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Abstract 

A modified scheme using the shooting method to solve the nonlinear coupled·wave equations 
for degenerate four-wave mixing is proposed. This simple scheme significantly improves the 
efficiency of this numerical method and the accuracy of computed results. 

The shooting method (Walsh 1977) is one of the most powerful and 
popular numerical methods to solve two-point boundary-value problems. It has 
recently been used to obtain numerical solutions of the nonlinear coupled-wave 
equations for degenerate two-wave mixing (OTWM), four-wave mixing (OFWM) 
and six-wave mixing (OSWM) (Erbschloe et al. 1988; Kukhtarev and Kovalenko 
1980; ja 1983a, 1983b, 1984a, 1986a). Compared with other numerical 
methods which have also been used for solving the same problems, such as 
the O(h7 ) method (Ja 1984b) (one of the general finite difference methods) 
and the finite element method (Ja 1986b, 1988), the shooting method has the 
following advantages: 

(a) It is straightforward and easy to implement and program, and it 
requires much less storage. 

(b) It can be used for constructing automatic computational procedures. 
(c) Only several starting values are needed, while in the finite difference 

and the finite element methods the values of every element of a matrix 
have to be guessed. Thus, there are more stringent requirements on 
the choice of the starting values in the latter methods. 

In a previous scheme using the shooting method, the dependent variable 
in the differential equations is the beam intensity. For example, Fig. 1 shows 
the OFWM configuration in a reflection geometry with no externally applied 
electric field. With a small incident angle e, reflection gratings such as those 
formed by two interfering beams A2 and A3, or Al and A4, will be dominant. 
We therefore call it a reflection geometry. 

The physical process taking place in the photo-refractive crystal, which 
is responsible for the formation of the gratings, can be described briefly 
as follows: when the crystal is illuminated by these coherent light beams, 
intensity interference fringes are formed. Photo carriers (e.g. electrons) are 
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Fig. 1. Four-wave mixing arrangement in a photo-refractive crystal for the reflection geometry 
shown. It is assumed that the average refractive index n is the same for regions I, II and Ill. 

released by photo-excitation from donor centres. and move in the conduction 
band by diffusion (macroscopically they move to darker areas). Later they are 
captured by the trapping centres. The redistribution of these electrons by 
retrapping then creates a periodic space-charge field. which in turn modulates 
the refractive index of the crystal through the linear electro-optic (Pockels) 
effect. Consequently. a phase volume grating is formed. 

The reading beam Al (one of the antipropagating pump beams) is diffracted 
by the reflection grating formed by the pump beams A2 and the signal beam 
A3. A phase-conjugate beam A4 is then generated and travels in the opposite 
direction to beam A3. 

The differential equations for the steady state can be expressed as (Ja 
1983b; Kukhtarev and Odulov 1979) 

(1) 

In equations (1) h. lz. 13 and 14 are. respectively. the intensities of two 
antipropagating pump beams. the signal beam and the generated phase­
conjugate beam. where beams 1 and 3 impinge on the crystal from the same 
side (z = 0) while beams 2 and 4 are on the opposite side (z = 1. normalised). 
and where 10 = h+12+h+14. 01./ is the absorption factor. g/ is the gain factor 
and / is the crystal thickness. The plus sign applies when g> O. while the 
minus sign applies when g < O. 
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When using. equations (1) in the shooting method scheme. drawbacks have 
been found: 

(1) Since the equations (1) contain square root terms. the program will not 
work if any value of 1 becomes negative in the computation procedure 
(physically 1 should be ~O because it is the intensity of an optical 
beam). In addition, a new set of starting values has to be guessed 
and the program to be tried again. Thus, convergence may be slow. 
The boundary condition for the intensity of the phase-conjugate beam 
is 14(1) = 0, and 14 usually increases gradually with z changing from 
unity to zero. When using the Newton-Raphson iteration to obtain a 
good approximation to the true value, the approximate value can be 
either larger or smaller than the true one. Since the true value of 14 

is very small when z"" 1. its approximate value may become negative 
in some cases during the computation procedure. If this occurs, the 
program will fail. 

(2) In general. the wavefront reflectivity W = 14(0)/h(0) (the intensity ratio 
of the generated phase-conjugate beam to the signal beam at z = 0) is 
quite small. espeCially in the case of DFWM in a reflection geometry 
where W is always less than unity Oa I983b). Thus, 14(0) is usually 
much smaller than II (0), 13(0) or 12(1). The shooting program will 
usually be terminated when the difference between the computed and 
given values of 11 (0) [and 13 (O)J is smaller than or equal to a small 
prescribed value € (say 10-4). However, since 14(0)« IdO) or 13(0), a 
much larger error in 14(0) may result. Only when the values of It (0), 
h(O) and 14(0) are of the same order can we expect relative errors in 
them of the same order. 

To remove these two drawbacks, equations (1) can be transformed into the 
following form by using the simple variable transform Ii = Yf (i = 1,2,3,4): 

dYl exlYl glY4(Yl Y4 ± Y2 Y3) 
dz =--2- - 10 

dY2 exlY2 g1Y3(Y2Y3 ±Yl Y4) 
dz = -2- - 10 

dY3 exlY3 g1Y2(Y2 Y3 ±Yl Y4) 
dz =--2- - 10 

dY4 exlY4 glYl (Yl Y4 ± Y2 Y3) 
dz = -2- - 10 (2) 

where now 10 = Yi+Y~+YhY~. It can be seen that since Y is not the beam 
intensity, it can have a negative value. Furthermore. the value of Y4(0) will be 
closer to Yl (0) and Y3(O) than 14(0) to It (0) and h(O), because usually 14 « 1. 
Therefore. the relative error in the computed wavefront reflectivity will be 
smaller. In other words, using equations (2), instead of (1), the program will 
be more likely to work and offer more accurate computed results. 

For DFWM in a reflection geometry with the phase shift angle IJ1 = Tf/2 
between the intensity interference pattern and the generated phase grating and 
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with no absorption (ex = 0), an analytical (exact) expression for the wavefront 
reflectivity has been given by Cronin-Golomb et al. (1984) as 

W = I} (0) sinh2U 
13(0)(1 + sinh2 U) , 

(3) 

where 

(4) 

The computed results, using equations (1) and (2) respectively, in the shooting 
method scheme can then be compared with those obtained by using the exact 
formula (3). In all computations, only single precision is used. 

Table 1. Computed values of the wavefront reflectivity W in various schemes 

Scheme N gl=0·0005 gl=0·05 gl= 5 TimeE 

W (x10-8 ) ErrorD W (x10-4 ) ErrDrD W ErrorD 

ExactA 4·0004312 4·0377957 0·65180300 
Scheme 1 B 40 3·9975037 7·5xl0-4 4·0352589 5 ·Oxl0-4 0·65160830 3 . Ox 10-4 7·7 
Scheme 2c 40 4·0003997 7·9xl0-6 4·0377951 1·5xlO-7 0·65180279 3·2xl0-7 8·2 

20 4·0004001 7·8xl0-6 4 ·0377953 1 ·OxlO-7 0·65179871 6 ·6xlO-6 5·4 

A See equation (3). B Equations (1). c Equations (2). ° Relative error in W. E Total computer time (relative units). 

Table 1 shows the computed wavefront reflectivity using these three sets 
of equations. For generality, a large range of values of gl (0·0005, 0·05 and 
5) is chosen. The pump ratio is 12(1)/1} (0) = 1, the signal to pump beam ratio 
13(0)/ II (0) is 0·5 and the absorption ex = 0 with 11(0) == 1 (normalised). 

An inspection of Table 1 shows the following. 

0) When dividing the range of z (from 0 to 1) into 40 small subsections 
(N = 40) in the integration of equations 0) and (2) for all values of gl, 
scheme 2 using equations (2) produces much more accurate results 
than scheme 1, while the computer time is virtually the same. 

(2) In scheme 2, the same set of starting values of II 0) and h(1) is 
used for all values of gl, while this is not the case for scheme 1. 
For instance, when gl = 5 where the saturation range (W is nearly 
independent of gl) is approached, a different set of starting values of 
11 (1) and h(1) have to be used. This means that scj1eme 2 is much 
easier to work with. . 

(3) With N reduced from 40 to 20, the accuracy of the compur'ed results 
using scheme 2 is approximately the same, but less computer time is 
used. If high accuracy is not required (e.g. a relative error of 0·01 or 
only three digits is required), use of scheme 2 can save considerable 
computer time. 

(4) In scheme 1 when W is small its computed value depends on the 
approximate value of [40), though the computed values of II 0), h(O) 
and hO) do not. However, in scheme 2, W is virtually independent 
of 140). 
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In conclusion, scheme 2 using equations (2) is more advantageous than 
scheme 1 using equations (1) with respect to both accuracy and computer 
time. Although we have only dealt with DFWM in a reflection geometry, it is 
expected that similar results would be obtained with DFWM in a transmission 
geometry. With regard to the finite difference method (Ja 1984b), an improved 
computer program based on the same principle has been written and a similar 
conclusion can be drawn as well. For two-wave mixing, because there are no 
square root terms in the differential equation, a similar variable transform 
may not be necessary. 
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