 1984). but recently it 
has been stressed that it is possible to extend the formalism by incorporating higher 
order poles in the complex eigenvalue plane (Belinsky and Zaharov 1978). Here we 
formulate such an extended version of the Riemann-Hilbert dressing procedure with 
second order poles in the case of a newly discovered nonlinear system-self-induced 
transparency with degenerate energy levels (Basharov and Maimistov 1984). At this 
point we can mention that the first attempt to study the problem of DSIT was 
made by McCall and Hahn (1969). Later the problem of DSIT was divided into 
two classes. one in an absorbing medium and the other in an amplifyil1g medium 
(Courtens 1972; Drummond 1984). On the other hand. the propagation of two short 
and different wavelength optical pulses in a three-level absorber by the help of the 
three-level Maxwell~Bloch equation was studied by Konopnicki (1980). The situation 
is actually described by an electric field equivalent to two co-propagating plane waves 
each of which is in near resonance with a transition in the absorber. One then 
observes different wavelength optical solitons-known as simultons. In the following 
we describe the details of the system proposed in Basharov and Maimistov (1984). It 
is important to note that in the case of multiple pole dressing we also get a soliton 
which goes to zero as x -+ + 00. but whose profile is not of the usual sech form. 

2. Physical Problem of DSIT 

When an ultrashort optical pulse passes through a nonlinear medium the pulse 
does not change its shape. Previously this phenomenon was formulated neglecting 
any degeneracy of the energy levels of the medium (Lamb 1980). but as a rule almost 
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all media have degeneracies and recently DSIT has been formulated taking this into 
account (Basharov and Maimistov 1984; Konopnicki 1980) as well as the polarisation 
of the electric field propagating inside the medium. The electric field is denoted as 
E = eexpli(kz-wt)J +c.c., where w is the carrier frequency and Wo = (~-Ea)/" 
is the frequency of the atomic transition between the levels Ea and ~, which are 
degenerate with respect to m and,." of the total angular momenta ja and.it, in the states 
a and b. Of all these formulations only those by Basharov and colleagues based their 
study on a Lax pair which is the essential point for our Riemann-Hilbert approach, 
and so from now on we follow their conventions. In reality media degeneracy of 
the energy levels is natural and this manifests itself in special features of the internal 
propagation of the polarised optical pulses. Equations (1) below actually describe 
both the effect of polarisation and degeneracy on an ultrashort optical pulse. These 
effects manifest themselves especially when the 21T pulses with different polarisation 
collide. Previously the Lax representation was used to consider the integrability of 
the Maxwell-Bloch equations describing such phenomena, in the case of arbitrary 
polarisations of the light pulses in resonance with the quantum transitions: 

• 1 . 1 
11, = 'I --. la = 'I. 

Incidentally it can be mentioned that it is not very logical to speak of only pure solitons 
in the case of a degenerate medium inside which the polarised pulse propagates. So 
here we try to find other types of excitations not of a purely soliton nature, but which 
have some similarity with soliton excitations. 

In the present analysis we also make the simplification of replacing the Maxwell 
distribution of the z-component of the velocity of the resonance atom by a delta 
function. These equations are written as 

(1) 

We set 
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The Lax equation associated with these is 

where 

/
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(2) 

(3) 

In the above equations Eq represent the polarised electric field, J~m and R,.,.m 
respectively denote the dipole moments and density matrix elements, while R,.,.,.,." Rmm, 
etc. are defined through the optical coherence matrix p uu' via 

where /(11) is the Maxwell distribution of the z-component of the velocity: 

Further, d is the induced dipole moment. In our notation IL, IL' always refer to a value 
of zero and m, m' to ± 1; this is why R,.,.,.,." R,.,.m and Rmm, are written separately. 
In addition \fI is a three component column vector of the type (\fI1' \fI2' \fI3)' The A 
occurring is the eigenvalue associated with the Lax equation and, in general, is a 
complex quantity. 

3. Riemann-HUbert Formulation 

We now proceed to formulate the Riemann-Hilbert approach to the inverse 
scattering transform for equations (2) and (3). Suppose we have information about 
one set of solutions of the nonlinear equations (1), which we call the 'seed' solution. 
Let us denote the eigenfunctions and the fields pertaining to this case by the index 
'zero', i.e. as \flo. Eb-, Eb+ etc. Equipped with basic analyticity assumptions about 
\fI1' \fI2, the two solutions of (2) on the two sides of a given contour r in the complex 
A-plane. we assume that \fI1 and \fI2 are of the form 

_ 1 Al A~ 
\fI1 - + A-Al + (A-A1)2 • 

B1 B2 
\fI2 = 1+ __ 1_ + 1 

A-ILl (A-IL1)2 
(4) 
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Now we impose the condition 

(5) 

Equating to zero the coefficients of (A-A 1)-1, (A-JA.l)-I, (A-Al)-2 and (A-JA.l)-2 
we get 

From the first two equations we have 

Al - Bl 1 - - 1· 

2A~ B~ = 0, 
(Al-JA.l)3 

2A~ B~ = o. 
(Al-JA.l)3 

By a simple algebraic manipulation we get from (5) and (6) 

and 

A2 - B2 1 - 1 

The immediate consequence of these two. equations is 

So eliminating A~ from (9) we get a fourth order equation for AI: 

If we get 

then we obtain 

(6) 

(7) 

(8) 

(9) 

(10) 

(12) 
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The possibility p2 = P proves the projection operator character for AJ and so 
referring back to equation (5) we immediately see that 

(14) 

4. Determination of the Structure of A5, B5 
We now use the degeneracy condition (Novikov et 01. 1984) where the matrices 

At, Bt etc. are given as the product of vectors and we represent them as 

(Bt);j = p; qj' 

(At);j = n;Yj' (15) 

that is, werepresentthese matrices as the product of, for example, {Pt, Pl' P3 j(ql' fh, ~), 
where the first factor in braces is a column vector and the second factor in parentheses 
is a row vector. If we substitute these in the equations of the previous section and set 

(16) 

then we get the following four equations: 

a k-z'j r· m· + + I +I'} 0 n; Yj n· qj = , 
I AI-ILl AI-ILl AI-ILl 

U' 'Y 
'j - x; + k; 2 = o. 

AI-ILl (AI-ILl) 
(17) 

Equations (16) and (17) can be used to determine any four vectors of 
(P;, nt, rio kj' qj' Yj, m j, Zj) in terms of the other four, while the remaining four can be 
determined from the 'seed' solution via the Lax equation. 

5. Dressing up the Seed Solution 

Suppose we now construct another solution of the Lax equation as 

whence for the seed solution we assume that 
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Then the Lax equation leads to 

E= 

where we have assumed that l/J' satisfies 

-1 0 01 
~ ~ ~ , 

(18) 

(19) 

Also it is to be noted that one can construct the vectors (n);, (k);, (q)1 and (m); from 
the seed solution matrices l/JO(Al) and \iJO(lJ.l) as 

(n); = l/Jo(Al)a;, 

(q); = iii \iJO(lJ.l) , 

(k); = l/JO(Al)bl , 

(m); = bl\iJo(lJ.l). (20) 

So when B~ is given via the projection operator constructed with the aid of the vectors 
(n);, (k);, (m); etc., we at once obtain the new solution lor iC, e+ etc. 

From equations (20) we express the components of the vectors (qJ' mJ) etc. in terms 
of (y, p) etc., and hence the elements of the B~, A~ matrices, so that we get 

(21) 

Now, as in the case of the Riemann-Hilbert problem with first order poles, we 
explicitly construct the vectors Pi' Yj etc.: 

I al e-il1IX+itIJ(QI.I1I)] 

PI = ~ eil1lx+itIJ(Q2.I1I) , 

tl:3 eil1I X+itIJ(Q3.I1I) 

(22) 

(23) 

where (~,~, tl:3) is any arbitrary vector and 

(24) 
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We now use these in (21) to obtain 

where 

a = a1 iii eXP(-2ax - :aa1 2 t) + ~ ~ exp(2ax - :aa2 2 t) 
k +4a k +4a 

- ( 4aa3 ) +ll:3b.Jexp 2ax- k2+4a2 t , 

- ( 4aa3 ) + b.J b.J exp 2ax - k2 +4a2 t . 

We have written the form of the solution after some simplification as 

! e+ = V3/ {VICOSh( 4ax + k:::1a2 t +1J1) + exp( 2ax - k:::1a2 t) 
x COSh(2ax+1J2)+V2} , 

where we have assumed a1 = a3' a2 = 0, ii:J = O. Similarly, we get 

1 - (B1) i a ( 2a(a1 +a2) +i k(a1 -a2) ) 2 e = 1 12 = - - exp - t 
- a'Y k2+4a2 
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(25) 

x [a1 ~ 'Y + 2i aa1 ~ + ht ~ J3 + { (a1 ~ 'Y + 2i aa1 ~ 

+J3ht ~)2-8a1 ~ ht ~a'Y}!], 
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with the choice of u1 = U3' U2 = 0, ~ = O. This equation reduces to 

! e_ = v3 exp( - k! ::la2 ) 

x / {Vi cosh ( 4ax + k~::la2 t +1Ji) +v2 exp( - k~::la2 t) 

+ exp( 2ax - k;::la2 t) COSh(2ax+1J2)} . (26) 

It may be noted that e_ in the first case and e+ in the second case can also be 
similarly calculated. 

6. Conclusions 

In our discussion we have obtained the profiles of the polarisation vectors in 
self-induced transparency with degenerate medium via a new formulation of the 
dressing operator approach of the Riemann-Hilbert problem with second order poles. 
It is important to note that the shape of the fields are no longer of the simple sech 
type, but as x -+ 00 they tend to zero. Also they do not have the 'one wavefront' 
structure pertaining to the one soliton solution. At this point it should be noted that 
the multitude of solutions with various peculiar features can be easily harnessed with 
the powerful Riemann-Hilbert technique. Our present result is also in conformity 
with the observation of Belinsky et al. (see Belinsky and Fraviglia 1982) that a higher 
order dressing through the Riemann-Hilbert approach leads not to a single simple 
soliton but a combination of solitons. This in fact is reflected in the form of the 
solutions written in equations (25) and (26). Lastly, we can mention that it has been 
shown by Novikov et al. (1984) that every solution of Riemann-Hilbert dressing is 
a solution of the nonlinear problem, so by that theorem it is quite evident that our 
solution (25) is also a solution of the DSIT problem. 
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