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Abstract 

We present numerical calculations for the structure and mass of the i + nucleon in the chiral 
limit, using a covariant, QCD based formalism developed previously. The three-body problem 
of quarks interacting'via gluon exchange is treated as a quark-diquark two-body problem. 
The nucleon mass and a nucleon-quark-diquark form factor are determined as a function 
of the one parameter, the diquark form factor normalisation, which can be determined by 
functional methods. The constituent mass of the unpaired quark within the nucleon is 
estimated to be about 0.44 Gey. 

1. Introduction 

Despite the successes of quantum chromodynamics (QCD) as a description 
of hadron dynamics, calculation of one of the most basic properties of hadrons, 
the low energy baryon spectrum, remains a problem. Calculations to date have 
generally suffered from being highly model dependent, or often they severely 
restrict many of the important symmetries present in QCD. For instance, bag 
models and potential models, as well as relying heavily on phenomenological 
modelling to produce desired physical effects, tend to obscure any link with 
the important UdNF) ® UR(NF) chiral symmetry of the QCD action. Another 
candidate for the study of hadron physics is lattice gauge theory (LGT), which 
has proved a useful numerical tool for studying gluon dynamics. However, 
LGT maintains Lorentz and chiral symmetry only as small remnant subgroups, 
hopefully to be restored to the full symmetries in the continuum limit. As a 
result, an accurate lattice study of the low energy hadron spectrum is proving 
to be computationally formidable. 

Cahill et al. (1989, present issue p. 129) present a treatment of baryon 
structure aimed specifically at addressing many of the shortcomings plaguing 
the conventional treatments of low energy hadron physics. The paper sets up a 
three-body formulation of baryons as qqq colour singlet states bound by gluon 
exchange. Systematically derived from QCD with well defined approximations, 
the treatment maintains those aspects of QCD which are important to the low 
energy hadron spectrum, namely the colour algebra, Lorentz covariance and 
hidden chiral symmetry. The purpose of the current paper is to present the 
results of numerical calculations applying the formulation of Cahill et al. to 
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the chiral limit i + baryon. This will provide a basis for subsequent studies 
of the baryon octet, including the nucleon, treating quarks with small bare 
current masses perturbatively. 

The treatment is based on summing ladder diagrams representing gluon 
exchange between three valence quarks. The quarks acquire a dynamical mass 
via gluon dressing. The colour algebra ensures binding of two quarks into 
a 3" colour diquark state, allowing the reduction of a three-body problem to 
a non-local covariant two-body problem, in which the baryon is treated as a 
bound quark-diquark state. The picture of baryons as quark-diquark bound 
states began with the work of Ida and Kobayashi (1966) and independently 
Lichtenberg and Tassie (1967). Skytt and Fredriksson (1988) have prepared 
a compilation of the subsequent diquark literature. For the i + baryon an 
integral equation is obtained in terms of the nucleon-quark-diquark form factor. 
Consistency of this equation determines the chiral nucleon mass. In Section 2 
we analyse the nucleon integral equation. Exploiting the spatial 0(3) invariance 
of the equation, it is reduced to a numerically managable form. We discover 
unexpected singularities in the quark propagators which affect the analytic 
structure of the integral kernel. Our numerical results are given in Section 
3. At this stage the calculations are resricted to unphysical values of certain 
input parameters to avoid problems with the quark propagator singularities, 
though there is nothing in principle to prevent an extension of the method 
to include the physical nucleon. An estimate of the constituent mass of the 
quark within the nucleon is also given. Conclusions are drawn in Section 4. 

-p+ocP 

p+(l-oI)P 

Fig. 1. Feynman diagram for the nucleon integral equation (1): r 
is the diquark form factor, 'P the nucleon-quark-diquark form factor 
and ()( an arbitrary momentum partitioning parameter. 

2. The Baryon Integral Equation 

Our starting point for the current calculation is the integral equation derived 
in Cahill et al. (1989) describing the nucleon as a bound state of a quark and 
a diquark. In a Euclidean metric, the equation for the spin i + nucleon form 
factor (a spinor) 'P, viz. 

1 f d4 q I 2 - 3lX 2 I 2 - 3lX 2 
'P(p) = 2" --4l(P+ 7q+ -2-P) )l(q+ 'ZP+ -2-P) ) 

f (2rr) 

x G«2lX -l)P - P - q)G«(l - lX)P + q)d«lXP - q)2)'P(q), (1) 

where 'P is defined in terms of an arbitrary momentum partitioning parameter 
lX, is shown pictorially in Fig.I. It is derived from an approximation to QCD 
which retains an effective two-point gluon exchange between dressed quarks, 
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Fig. 2. (a) The function A(s) in the dressed quark propagator equation (2). The solid curve 
is the numerical solution of the simplified Schwinger-Dyson equation and the dashed curve 
the straight line approximation (6). (b) Same as Fig. 2a for the function B(s); the dashed 
curve is the analytic fit (7). 
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and sums all ladder diagrams. In the chiral limit, the dressed quark propagator 
takes the form 

(2) 

where the matrix V = exp (iJ2rrQFQys) reflects a vacuum degeneracy parametrised 
by the arbitrary real constants ~. The global UdNF) ® UR(NF) chiral flavour 
symmetry present at the classical level is broken in the quantum theory to 
H = UV(NF) with a vacuum manifold Ga/H = UA(NF). As shown in Cahill et al. 
(1989), physical quantities such as the nucleon mass are independent of the 
choice of V, and the quark propagator used in (1) is G(q) = G(q; 1). The functions 
A and B derive from a simplified Schwinger-Dyson equation (Praschifka et al. 
1988) which describes quark dressing by an effective two-point gluon function. 
Numerical solutions for A and B on the positive real q2-axis are shown in Figs 
2a and 2b. We will say more about the analytic structure of these functions 
later. Note also that the prop,f.gator (2) implies a running effective quark mass 
m(q2) = B(q2)/A(q2) which --+ 0 as Euclidean q2 --+ 00. 
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Fig. 3. The diquark form factor T(s). The solid curve is the 
numerical solution from Praschifka et al. (1988) normalised to peak 
at f = 1. and the dashed curve the gaussian fit (9). 

The diquark form factor f(q2) is determined in Cahill et al. (1987) and 
Praschifka et aT. (1988) from an approximate homogeneous Bethe-Salpeter 
equation. A plot of the numerical solution for f(q2) for positive real q2 is 
given in Fig. 3. The solution assumes an 0(4) invariant diquark form factor 
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calculated in the diquark rest frame. Strictly speaking, to maintain complete 
Lorentz covariance allowance should be made for the dependence of f on the 
relative momentum of the diquark within the nucleon, which is assumed here 
to be sufficiently small to have little effect on f. Determination of the diquark 
propagator normalisation from the treatment given in Cahill et al. (1989) is 
a non-trivial problem. For the purposes of this paper it is left as a free 
parameter which we incorporate into (, the diquark form factor normalisation. 
Fortunately, ( can also be determined by a full functional treatment of QCD 
diquarks in baryons. Work in this direction is currently underway. The 
mass functional technique for calculating f also gives a dynamically generated 
diquark mass which for the scalar 0+ diquark is md = 0.568 GeV. In (1) we keep 
only the pole part of the diquark propagator d, viz. d(Q2) = If(Q2 + m~). The 
vector 1 + diquark has a somewhat higher dynamically generated mass of 1.1 
GeV, and it is unlikely to make a significant contribution to nuclear structure. 

Solutions to M and 'P in (1) are sought in the rest frame of the nucleon. 
Accordingly we set P = (O.iM). With the above choices of f, G, d and P, (1) enjoys 
a spatial 0(3) symmetry. A direct calculation shows that the integral operator 
commutes with the angular momentum operator J = L + S = i(o fop) x p + iu, so 
we take 'P to be either of the general L = 0, S = i + states 

( 
(~) u(p) ) 

'Pr = u.p ( 1 ) v(p) • 

Ipl ° 
( (nU(p) ) 

'Pj = u.p (O)V(P) . 
Ipl 1 

where u and v are functions only of P4 and I pl. The Euclidean Dirac matrix 
representation used is 

Equation (1) then becomes 

where 

( u(p) ) 1 f 4 .. ( u(q) ) 
v(p) = (2 d qKM(P4.1 pi ,q4.1 ql . p.q) v(q) • 

(lql + jq~)A(Sl»). 
(Glh2 

(3) 
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- 1 G2 = ---"---.,,.-­
s2A 2(S2) + B2(S2) 

X ((1 - cx)M - iq4)A(S2) + B(S2) 

IqIA(S2) 

-I qjA(S2) ) 

-«1 - cx)M - iQ4)A(S2) + B(S2) • 

and the arguments of the quark and diquark propagators are 

Sl = (P4 +Q4 -(2cx -l)iM)2 +IP+qJ2} 

S2 = (Q4 + (1 - cx)iM)2 + I qJ 2 

S3 = (Q4 - icxM)2 + I qJ 2. 

The kernel KM satisfies 

It follows that 

v(-P4.lpl) = v(p4.lpJ)*. 

(4) 

The functions u and v depend on the momentum partitioning parameter 
cx: a change in cx from CXl to CX2 effects a shift of the functions u and v by 
a distance (CXl - c(2)M along the imaginary P4 axis. Alternatively, a shift in cx 
can be thought of as a change of integration contour in the Q4-plane in (3), 
and care must be taken to avoid ambiguities which may arise from shifting 
the contour across singularities in the integral kernel KM. 

Evaluation of the kernel requires knowledge of the dressed quark propagator 
functions A(s) and B(s) in the subset of the complex s-plane defined by 

if 2 CX_< J. 

l·f 2 CX> J. (5) 

where s = x + iy. To extend A and B into the required part of the complex 
plane, approximate analytic fits are made to the numerical solutions of the 
Schwinger-Dyson equation obtained previously for real positive s. Our fits. 

A(s) = 2.25 - 0.65s. (6) 

B(s) = 0.7336(1- tanh4.779(s - 0.1435». (7) 

are plotted in Fig. 2. A computer search for zeros of the quantity SA2(S)+B2(S) 

revealed unexpected poles in the resulting quark propagator at Sp and sp where 

sp = 0.1737 + 0.2062i. 
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The position of the poles is reasonably stable for several choices of analytic 
fits to A and B (see Table 1), suggesting that the dressed quark propagator 
does contain a genuine singularity in the vicinity of Sp. We note in passing a 
possibly related phenomenon for the dressed electron propagator in massless 
QED (Atkinson and Blatt 1979) which has a pair of conjugate branch points 
in the complex plane. The fits to A and B in Table 1 also produce poles 
on the negative real s-axis which are clearly model dependent and which 
are sufficiently far away not to interfere with the regions defined by the 
inequalities (5). Approximate forms for A and B used in earlier works (Cahill 
et al. 1987) were free of poles for negative real s, reflecting the confining 
nature of QCD. However these forms were not complex analytic functions and 
not suitable for the current calculation. 

Table 1. Position of pole Sp in the quark propagator G(s) for various 
fits to the functions A and B 

The linear and tanh fits are given by equations (6) and (7). The gaussian 
fit is a fit to the function B(s) = Ke[(s-jI)/lT]2 and the power law fit is a fit to 

A(s) = K + DIs + B/(s + CWr 

A(s) B(s) Sp 

2 gaussian fit 0.1462 + 0.2324; 
2 tanh fit 0.1764 + 0.1968; 

linear fit gaussian fit 0.1378 + 0.2494; 
linear fit tanh fit 0.1737 + 0.2062; 

power law gaussian fit 0.1372+0.2863; 
power law tanh fit 0.1732 + 0.2196; 

The diquark propagator is also a source of singularities in the kernel KM. 
Our calculation uses a free scalar propagator with a pole at s = -m~. This 
pole is purely an artifact of the approximation used. The diquark belongs to 
a colour 3" representation and in its fully dressed form should also have a 
confining propagator which avoids poles on the negative s-axis. 

From (4) we see that the integral kernel KM has poles in the complex q4-plane 
arising from poles in the quark and diquark propagators at the following 
points: 

q~1.2) = -(1 - oc)iM ± )(sp _I qJ 2) 

q~,4) = -(1 - oc)iM ± )(sp -I qJ 2) 

q~.6) = -P4 - (1- 2oc)iM±)(sp-lp+qI2) (8) 
q7·S) = -P4 - (1 - 2oc)iM ± )(sp -I p + qJ 2) 

q~.lO) = i(ocM ± )(1 ql2 + m~). 

Fig. 4 shows the locus of these poles for typical values of oc and M. For the 
case shown, poles from the propagator G2 cross the real q4 -axis as 1 ql varies. 
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To keep the real Q4-axis free from poles, the following conditions must be 
met: 

(oe - 1)M -1] < 0 < (oe -l)M + 1], 

(2oe -l)M -1] < 0 < (2oe - l)M + 1], 

oeM - md < 0 < oeM + md , 

where 1] =Im(.jsp). This is possible provided 

M < min(31], md + 1]). (9) 

For higher nucleon masses the contour of integration should be deformed to 
pass beneath the poles 1 and 4 in Fig. 4. For these cases care should be taken 
to choose a value of oe which avoids, if possible, pinching of the contour 
between poles 1 and 4 of the propagator G2 and 6 and 7 of the propagator G 1. 

Fig. 4. Loci of the poles (8) in the int~gral kernel Ku in the complex q4 plane as IqJ varies. 
In this example we have chosen a nucleon mass of M = 0.9 GeV and momentum partitioning 
parameter ex = 0.45. The diquark mass is md = 0.568 GeV. The poles 1 to 4 arise from the 
quark propagator (;2, poles 5 to 8 from (;1 and poles 9 and 10 from the diquark propagator 
d. As P4 varies, the loci of poles 5 to 8 translate left and right along the real axis. The loci 
shown are for P4 = 0.25. 
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3. Numerical Results 

In this section, we examine numerical solutions to the integral equation (3) 
for the i + nucleon. To avoid singularities along the contour of integration 
we will restrict ourselves to nucleon mass values M satisfying (9). USing the 
above values of md=0.568 GeY and sp=(0.1737+0.2062i) GeY gives M.:s;0.65 
GeY, with a corresponding optimal value for the momentum partitioning of 
()( = ~. Unfortunately this mass range excludes the expected chiral nucleon 
mass of - 0.910 GeY, though it should, in principle, be possible to treat higher 
values of M by leaving the contour of integration in (3) along the real Q4-axis, 
and compensating for poles on the 'wrong' side of the contour by including 
residue terms. 

The integral is solved as an eigenvalue problem for the wave function 
(up. v p) and diquark form factor normalisation f. Starting with a trial· wave 
function and input nucleon mass M, we iterate with KM. The integration is 
done using Simpson's rule and a cutoff in P4 and I pi of 1 GeY. By setting the 
parameter ()( to its optimal value of ~, the need to analytically continue the 
form factor r off the real axis has been avoided. The procedure converges 
rapidly to give the highest eigenvalue f2 and corresponding wave function. 
We have also evaluated det(f-2KM -1) at fixed f and variable M in a couple of 
cases to check that the procedure is giving the lowest mass bound state. In 
Fig. 5 we plot the nucleon mass M against the calculated diquark form factor 
normalisation f. As expected on physical grounds, increasing the strength of 
the diquark-quark coupling by reducing f decreases the nucleon mass. The 
square of the nucleon form factor 'Pt'P = u* u + v* v is plotted in Fig. 6a for 
a nucleon mass of 0.6 GeY. The form factor 'P shares with the diquark form 
factor r a strong peaking at p2 = 0.2 Gey2 , the height of the ridge becoming 
more skewed towards the P4 -axis as M increases. 

To check that our results are independent of the momentum partitioning 
parameter ()(, we have also calculated f for M = 0.5 GeY and ()( = 0.6, ~ and 0.7, 
using the approximate gaussian fit (see Fig. 3) 

[ ( S-0.19)2] 
r(s) = exp - 0.11 ' (l0) 

to enable an analytic continuation of r to the required part of the complex 
s-plane. The resulting values of f agreed with each other to within 2%, and 
also agreed with the result using the original function r at ()( = ~ to within 
2%. Changing ()( amounts to a shift of the function 'P along the imaginary P4 
axis, giving 'P(p) in a different part of the complex P4-plane. We find that the 
plot of 'f't'P remains qualitatively unchanged as ()( varies, apart from a slight 
skewing of the ridge away from the the P4 -axis as ()( increases. 

The strongly peaked behaviour of r(s) has been used (Praschifka et al. 1988) 
to argue that the constituent mass of the quark within the scalar diquark is 
about 270 MeY, agreeing well with deep inelastic scattering experiments. We 
can use the similar behaviour of 'P to make an estimate of the constituent 
mass of the third quark within the nucleon. Since the form factors appearing 
in the integral equation (3) are strongly peaked functions acting almost like 
8-functions, we assume that the integral is dominated by a narrow range of 
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Fig. 5. The ~ + nucleon mass M plotted against the diquark form 
factor normalisation f (in GeV). The solid curve is obtained using 
the analytic fits (6) and (7) to the quark propagator functions A and 
B, the numerical solution in Fig. 3 for the diquark form factor r, 
and (X =~. The curve is truncated at M = 0.657 GeV, at which point 
the loci of poles 1 to 4 in (8) begin to cut the real Q4-axis. The 
dashed curves are obtained by replacing the quark propagators in 
(1) with propagators for free fermions of mass mq and using the 
gaussian fit (10) for r. 

arguments of the quark propagators. The running quark mass can then be 
replaced by a typical constituent quark mass without seriously affecting the 
calculation. To this end, we replace the confining quark propagator G by the 
propagator for a free fermion of mass m q , by setting A(s) = 2 and B(s) = 2mq . 

The dashed curves in Fig. 5 are the resulting plots of f against the nucleon 
mass M for various effective quark masses mq. For these calculations, the 
nucleon mass must be less than the ionisation energy mq + md, otherwise the 
integral in (3) encounters poles in either the diquark or quark propagators 
on the negative real s-axis. The calculations were done using the gaussian fit 
(l0) for T and with ()( set equal to an optimal value for the free propagators 
of md/(md + m q), allowing M to take values up to md + mq. 
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o 

o 
Fig. 6. (a) The square 'J't'J' of the nucleon form factor at 
f '" 0.0167 GeV, a nucleon mass M '" 0.6 GeV and momentum 
partitioning ex '" i. The vertical scale is arbitrary. (b) Same 
as Fig. 6a, but with the quark propagator functions A and B set 
equal to constants to give an effective quark mass of 0.418 GeV. 
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Comparing with the results of the full calculation, we read off a slowly 
varying constituent mass of 0.396 to 0.418 GeV over a range of nucleon masses 
from 0.4 to 0.6 GeV. Finally, we plot in Fig. 6b the square of the nucleon form 
factor for a fixed constituent quark mass of 0.418 GeV, nucleon mass of 0.6 
GeV and ex = ~ for comparison with the full calculation. The plots are similar, 
confirming our assumption that the contribution to the integral in (3) from the 
quark propagator is dominated by' only a narrow range of the running quark 
mass. A naive linear extrapolation gives a constituent quark mass of about 
0.45 GeV at a chiral nucleon mass near the physical value of 0.9 GeV. The 



158 c. J. Burden et al. 

resulting nucleon mimics a weakly bound quark-diquark state with a binding 
energy (in terms of equivalent mass, unconfined fermions) of about 0.1 GeV. 
Confinement then arises through a momentum dependence of the effective 
quark mass in the full quark propagator. A similar picture of effective weak 
binding was observed for the quarks within the f = 0+ diquark (Praschifka et 
al. 1988). 

4. Conclusions 

We have made numerical calculations of the i + nucleon mass using a QCD 
based formalism developed previously. In this formalism, the problem of three 
valence quarks interacting via gluon exchange is reduced to a quark-diquark 
two-body problem. The mass calculation then amounts to finding the solution 
of the integral equation (3) for the nucleon-quark-diquark form factor. The 
calculation is done in Euclidean 4-space. 

At this stage we study the nucleon in the chiral limit, in which the bare 
current mass of the quark is zero. The quarks acquire a dynamical constituent 
mass via gluon dressing. Our dressed quark propagator G(q2) is confining 
in the sense that it should have no poles on the negative q2-axis. However, 
analytic fits to G(q2), required for the solution of the nucleon integral equation, 
point consistently to the existence of singularities in G deep in the complex 
q2-plane. These singularities appear to be driven by the inflection point of the 
function B(s) in Fig. 2b, suggesting a possible connection with chiral symmetry 
restoration as Euclidean q2 increases. Although the precise meaning of these 
singularities is unclear, it is clear that they have repercussions for choosing 
an appropriate contour of integration in the nucleon integral equation. The 
calculated nucleon mass is a function of one free parameter, the diquark 
form factor normalisation t, which is so far undetermined (see the Postscript 
below). For sufficiently small nucleon masses, singularities in the kernel XM 
of the nucleon integral equation (3) remain clear of the real q4 -axis, leading 
to an unambiguous choice of contour. For the higher nucleon mass values, 
the contour of integration is determined by demanding that the nucleon mass 
be a continuous function of f. 

In this paper we have restricted our numerical calculations to nucleon mass 
values which do not require a deformation of the contour off the real axis. 
This mass range does not include the desired chiral nucleon mass of about 
1 GeV, though there is nothing to prevent an appropriate extension of the 
calculation to include this value. For nucleon masses up to 0.657 GeV we have 
calculated the functional dependence of the nucleon mass on the diquark form 
factor normalisation t, and find that the nucleon mass is very sensitive to 
small changes in f. Like the diquark form factor, the nucleon form factor 'J'(p) 
is sharply peaked about a non-zero value of its argument, suggesting that the 
quark and diquark within the nucleon propagate with a prefered momentum. 
We have exploited this idea to estimate the constituent mass of the third 
quark within the nucleon, obtaining a value of 0.396 to 0.418 GeV for nucleon 
masses of 0.4 to 0.6 GeV. A linear extrapolation to a more realistic nucleon 
mass of 0.9 GeV suggests a constituent quark mass of about 0.45 GeV. 
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It is clear that no exact QCD based calculation of the low energy hadron 
spectrum is currently possible. However, the approximations to QCD leading 
to our analysis are mainly well defined, and in certain cases, can in principle 
be avoided. For instance, the diquark is a "3 colour state and should have a 
confining propagator analogous to the confining quark propagator. It should 
be a straightforward matter to correct the diquark propagator with gluon 
dressing. Also, virtual quark loops could be included as nucleon self-dressing by 
virtual pions. Other missing diagrams are those including crossed propagators 
between valence quarks, though it is not clear how one could correct for these, 
or whether the omission is a serious one. Inclusion of the vector diquark 
as well as the scalar diquark is also possible with no further technological 
breakthroughs, but it is unlikely that this would seriously alter our results. 

To summarise, we have made initial numerical calculations of the nucleon 
mass from a fully covariant QCD based treatment of hadron structure, and 
find that the analysis admits the existence of quark-diquark bound states. Our 
numerical calculations are extremely economical in terms of computer time 
compared with the analogous quenched calculations of LGT. Obtaining a single 
point in Fig. 5, together with the nucleon form factor takes about 15 minutes 
of CPU time on a Prime-9955, which is equivalent to less than 10 seconds on 
a CRAY I. 

Postscript 

Equation (1) has now also been derived using functional integral calculus 
(FIC) methods (Cahill 1989, present issue p. 171), and we find that f2 = fo[T]2 /3, 
where fo[T] is the functional defined in Cahill et al. (1987). This then gives 
f = 0.057 GeV for the r used herein, and from Fig. 5 we would then expect 
a bare nucleon chiral mass of "" 1.2 GeV. Dressing of such a bare nucleon by 
pions would lower the mass typically by some 200 MeV (see Pearce and Afnan 
1986). 
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