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Abstract 

Exact cosmological solutions of the field equations in Brans-Dicke (BD) theory, with k = 0, 
FRW metric have been obtained in the presence of bulk viscosity. It is found that constant 
bulk viscosity leads to an inflationary solution for large values of the BD coupling parameter 
w. The case of radiative bulk viscosity during the decoupling era is investigated and the 
production of entropy is estimated. 

1. Introduction 

It has been shown (Padmanabhan and Chitre 1987) that the presence 
of bulk viscosity leads to inflationary-like solutions in general relativistic 
Friedman-Robertson-Walker (FRW) models. Here we investigate the role of 
bulk viscosity in cosmological evolution in the G-varying scalar-tensor theory 
of Brans-Dicke. It is well known (Mathiazhagan and Johri 1984) that the 
gravitational coupling constant G decreases very fast during the inflationary 
scenario in the BD theory and, as such, it is of interest to see how bulk 
viscosity modifies the behaviour of BD cosmological models during various 
stages of expansion. It is noteworthy that bulk viscosity is the only dissipation 
mechanism compatible with the spatial homogeneity and isotropy (Weinberg 
1972) of the observable universe; another peculiar characteristic of bulk 
viscosity is that it acts like a negative energy field in an expanding universe 
(Johri and Sudharsan 1988b). 

There are many circumstances in the evolution of the universe in which 
bulk viscosity could arise (Ellis 1971): (i) when neutrinos decouple from the 
cosmic fluid (Misner 1968); (ii) when photons decouple from matter; (iii) at the 
time of the formation of galaxies; (iv) when a superconducting string moves 
in a magnetic field (Ostriker et al. 1986); and (v) during particle creation 
in the early universe (Hu 1983) and during monopole-monopole interaction. 
These various processes giving rise to bulk viscosity could lead to an effective 
mechanism for entropy production. 

Here we consider the FRW line element (with the curvature parameter zero) 
given by 

(1) 
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where R(t) is the scale factor. This metric describes very well the observed 
homogeneity and isotropy of the universe over scales larger than 50 Mpc. The 
source energy-momentum tensor Tab for the metric (1) is usually taken to be 
that of a perfect fluid, given by 

Ua = (-c,O,O,O); 

(2) 

(3) 

where p is the energy density, p the isotropic pressure and Ua is the 4-velocity 
of the fluid. Investigations (Johri and Sudharsan 1988a) have shown that 
cosmological observations of the present day universe cannot preclude the 
existence of a tiny bulk viscosity which would be consistent with the geometry 
of the FRW model. Thus, a general expression for the energy-momentum 
tensor for a spatially homogeneous and isotropic universe is given by 

(4) 

with 

(5) 

where J1 is the coefficient of bulk viscosity and e the expansion scalar in the 
case of the metric (1). An overhead dot denotes differentiation with respect 
to time. 

In the BD theory the field equations are given by 

8IT W A.. A.. 1 A.. 
Gab = - c4 </> Tab - </>2 ('f';a 'f';b - "Lgab 'f';C </>;C> 

1 2 
- (f)(</>;a;b - gab 0 </», (6) 

(7) 

where </> is the long range scalar field (which varies inversely as the gravitational 
constant G) and w the BD coupling parameter. 

In Section 2, we solve the field equation (6), with Tab given by (4) and the 
space-time metric by (1), when the coefficient of bulk viscosity is in general a 
function of time. In Section 3 we obtain solutions for two particular cases: (I) 

when the coefficient of bulk viscosity is a constant and (II) when the coefficient 
of bulk viscosity is a function of time and arises from the radiation drag 
during the decoupling of radiation from matter. 

2. Field Equations and the General Solutions 

The BD field equations (6) with an equation of state 

(8) 
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reduce to 

3R2 3R4> W(4))2 8rr 
R2 + Ref> - 2(ef»2 = (j) p, (9) 

2R R2 1> W(4))2 2R4> 8rr 24rr R 
"If + R2 + "Cj) + 2(ef»2 + Ref> = -(j) YP + c2ef> P R' (10) 

. . ( .2) .. 3 Ref> 8rr 2 R 
ef> + -R = 2 (1- 3y)pc + 9p 2 ' 

(3 + 2w)c R 
(11) 

(12) 

where (9) is the time-time component and (10) the space-space component 
of the field equation (6); equation (7) leads to (11) whereas the conservation 
equation Tab;b = 0 yields (12). 

If we assume that the coefficient of bulk viscosity is a function of time 
only, as expected in a homogeneous universe, we have four unknowns R(t), 
ef>(t) , p(t) and p(t) to be determined from equations (9)-(12), out of which only 
three are independent; as such the problem remains unsolved unless we can 
find out the functional form of p(t). 

In homogeneous space-time, the scalar field ef> is a function of time only 
as such it can be expressed as a function of the scale factor R(t) as well. For 
the sake of simplicity we assume the power law relation 

ef>(t) = KROI , (13) 

where K is a constant and ()( the power index. 
With (13), the field equations (9)-(11) reduce to 

-(8rr/ef»yp + (24rr/c2ef»pR/R = (2 + ()()R/R + (1 + ()( + ()(2 + W()(2 /2)R2 /R2 , (15) 

Eliminating p(t) and p(t) from (16) with the help of (14) and (15), we obtain 
the simple differential equation in R(t) 

(17) 

which readily yields on integration 

R(t) = (t/tc)l/(l+{3) ; tc = constant (18) 

with the initial condition R(O) = 0, where 

f3 = (W()(2 + 4w()( - 6)/2(w()( - 3) ; (W()( - 3) # O. (19) 
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Equations (I4) and (I8) lead to 

p(t) = Po(t/tdJC/(P+ll-2 , 

where 

Po = (K/8rr)(3 + 30e - woe 2/2)/(/3 + 1)2t2 ' 

whereas (18) and (20) in conjunction with (IS) give 

Il(t) = IlO(t/tC>OI/(P+ll-l , 

where 

Ilo = {Kc2/24rr(/3 + l)td{(l + oe + oe 2 + woe2/2) 

(20) 

(21) 

(22) 

+ ;y(3 + 30e - woe 2 /2) - (oe + 2)/3}. (23) 

In general, once the functional form of Il(t) is known, which depends upon 
the specific dissipative process under consideration during the epoch, the 
solutions are completely specified in terms of the coupling parameter w. 

3. Particular Solutions 

In this section we consider the following two cases: the coefficient of bulk 
viscosity is a constant Ilo and, secondly, that it is a function of time arising 
from radiative viscosity during the decoupling era. 

Case I: Here we assume that the universe might contain a primordial 
component of bulk viscosity Ilo as suggested by Padmanabhan and Chitre 
(1987); such a primordial bulk viscosity might be inherent in the cosmic fluid 
analogous to the cosmical constant. By virtue of (22), the assumption Il = Ilo 
implies that 

oe=/3+1, (24) 

which leads to a solution for oe in terms of w, 

1 

oe = {3(w+ 1)±(9w2 +6w+9)2"}/w. (25) 

In order that R(t) is an increasing function of time and that p(t), p(t) etc. 
are positive definite, we can consider only the minus sign in (25). Thus, the 
complete solution in the case of constant bulk viscosity is 

R(t) = (t/tcl1/ 0I , 

p(t) = (t/tc>-l , 

cf>(t) = K(t/tC> , 

p(t) = ;yc2 p(t) . 

(26) 

(27) 

It is seen from (25) that, for large values of w, oe is very small and is 
of the order of l/w. Hence we find that, for sufficiently large values of 
w, R(t) exhibits an inflationary nature, although of the power-law type, since 
R - (t/tc>°(wl would give rise to very rapid expansion. 
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Now we proceed to estimate the amount of entropy produced due to the 
presence of a constant bulk viscosity, which is given by (Weinberg 1971) 

(28) 

where (J' is the entropy per baryon, k the Boltzmann constant, T the temperature 
and n the baryon number density; when conserved it is given by 

no = constant. (29) 

Here we consider the amount of entropy produced during the decoupling era, 
which is characterised by y ~ j [see the equation of state (8)]; the energy 
density is given by Stefan's law 

(30) 

where a is Stefan's constant. 
Substituting from (26), (27), (29) and (30) in (28), we have 

(31) 

Integrating (31) between the limits t1 and t2 we have 

q = 3(4 - oc)/4oc. (32) 

For positive entropy production we must have q > o. This constrains the 
coupling parameter w to lie within the limits (-1·5,00) with wi- O. It is seen 
that for large values of w the exponent is q ~ l/oc ~ O(w) and, as such, a very 
large amount of entropy is produced provided tc < t1 < t2, but if the condition 
o < t1 < t2 < tc holds we may not have sufficient entropy produced. It is also 
seen from (26) that inflation takes place only if tlte > 1. 

Case II: Here we consider the effect of bulk viscosity during the decoupling 
era, where the bulk viscosity arises due to a longer mean free time for 
photons than for matter. Since around the decoupling era matter is radiation 
dominated, we assume an equation of state characterised by y ~ j, such that 
8 == 1 j - yl i- 0, but 8 « l. 

The bulk viscosity arising due to radiation drag is given by (Weinberg 1971) 

(33) 

where T is the mean free time for photons given by 

(34) 

where (J'T is the Thomson cross section for the scattering of photons by 
nonrelativistic electrons. With the help of equations (34), (30), (29), (20) and 
(18), equation (33) becomes 

(35) 
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For equations (35) and (22) to be compatible we must have 

{3 = 2. 

Substituting (36) in (19) we obtain 

1 

ex = ±(-6/W)2. 

Inserting the value of ex, equations (18)-(22) lead to 

1 

R(t) = (t/td 3 , 

pet) = Po(t/tdb- 2 , 

cp(t) = K(t/tdb , 

J1(t) = J1o(t/tc>b-1 , 

(36) 

(37) 

(38) 

(39) 

where b = ex/3 is real only if w < O. These solutions are physically viable for 
an expanding universe only if the following conditions hold: 

(i) cp(t) is an increasing function of time (Le. G decreases with time); 

(ii) J1(t) and pet) are decreasing functions of time; and 
(iii) J1(t) > 0 for positive entropy production. 

The constraint (i) implies that b> 0 and (ii) and (iii) imply that 

-i < w<-~. (40) 

Further, by virtue of (39), (38), (30), (29) and (28), the variation in entropy is 
given by 

(41) 

Integrating between t1 and t2, the increase in entropy is 

m = (3b - 2)/4. (42) 

Thus, in the case of radiative bulk viscosity, the entropy produced turns out 
to be negligibly small for the narrow range of w prescribed in (40), simply 
because it leads to m < 1. This is similar to the result obtained in the 
relativistic case (Johri and Sudharsan 1988a). Moreover, the negative range 
of values imposed by the above physical considerations is too restrictive and 
unrealistic in view of the observational constraints set on· w (Reasenberg et 
al. 1979; Will 1981; Alley 1983). 

4. Discussion 

The cosmological solutions in the presence of bulk viscosity are completely 
determined only if the functional dependence of J1(t) on time is known, which 
in turn depends on the physics of the dissipation mechanism giving rise 
to J1(t). Two particular cases are discussed in Section 3. The solution with 
constant bulk viscosity is a power-law type and exhibits inflationary growth 
for sufficiently large values of w. The power-law dependence of cp(t) and pet) 

is independent of w, and as expected these solutions do not reduce to the 
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relativistic case, unlike the perfect fluid BD-FRW solutions which reduce to 
the relativistic case in the limit W-> 00. 

It is found that the behaviour of the solution obtained in the case of constant 
bulk viscosity is similar to the one obtained (Mathiazhagan and ]ohri 1984) in 
the BD theory in the presence of the cosmological constant 11, which acts as 
the vacuum energy density in inflationary cosmologies. The rate of entropy 
production due to the presence of constant bulk viscosity can be sufficiently 
high to account for the presently observed entropy density, provided the value 
of w lies within the prescribed range (-1·5 < w < 00). 

The solutions obtained in the case of a radiative bulk viscosity satisfy the 
condition that p(t) and p(t) are decreasing functions of time in an expanding 
universe; also, the positive entropy production condition p(t) > 0 is satisfied 
provided the BD coupling parameter lies in the range given by (40). This 
range for w is too restrictive and unrealistic and not at all compatible with 
the present observational limit set on w as cited above and, also, does not 
lead to sufficient entropy production. 

5. Conclusions 

We have discussed in general the compatibility of the BD theory with the 
entropy production in FRW viscous cosmologies. During the course of our 
investigations we analysed the BD coupling parameter w under two cases: 

(j) p = Po: these solutions are valid for a wide range of w (-1·5 < w < 00). 

We find that the presence of a constant bulk viscosity coefficient acts like a 
cosmological constant and leads to an 'inflationary' like power-law solution. 
It is also seen that the entropy produced due to the presence of constant 
bulk viscosity could be sufficiently high to account for the observed entropy 
per baryon. Thus, the inflation induced by a constant bulk viscosity leads to 
sufficient entropy production, as in the case of relativistic models (Johri and 
Sudharsan 1988a). 

(ij) p = p(t): the investigations showed that a radiative bulk viscosity alone 
cannot lead to inflation. It is seen that sufficient entropy cannot be produced, 
and moreover for p(t) and p(t) to be decreasing functions of time the coupling 
parameter w must be restricted to a very narrow negative range (40); hence, 
these solutions are too restrictive and observationally unacceptable. 
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