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Abstract 

Contributions to the predominantly E2 Coulomb excitation of the first excited states of 6U, 7U, 
lOB, 11 B, 12C and 170 due to virtual E1 transitions through intermediate states are calculated 
using for all states shell model wavefunctions of the lowest admissible configurations, 
obtained with a realistic Hamiltonian. When harmonic oscillator single-particle wavefunctions 
are used, the contributions can be calculated rigorously but are generally less than the 
experimental values. Increases due to use of Woods-Saxon wavefunctions are estimated in 
a semi-quantitative way. For 170, the additional increase due to admixtures from higher 
configurations in the wavefunctions is also considered. 

1. Introduction 

Coulomb excitation has been used to measure B(E2) values for transitions 
between the ground and excited states of nuclei, and also the quadrupole 
moments of ground and excited states, through the reorientation effect. In 
order to obtain reliable values, allowance has to be made for the contribution 
to Coulomb excitation due to the second-order process involving virtual El 
transitions through higher eXCited states, including the giant dipole resonance 
(GDR). 

Various essentially equivalent parameters have been used to measure the 
strength of this E1 contribution. These include Tif, 5(E1) and k, which are 
defined in the next section. Recently there have been several measurements 
and calculations of Tif for light nuclei, and particularly for 7U. 

Many of the calculations for 7U have made use of an £X+t cluster description 
of the 7U states involved (Smilansky et al. 1972; Mertelmeier and Hofmann 
1986; Fatemian et al. 1986). Hausser et al_ (1973) pointed out that significant 
contributions to Tif could come from other than £X+t channels, and Mertelmeier 
and Hofmann found that inclusion of a component in the scattering functions 
from 6Li+n channels increased Tif by about 50%. Kajino et al. (1988) estimated 
that the £XH channel contributes only one third of the total Tif. Hausser et al. 
used a schematic model to obtain an upper limit on Tif. Shell model calculations 
of Tif for 7U have been made by Barker (1982a) and Gomez-Comacho and 
Nagarajan (1985). Barker assumed that all the E1 strength was concentrated 
at a single energy, taken to be the GDR energy, and then used the closure 
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approximation to simplify the calculation. * Gomez-Comacho and Nagarajan 
used a very simplified Hamiltonian, with harmonic oscillator single-particle 
wavefunctions. In both of these calculations, the value of Tif was renormalised 
by an appreciable factor obtained by making E2 matrix elements agree with 
experiment. 

Here we perform a shell model calculation with a realistic Hamiltonian (van 
Hees and Glaudemans 1983, 1984) and wavefunctions restricted to the lowest 
configuration, and include the contribution from each intermediate dipole 
state individually without making use of the closure approximation. Initially 
harmonic oscillator single-particle wavefunctions are used, in which case the 
calculation can be made consistently and rigorously. Changes due to the use 
of the more realistic Woods-Saxon wavefunctions are estimated. 

The above discussion concentrates on 7U, but similar calculations are 
possible for other Ip-shell nuclei. We here include 6U, lOB, 11 Band 12C, as 
well as 170. All of these except 11 B were considered previously by Barker 
(1982a, b). In each case an experimental value of Tif is available, or a value of 
Tif has been required in order to analyse experimental data. For the 6U and 
7U cases, we calculate Tif corresponding not only to excitation of the first 
excited state but also to elastic scattering. 

In the particular case of 170, because of the simple nature of the wavefunctions 
of the ground and first excited states, it is possible to estimate the effect on 
Tif of the introduction of admixtures from higher configurations, chosen to fit 
E2 matrix elements. 

Compared with the earlier shell model calculations of Barker (1982a, b), we 
do not here make the closure approximation, which was assumed for simplicity, 
and compared with the calculations of Gomez-Comacho and Nagarajan (1985) 
for 6U and 7U, we use a Hamiltonian and single-particle wavefunctions that 
are more realistic, and we cover a wider range of nuclei. 

Section 3 describes the calculation of Tif in the approximation that the 
initial and final states belong to the lowest shell model configuration and 
the single-particle wavefunctions are harmonic oscillator. The changes in Tif 

due to the use of Woods-Saxon wavefunctions are given in Section 4, and 
the additional contribution to Tif for 170 due to admixtures from higher 
configurations in Section 5. These and other calculations are discussed in 
Section 6. 

2. Formulae and Previous Values of Tif 

The tensor moment of the electric polarisability, Tif, for the transition from 
the state i to the state f, is defined by (Lopes et al. 1983; Weller et al. 1985) 

1 

Tif = ~Tf(.lj)"2 L W(llJilf,2Jn)(i 115\1(El) I/n}(n 115\1(El) 11f)/(En -Ei), (1) 
n 

where the sum is over all intermediate states n that are connected by the 
El operator to both i and f. The reduced matrix elements are as defined by 
de-Shalit and Talmi (1963). The relation between Tif and the quantity 5(El) 

* Contrary to the implication by Gomez-Camacho and Nagarajan (1985), Barker (l982a) 
included excitation of nucleons from both the 1 sand 1 p shells. 
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defined by Hausser et al. (1973) is 

(2) 

The parameter k (Hausser et al. 1972), which is the ratio of the actual dipole 
contribution to that calculated from the hydrodynamic model as empirically 
modified by Levinger (1957), is given by (Barker 1982a) 

k=X/Xo, (3) 

where 

x = 5(El)/(i II M(E2) II t) (4) 

and 

Xo = O· 00058A/Z e MeV-I. (5) 

One also has 

8(E2; i - f) = (2Ji + 1)-1 I(i II M(E2) II t) 12. (6) 

In most measurements, the state i is the ground state (labelled 1) and f is 
the first excited state (labelled 2), so that values of T12 are obtained. Elastic 
scattering of aligned 7U nuclei has also provided a value of TIl. We use 
values of 5(E1) and k corresponding to T12 only. Although the signs of Tll 
and of k are necessarily significant, the sign of T12 is significant only if the 
relative sign of the wave functions of the states 1 and 2 is fixed in some 
way-we choose this so that (1 II M(E2) 112} > O. 

Experimental and calculated values of Tll, T12, 5(E1) and k previously 
obtained for light nuclei are collected in Table 1. In each case the original 
value is given without parentheses, and derived values are in parentheses. 
The value of 8(E2;.1 - 2} used to relate S(El) and k is also given. 

3. Calculation of Tif using Harmonic Oscillator Wavefunctions 

We initially calculate Tif using harmonic oscillator single-particle wavefunc­
tions. The calculation is described in detail for 7U, and only the significant 
differences are given for other nuclei. A summary of the input experimental 
data and the resultant calculated values is given in Table 2, for each of the 
nuclei considered. 

(a) 7U 

In the expression (1) for Tif, the state i for 7U is the JITT = r i ground state 
and f is either the ground state or the ~ - ~ first excited state. The intermediate 
states n are the complete set of nonspurious states with p T = ~ +, r and ~+ 
and T= ~ and i. 

Van Hees and Glaudemans (1983,1984) performed (O+l)hw shell model 
calculations of the properties of both normal and non-normal parity states 
of all the Ip-shell nuclei, using a translationally invariant treatment that 
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Table 1. Parameter values for El strength in Coulomb excitation 

0·23±0·06 
-0·269 

-0·017, -O·ll b,d) 

-0·084, -0· 066d) 
-0· 120e) 

S(El) 
(e2fm 2MeV-l) 

(a) Experimental 
(0·28) (0·038) 
(0·26) 0·036 
(0·19) (0·026) 
(0·20) (0·027) 
(0·21) 0·028±0·004 

(0·12-0·19) 0·017-0·026 
(0·15) (0·020) 

0·23±0·06 (0·031) 
0·289 (0·039) 

(0·039) (0·0054) 
(0·039) (0·00S3) 

(0 ·18) (0· 02S) 
(b) Calculated 

0·034a) 

'" tTl! t 
0·092,O·031d) 

'" tTIl t 
",O·OSd) 

o ·0198b,e) 
o ·OlOe) 

0·014d) 

<O·OSa) 
O·Ol77b,e) 

0·012e) 

O·OOSOb.e) 

0·0057b,e) 

0·01l3b) 

k 

3·9 
(3·6) 
2·6 

3·S±0·7 
(3·6) 

(2·3-3·4) 
2·7±0·2 

(4·0) 
(4·9) 

1·3±0·3 
1·3±0·2 

S·7±0·4 

1·94b.e) 

2·27b,e) 

1·22b.e) 

O·77b.e) 

2·59b) 
",4 

B(E2; 1-+ 2) Ref. 
(e2 fm4) 

24 
24 

2S·6 
8·3 
8·3 

7·2-7·9 
7·42 
8·3 
8·90 

1· 81 
1·79 

2 ·10 

25·6 

7·0 

8·3 

1·81 

38·8 

2 ·10 

31·9 
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A Disdier et al. (1971). B Hausser et al. (1973), using data ofDisdier et al. (1971). C Gemmeke 
et al. (1978). D Hausser et al. (1972). E Hausser et al. (1973). F Hausser et al. (1973), 
using data of Bamberger et al. (1972). G Vermeer et al. (1984a, b). H Weller et al. 
(1985). 1 Kajino et al. (1988). J Vermeer et al. (1982). K Vermeer et al. (1983b). L Kuehner 
et al. (1982). M Barker (1982a). N Gomez-Comacho and Nagarajan (1985). 0 SmiJansky 
et al. (1972). p Mertelmeier (1985), Mertelmeier and Hofmann (1986). Q Fatemian et al. 
(1986). R Barker (1982b). s Barker (1982c). 

a) Schematic model. b) Uses closure approximation. e) Renormalised to fit B(E2). d) Includes 
CHt channel only. e) Includes (){+t, 6U+n channels. 

completely eliminated spurious states. We have repeated their calculation, 
using the Oxford-Buenos Aires-MSU shell model code (Brown et al. 1986) to 
obtain the energies and wave functions of all the states i, f and n. As discussed 
in Barker and Woods (1985), the energies of the non-normal parity 7U states 
calculated with the van Hees and Glaudemans interaction appear to be about 
4 MeV too high, so we reduce all calculated values of En - Ei by 4 MeV. 
The E1 matrix elements are calculated with harmonic oscillator single-particle 
wavefunctions, using for 7U a length parameter bo chosen to fit the measured 
rms charge radius Ych = 2.35 fm (Ajzenberg-Selove 1984). 
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Table Z. Values of quantities relevant to calculated El strength 

Nucleus 6U 7U lOB liB 12C 170 

Shift in energy (MeV) -1 -4 0 0 0 -4 
rch (fm) 2·51 2·35 2·45 2·42 2·47 2·71 
Q (e fm2jA (-0·064) -4·06 (8·47) 4·065 (6) (-2·578) 
B(E2) (e2 fm4)A 25·6 (7·42) 4·18 (2·6) 7·76 2·101 
(111.M(E2) 112) (e fm2) 8·76 5·47 3·54 3·15 6·23 3·55 

(a) Harmonic oscillator 
bo (fm) 1·891 1· 737 1·658 1·630 1·635 1· 761 
Llele 0·548 0·397 0·305 0·274 0·232 0·524 
Q (e fm2) 0·09 7·90 5·79 -3·25 
B(E2) (e2 fm4) 7·48 2·47 
Til (fm3) -0·0062 -0·0599 
TI2 (fm3) 0·0667 0·0566 0·0353 0·0357 0·0360 0·0500 
StEll (e2 fm2 MeV-I) 0·00908 0·00771 0·00481 0·00486 0·00491 0·00681 
k 0·89 1·04 1·17 1·21 0·68 1·56 

(b) Woods·Saxon 
ro (fm) 2·014 1·855 1·416 1·439 0·412 1·256 
R (fm) 3·44 3·37 2·95 3·10 3 ·14 3 ·16 
Llele 0·183 0·218 0·078 0·245 0·158 0·389 
Q (e fm2) 0·11 5·54 5·74 -2·76 
B(E2) (e2 fm4) 7·32 3·86 
Til (fm3) -0·015 -0·125 
Tl2 (fm3) 0·186 0·115 0·066 0·038 0·034 0·125 
S(El) (e2 fm2 MeV-I) 0·0254 0·0156 0·0090 0·0051 0·0046 0·0170 
k 2·5 2·1 2·2 1·27 0·63 3.98 

A Experimental values. Values not in parentheses used for deriving Lle. 
B With inclusion of configuration mixing. k = 5 . 3 (see Section 5). 

The El matrix elements calculated with harmonic oscillator wavefunctions 
satisfy various relations, which can be used to test the completeness of the 
set of intermediate states n. From Barker (1982a), equation (8) or (14) together 
with (5) and (18), one has 

~ W(1l]iJf, 2Jn)(Jj ~ II M(El) 11.11; Tn){r" Tn II M(El) IIJf ~} = 0 
nj.T. 

U· - 1 3. Jf - 1 3) (7) 
1 - Z, Z' - Z, Z . 

Because the operator 0 1 analogous to & (defined in equation (6) of Barker 
1982a) is identically zero, one also has 

~ W(Il]ilf, l]n)(Jj ~ II M(El) llYn Tn){r" Tn II M(El) IIJf ~} = 0 
nj.T. 

UI - 1 3.Jf-l 3) (8) - Z'Z' - Z'Z • 

From equations (7) and (8) for Ji #:Jf, it follows that for each value of In 

~ (Jj ~ II M(El) llYn Tn)(Ji, Tn II M(El) IIlf ~} = 0 (9) 
nT. 

The matrix elements also satisfy the sum rule 

(10) 
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The values of Tif obtained for 7U are 

TIl = -0 . 0599 fm3 , T12 = 0·0566 fm3 . (11) 

The contributions from the individual intermediate states are shown in Fig. 1. 
From equation (2), one has 

5(E1) = 0·00771 e2 fm2 MeV-l . (12) 

In order to calculate the corresponding value of k, a value is required for 
the E2 matrix element (r i 1I.1I1(E2) II i - i)· It is well known that E2 matrix 
elements in Ip-shell nuclei calculated with wavefunctions belonging to the 
lowest configuration are greatly underestimated, and that effective charges 
are required in order to obtain agreement with experimental values. We 
choose the additional isoscalar charge in order to fit the measured quadrupole 
moment of 7U ground state, taken as Q( i -) =-4.06±0.08 e fm2 (Sundhojm et 
al. 1984; Diercksen et al. 1988), giving LIe = 0.397 e. In comparison, van Hees 
and Glaudemans (1984) found that LIe = 0.35e gave good agreement with E2 
moments and transition rates throughout the Ip shell. Then 

(13) 

which corresponds to B(E2; i-i-+i-i) = 7.48 e2fm4. This value of B(E2) 
agrees well with the experimental value of 7.42±0.14 e2 fm4 obtained by 
Vermeer et al. (1984a, b). The above experimental values of Q and B(E2) are 
probably the most reliable available; these and other values are given in Table 
2 of Mertelmeier and Hofmann (1986). From equations (3)-(5), (12) and (13), 
one obtains 

k = 1· 04. (14) 

(b) 6U 

For 6U, the values of En -Ei calculated with the van Hees and Glaudemans 
interaction are reduced by 1 MeV (Barker and Woods 1985). The measured 
charge radius is taken from Ajzenberg-Selove (1984), and LI e is determined by 
fitting the measured value B(E2; 1+ 0-+ 3+0) = 25.6±1.6 e2 fm4 (Eigenbrod 1969; 
Ajzenberg-Selove 1984). The calculated value of Q(1 +) is then 0.093 e fm2, 
compared with the experimental value -0.0644±0.0007 e fm2 (Ajzenberg-Selove 
1984); the difference, induding the different sign, is not very significant 
because of the small magnitude of Q(1 +). Individual contributions to TIl and 
T12 are shown in Fig. 2, and the relevant values and results are given in 
Table 2. 

(c) lOB 

An adequate shell model description of the 1 + 0 first excited state of 
lOB is not obtained easily. Warburton et al. (1968) pointed out that there 
are significant discrepancies between experimental values of electromagnetic 
matrix elements involving this state and those calculated with the interactions 
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Fig.!. Contributions from individual intermediate dipole states of 7Li to (a) Til and (b) 

T12. calculated with harmonic oscillator wavefunctions. Contributions with magnitude less 
than 0·001 fm 3 are omitted. A circle denotes Tn = t. otherwise Tn = i. 
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Fig. 2. Contributions from individual intermediate dipole states of 6Li to (a) Til and (b) 
T12. calculated with harmonic oscillator wavefunctions. Contributions with magnitude less 
than 0.001 fm3 are omitted. All states have Tn = 1. 
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of Cohen and Kurath (1965), and that much improved agreement can be 
obtained by mixing the lowest 1 + 0 state with the next higher 1+0 state. Kurath 
(1979) provided a qualitative understanding of this result, and Barker (1981) 
showed that such mixing could be obtained by modifying the values of some 
of Cohen and Kurath's interaction parameters. The van Hees and Glaudemans 
interaction automatically gives a satisfactory description of the two lowest 
1 + 0 states, the reason apparently being that although most of the two-particle 
matrix elements (written in the LS-coupling representation) have values close 
to those of Cohen and Kurath, particularly for the (6-16)2BME interaction, 
there is a marked difference in the value of (LS]T IV I LS]D = (1010 IV 1101 O). 
These values are (in MeV): 

van Hees and 
Glaudemans 

4·11 

Cohen and Kurath 
(6-16)2BME (8-16)2BME (8-16)POT 

0·07 0·05 -0·29 

Kumar (1974) has argued that this matrix element should have a large positive 
value, about 2.5-3 MeV, in order to fit observed properties of the lowest T = 2 
state of BBe, and on this basis Barker (1981) chose his parameter set III, which 
was used in the calculation of k for lOB in Barker (1982a). 

Thus we use the van Hees and Glaudemans wavefunctions for the 3+ 0 ground 
state and 1+0 first excited state of lOB, and also for the 2- 1 intermediate 
states. The calculated energy of the lowest 2-1 state is 7.73 MeV. Although 
there is some uncertainty and confusion regarding the prT assignments for 
lOB levels in the 7-8 MeV region (Ajzenberg-Selove 1984), it is believed that 
the lowest 2- 1 state is at 7.79 MeV (Barker, to be published). Thus we do 
not modify the calculated values of En - Ei. The charge radius is taken from 
Ajzenberg-Selove (1979). WithLle chosen to fit the measured value B(E2;1 + 0-3+ 0) 
= 4.18±0.02 e2 fm4 (Vermeer et al. 1983 b; Ajzenberg-Selove 1984), one finds 
Q(3+ 0) = 7.90 e fm2, compared with the experimental value of 8.47±0.06 e fm2 
(Ajzenberg-Selove 1984), and Q(1 +0) = -0.61 e fm2. Individual contributions 
to T12 are shown in Fig. 3a. 

(d) llB 

The spins and parities of the states involved in the excitation of the 
first excited state of 11 B are the same as those in 7Li. The energies of 
the lowest i+ i, ~+ i, ~+ i, i+ ~ and ~+ ~ states calculated for the van 
Hees and Glaudemans interaction are 7.01, 9.20, 6.89, 12.97 and 14.75 MeV, 
compared with experimental values of 6.79, 7.98, 7.29, 12.56 and 14.34 
MeV (Ajzenberg-Selove 1985). The states that have the largest El matrix 
elements with the ground state are a ~+ ~ state at 22.25 MeV and a ~+ ~ 
state at 25.36 MeV, while the giant dipole resonance is observed at 25-28 MeV 
(Ajzenberg-Selove 1985). We therefore use the calculated energies unchanged. 
The charge radius is given in Ajzenberg-Selove (1985). The value of Lle is 
chosen to fit the ground state quadrupole moment Q(~- i) = 4.065±0.026 efm2 
(Ajzenberg-Selove 1985). Then B(E2; ~- i -+ i- i) = 2.47 e2 fm4, which agrees 
satisfactorily with the only measured value of 2.6±OA e2 fm4 (Fewell et al. 
1980,1984). Individual contributions to T12 are shown in Fig.3b. 
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Fig. 3. Contributions to T12 from individual intermediate dipole states of (a) lOB and (b) 
II B, calculated with harmonic oscillator wavefunctions. Contributions with magnitude less 
than 0.001 fm 3 are omitted. 

(e) 12( 

For the transition from the 0+ 0 ground state of 12( to the 2+ 0 first excited 
state, the intermediate dipole states are the 1- 1 states. The van Hees and 
Glaudemans interaction predicts the lowest 1-1 state at 18.26 MeV, compared 
with the experimental value 17.23 MeV (Ajzenberg-Selove 1985). The calculated 
levels associated with the GDR are those at 23.08, 24.99 and 26.00 MeV, 
while the experimental peaks are observed at 23.2 and 25.6 MeV (Ahrens et 
al. 1975; Ajzenberg-Selove 1985). We therefore use the calculated values of 
En - Ei unchanged. The charge radius is taken from Ajzenberg-Selove (1985). 
The measured value B(E2; 2+0 - 0+0) = 7.76±0.43 e2 fm4 (Ajzenberg-Selove 
1985) gives ..1e, from which one obtains Q(2+ 0) = 5.79 e fm2, compared with 
the experimental value 6±3 e fm2 (Vermeer et al. 1983a; Ajzenberg-Selove 
1985). Individual contributions to T12 are shown in Fig. 4a. 

(f) 170 

The case of 170 is exceptional, since it is not a Ip-shell nucleus and not all 
the interaction matrix elements required for a complete (O+I)hw calculation are 
provided by van Hees and Glaudemans. Nevertheless a reasonable calculation 
of TIl is possible. In the spirit of the present section, we assume that the ~+ ~ 
ground and ~+ ~ first excited states of 170 belong to the lowest configurations, 
namely Is4 1p121ds/2 and Is4 1p122sl/2 respectively. Relative to the 160 
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Fig. 4. Contributions to TI2 from individual intermediate dipole states of (a) 12C and (b) 
170, calculated with harmonic oscillator wavefunctions. Contributions with magnitude less 
than 0.001 fm3 are omitted. 

closed-shell ground state, these are one-particle (lp) states. The intermediate 
states are ~- ~ and ~-~, and belong either to the 1p configuration 1s41p12 2P3/2, 
which contains only a single ~- ~ state, or to the two-particle one-hole (2p-1h) 
configurations 1 s41 pll (2s, 1 d)2. These configurations contain three spurious 
states, all with T = ~, which are eliminated by adding to the Hamiltonian (the 
SG16F interaction of Brown et al. 1986) a large multiple of the c.m. energy. The 
single-particle energies are adjusted to fit the observed energies of the pigmy 
and giant dipole resonances observed in 170(y,n)160. The pigmy resonance 
should be due essentially to the excitation of the valence neutron in the 170 
ground state from the 1ds/2 orbit to the 2p3/2, If7/2 or Ifs/2 orbits, while 
the GDR mainly involves excitations of nucleons from the p12 core, leading 
to 2p-1h states. The GDR is observed at about 23 MeV (Ajzenberg·Selove 
1986). With the single-particle energies given by Brown et al., the i- states 
with the largest El matrix elements to the ground state are at 25.74 MeV 
(T = ~) and 28.23 MeV (T = i). Also the lowest i- ~ (mainly 2p-1h) and 
~- ~ states are calculated at 8.82 and 15.20 MeV compared with the observed 
values of 4.55 and 12.47 MeV. Thus we reduce the 2S1/2, Ids/2 and Id3/2 
single-particle energies of Brown et al. by 4 MeV. Jury et al. (1985) interpreted 
their observations of the pigmy resonance in terms of %-, ~-, ~-, ;- and ;­
levels at 10.5, 13.0, 14.0, 16.6 and 21.0 MeV respectively. We therefore reduce 
the 2P3/2 single-particle energy by 1 MeV in order to locate the strength due 
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to the Ip state at about 13.5 MeV; this energy seems to be consistent with 
other evidence (Johnson 1973; Darden et al. 1973). 

For the value bo = 1.761 fm chosen to fit the measured charge radius reh 
= 2.710±O.OlS fm (Ajzenberg-Selove 1986), the calculated rms radius for the 
dS/2 neutron is 3.33 fm, which is consistent with the value 3.31±O.12 fm 
measured by Hicks (1982). The relation corresponding to equation (7) gives 

(15) 

The contributions to T12 from individual dipole states are shown in Fig. 4b. 
The value of Lle that fits the experimental value B(E2;%+ ~ -+ ~+~) = 2.101±0.021 
e2 fm4 (Ajzenberg-Selove 1986) gives Q(%+~) = -3.25 e fm2, compared with 
the experimental value of -2.578 e fm2 (Ajzenberg-Selove 1986). 

(g) Discussion 

From Figs 1-4, it is seen that for each of the nuclei considered here the 
contributions to T12 tend to be positive at low energies and negative at high 
energies, although this is more pronounced in some cases than in others. 
Because of relations such as (7) or (15), the low-energy contributions dominate 
and the resultant T12 values are positive, leading to positive values of k. In 
11 Band 12e the main contributions come from the GDR region around 25 MeV, 
whereas for 6Li and 7U, and to some extent lOB and 170, they come from lower 
energies. As regards T11, the negative contributions at low energies dominate 
for 7Li, but for 6Li the significant contributions are widely distributed and 
largely cancel-this is presumably due to the mainly L = 0 nature of the 6Li 

ground state. 

4. Use of Woods-Saxon Wavefunctions 

So far all El matrix elements have been calculated with harmonic oscillator 
single-particle wavefunctions. Long ago, Lane (1960) pointed out that this may 
lead to appreciable errors because the wavefunctions do not have the correct 
asymptotic form, and Barker (1961) showed that use of wavefunctions that do 
have the correct asymptotic form could greatly change the oscillator values of 
El matrix elements in 13e. These calculations were put on a more rigorous basis 
by Barker and Ferdous (1980), for El transitions in both l3e and 13N. Millener 
et al. (1983) considered other cases of strong El transitions between low-lying 
levels of light nuclei, where use of Woods-Saxon wavefunctions increased B(E1) 
values calculated with harmonic oscillator wavefunctions by factors of up to 
50. The increase is generally associated with an increase (by a factor of 
order 2-3) in the El single-particle matrix element (SPME) involving alp -+ 2s 
transition of a nucleon that is loosely bound, whose wavefunction therefore 
extends out to large distances. Similar increases can also be obtained when 
one of the nucleons is slightly unbound (Barker 1984). 

We therefore consider the changes in our calculations produced by use of 
Woods-Saxon wavefunctions. In their calculations, Barker and Ferdous (1980) 
and Millener et al. (1983) expressed each El matrix element in terms of 
contributions from single-particle transitions corresponding to different core 
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states, so that the single-particle wavefunctions could be calculated with the 
appropriate binding energy. It is impracticable to do this for each of the El 
matrix elements that we need (the numbers range from 51 in 6Li to 930 in 
11 B). Consequently we proceed in an approximate way. 

For each 1 p-shell nucleus, the ground state and first excited state belong 
to the configuration 1 s41pA-4, and the intermediate dipole states to the 
configurations 1 s31 pA-3 and 1 s41 pA-5(2s, 1 d)1, so that the El matrix elements 
involve SPME for the excitations Is -+ Ip, Ip -+ 2s and Ip -+ Id. Since (p,2p) 
experiments on Ip-shell nuclei suggest that the 1 s protons are bound by over 
30 MeV (Tyren et al. 1966), the 1 s wavefunctions do not extend to large 
distances and should be well represented by harmonic oscillator wavefunctions; 
we therefore assume that the 1 s -+ 1 P SPME are unchanged. 

The Ip -+ 2s and Ip -+ Id SPME are calculated using wavefunctions for a 
central Woods-Saxon potential, with the conventional diffuseness (0.65 fm), a 
radius parameter ro (R = ro (A _1)1/3) chosen to fit the measured charge radius 
rch (using formulae (10) and (11) of Millener et al. 1983, with the spectroscopic 
factors calculated for the van Hees and Glaudemans interaction), and depth 
appropriate to the particular intermediate state and core state. The separate 
contributions to the SPME are proportional to 

(16) 

with the proviso that if the state q (q=i, f) is unbound, then J 0"" u~(r) dr in (16) 
is replaced by (1 +y~dSq/dE) J g u~(r) dr, where a is the channel radius (Barker 
and Ferdous 1980). We choose a = 5.0 fm (cf. Barker and Ferdous 1980); 
smaller values of a give larger enhancements. Following the work of Holt et 
aI. (1978), we use in (16) the resonant part of the continuum wavefunction 
with a complex asymptotic form corresponding to outgoing waves (see Barker 
and Ferdous, note added in proof), rather than the real asymptotic form given 
in equation (15) of Barker and Ferdous. Then the SPME are complex, and we 
take T12 to be the magnitude of the expression in equation (1). 

From a general survey of the dependence of the 1 p -+ 2s and 1 p -+ 1 d SPME 
on the energies of the states involved, with the Ip state bound and the 2s or 
Id state bound or unbound, as is appropriate for the cases of interest here, 
it appears that the greatest enhancements over the harmonic oscillator values 
are found when the Ip nucleon is loosely bound, and the 2s or Id nucleon 
is slightly unbound. The enhancements are appreciable over a wide range of 
energies (many MeV), although reductions may be found for very unbound 
states. In general the enhancements are greater for Ip -+ 2s than for Ip -+ Id. 
An exceptional case concerns a loosely-bound s-wave neutron state, since the 
SPME approaches zero as the binding energy goes to zero (Barker 1984). 

Because of the dependence of the SPME on the energies of the states 
concerned, and because the corresponding one-body density matrix elements 
(OBDME-see Millener et al. 1983) tend to be largest for states lying near 
the energy of the core+nucleon system, we expect the greatest enhancements 
to occur for the low-lying intermediate states, particularly if the initial and 
final states are not too tightly bound with respect to the core states with 
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which they have appreciable spectroscopic factors. This is illustrated in the 
particular cases that follow, where again 7U is discussed in the greatest detail. 
A slightly different procedure is used for 170. The results are summarised in 
Table 2. 

For consistency, we also calculate the E2 matrix elements in a similar way 
using Woods-Saxon wavefunctions. This does not change the relative values 
of TI2 and k, because we make use of experimental values of the E2 matrix 
elements, but it does lead to changed values of the additional charges Lle 
required to fit these matrix elements. 

(a) 7Li 

The van Hees and Glaudemans interaction, like other shell model interactions 
for light nuclei, predicts that only a few low-lying A = 6 core states have 
appreciable Ip spectroscopic factors for the i- ~ ground state and ~ - ~ first 
excited state of 7Li, namely the lowest 1+ 0, 3+ 0, 0+ 1 and 2+ 1 states for 
i-~, and the lowest 1+ 0,2+ 0, 0+ 1 and 2+ 1 states for ~-~. These extend 
over the 7Li excitation energy range from about 7 to 13 MeV (see Fig. 5). It 
is only the positive-parity 7Li intermediate states with energies not too far 
from this region, and with loosely bound (or unbound) 2s or Id nucleons, for 
which appreciable enhancements of the SPME might be expected. It is seen 
from Fig. 1 that this energy region contains the intermediate states giving the 
largest contributions to TU and TI2 , namely the ~+ h, ~+ h, ~+ ~I and ~+ h 
states (which are also shown on Fig. 5), and only for these do we consider 
possible changes in the SPME values. 

For these four states, the quantity (16) calculated with Woods-Saxon 
wavefunctions, with Yo = 1.855 fm (R = 3.37 fm) to fit Ych, is enhanced over the 
harmonic oscillator values by factors ranging in magnitude up to 2.2 for the 
Ip -> 2s excitation, and up to 1.4 for Ip -> Id. The additional contributions 
to TU from these four states are -0.014, -0.028, -0.008 and -0.015 fm3 

respectively, and to TI2 approximately 0.017,0.029,0.0 and 0.012 fm3 , giving 

TU = -0 . 125 fm3 , (17) 

and 

S(El) = 0·0156 e2 fm2 MeV-I, k=2·11. (18) 

It is seen from Table 2 that the value of Lle required to fit the experimental 
value of Q( i -) when Woods-Saxon wavefunctions are used is considerably 
smaller than that obtained using harmonic oscillator wavefunctions. This value 
of Lle gives B(E2;i- ~ -> ~-~) = 7.32 e2 fm4. 

(b) 6Li 

The only A = 5 core states having non-zero p-wave spectroscopic factors 
for the 1+0 ground state and 3+ 0 first excited state of 6Li are the ~ - ~ ground 
state and ~ - ~ first excited state (which we take at an excitation energy of 
2.5 MeV in both sHe and sLi-see Barker and Woods 1985). From Fig. 2, it is 
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12.62 2+1 

11.56 2+0 

10.81 0+1 

9,44 3+0 

7.25 1+0 

0,48 

Fig. 5. Energy levels relevant to Coulomb excitation of 7U. All 
energies (in MeV) are given relative to the 7U ground state. Solid lines 
indicate experimental levels and energies (from Ajzenberg-Selove 
1984), dashed lines indicate calculated intermediate dipole states. 

seen that the intermediate state giving by far the largest contribution to T12 
is the 2- 11 state at 12.07 MeV; we also consider changes for the next three 
2- 1 states at 16.24, 19.39 and 20.70 MeV, which give moderate contributions. 
For TIl, in addition to these four 2- 1 states, we consider changes in the 
contribution from the 1- 12 state at 17.72 MeV; although the 0-13 state at 22.31 
MeV and the 1- 14 state at 22.95 MeV give larger contributions, these come 
mainly from Is -+ 1p excitations, which we are assuming to be unchanged. 
The relevant states are shown in Fig. 6. 

The enhancement of the quantity (16) for the 1 p -+ 2s excitations ranges 
up to about 1.7, and for Ip -+ Id up to 1.5. The additional contributions 
to Tll from the 2- 11-4 and 1- h states are -0.014, -0.001, 0.001, -0.002 
and 0.008 fm3 respectively, and to T12 from 2- 11-4 are approximately 0.118, 
-0.003, -0.005 and 0.007 fm3. The results are given in Table 2. 
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Fig. 6. Energy levels relevant to Coulomb excitation of 6U. See also Fig. 5 caption. 

(c) lOB 

For the van Hees and Glaudemans interaction that we are using, the p-wave 
spectroscopic factors of the 3+ 0 ground state and 1 + 0 first excited state of 
lOB are large for many A = 9 core states (~-h-3, ~-h-4' ~-h,3,4, ?-h,z). 
The low-lying 2- 1 intermediate states that give the main contributions to TIZ 

in general have small s- and d-wave spectroscopic factors except for the lowest 
state of each j, so that we include changes to the SPME's only for these core 
states. We consider changes only for the 2-1 n states with n = 1,2,6,9 and 



248 

13.35 7;2- !t2 
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15041 7{ ''2 

11.24 '{!t2 

10.80 5f!t2 

8.44 3f !t2 

Fig. 7. Energy levels relevant to Coulomb excitation of lOB. See also Fig. 5 caption. 

10 (shown in Fig. 7), as these give the largest contributions to T12 or seem 
likely to give large changes, due to appreciable cancellations in the harmonic 
oscillator values. The large contribution from the n = 28 state at 27.74 
MeV (see Fig. 3a) is due mainly to Is -+ 1p excitations and to 1p3/2 -+ 1ds/2 
excitations with high-lying A = 9 core states. The additional contributions to 
T12 from these five 2- 1 states are approximately 0.010, 0.016, 0.005, 0.002 
and -0.002 fm2 respectively. 
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18.93 2+1 

16.62 2+1 

16.23 3+0 

15.04 2+0 
14.60 2+1 

13.61 1+0 

13.19 01 
12.17 1+0 

11.45 3+0 

lOSe + p 

2.1 2 1/'2- I/'2 

Fig. 8. Energy levels relevant to Coulomb excitation of lIB. See also Fig. 5 caption. 
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Fig. 9. Energy levels relevant to Coulomb excitation of 12c. See also Fig. 5 caption. 



El Strength in Coulomb Excitation 251 

(d) 11B 

The intermediate states that give large contributions to T12 for 11 B, and have 
appreciable Ip-+2s and Ip-+ld excitations, are the ~+h4' ~+~1,3, ~+~3,5 
and %+ %4,6 states. These are shown in Fig. 8 together with the lOBe and lOB 
core states that are included in the calculation. The additional contributions 
to T12 from the seven intermediate states, in order of increasing excitation 
energy, are approximately 0.000, 0.002, 0.000, 0.000, 0.001, -0.001 and 0.000 
fm3 respectively. 

(e) 12C 

Fig. 9 shows the 1- 1 intermediate states for which possible changes are 
considered in the contributions to T12 for 12C, and the significant A = 11 
core states that are included. The additional contributions to T12 for these 
1- 11-3,5,6,8 states are approximately 0.000, 0.001, 0.003, -0.001, -0.001 and 
-0.004 fm3 respectively. 

4.14 0+0 

Fig. 10. Energy levels relevant to Coulomb excitation of 170. See also Fig. 5 caption. 
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(f) 170 

The main contributions to T12 for 170 come from the four intermediate 
states ~- h at 13.85 MeV and ~- ~10.11.14 at 24.24, 26.82 and 28.62 MeV. The 
T = ~ state belongs mainly to the Ip configuration Is41p12 2P3/2 . The T = 
~ states are predominantly 2p-lh states built on the 1-, T = 1 GDR in 160, 
and as such involve Ip -t (2s,ld) excitations in which the initial 1p nucleon 
has a binding energy of the order of 25 MeV. Consequently we assume that 
E1 transitions involving these T = ~ states are well represented by harmonic 
oscillator values. 

Possible changes due to the use of Woods-Saxon wavefunctions are therefore 
considered only in the El matrix elements involving the ~- is state, and in 
these only in the parts coming from the 160 core in its ground state. The 
relevant states and energies are shown in Fig. 10. Because the 2P3/2 neutron 
in the ~- h state is unbound, we have to specify the value of the channel 
radius a in calculating the quantity (16); this is done as follows. We use a 
Woods-Saxon potential with central and spin-orbit components, with the radius 
and diffuseness the same for each component, and assume that the depths 
Vo and Vso are the same for the even-parity states (2S1/2, Ids/2, 1d3/2). With 
the conventional value of the diffuseness, we c}'lOose Vo, Vso and R to fit the 
observed binding energies of the 2S1/2 and 1ds/2 states and the rms radius of 
the 1 dS/2 neutron (Hicks 1982), and then choose a so that the d3/2 resonance 
occurs at the appropriate energy. This is taken to be an excitation energy of 
5.74 MeV (Johnson 1973), leading to a = 3.85 fm (the lowest possible energy 
for the d3/2 state is 5.08 MeV, which gives a = 4.27 fm). We note that Johnson 
used a = 3.86 fm, whereas Hickey et al. (1974) and Holt et al. (1978) used 
a<::::4.92 fm. 

For the 2p3/2 state we use the same channel radius and the same Woods-Saxon 
potential parameters, except that Vo is adjusted so that the 2p3/2 resonance 
corresponds to the energy of the ~- ~8 state. The resultant values of T12, 
S(El) and k are given in Table 2 (for a = 4.27 fm, these values would be 
reduced by about 8%). 

s. Admixtures from Higher Conftgurations 

Shell model calculations restricted to the lowest configuration fail to account 
for observed E2 matrix elements, as is illustrated by the nonzero values of 
Lle in Table 2. This failure is usually attributed to the neglect of higher 
configurations. 

A calculation of the additional contribution to S(E1) (or T12) for 170 due 
to admixtures from higher configurations in the wavefunctions for the ~+ 
ground and ~ + first excited states has been made by Barker (1982b). The 
admixtures were treated in first-order perturbation theory, their coefficients in 
the wavefunctions being determined by fitting the observed values of Q(~+) 
and B(E2; ~ + -t ~ +), together with other reasonable restrictions. Woods-Saxon 
wavefunctions were used. The calculation of SeE!) was made in the closure 
approximation, in which all the E1 strength to the ~ - states was assumed to 
be concentrated at the energy Eg; the value Eg - Ei = 22 MeV was estimated 
from the photonuclear cross sections for 17 O. The additional contribution to 
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5(E1) due to configuration mlxmg was found to be about 54% of the total 
value of 0.0113 e2 fm2 MeV-I, i.e. 0.0061 e2 fm2 MeV-I. Because of the 
perturbation treatment, we can here assume the same additional contribution 
to 5(El), and combine it with the value in Table 2 obtained for Woods-Saxon 
wavefunctions in the lowest configurations. This leads to total values for 170 
of T12 = 0.170 fm3 , 5(El) = 0.0231 e2 fm2 MeVl and k = 5.3. 

Such a calculation is practicable for 170 because of the very simple 
wavefunctions of the ground and first excited states, if restricted to the 
lowest configurations. For the 1 p-shell nuclei a similar calculation would be 
very complicated. Kurath (1959) used the method of generator coordinates 
to introduce configuration mixing of a collective type in 1 p-shell nuclei, and 
found that the required enhancement of E2 transition probabilities could 
be obtained with small admixtures. The calculation of the corresponding 
enhancement of 5(E1) would be considerably more difficult because it involves 
two one-body operators instead of one, and the same is true even in the 
closure approximation because both one- and two-body operators are involved. 
In a qualitative approach, an argument could be given similar to that used 
by Kurath when discussing the effect of centre-of-mass motion. This would 
suggest a relationship between the enhancements in E2 matrix elements and 
in 5(E1) similar to that assumed in Barker (1982a) where the (1 p: r2 : 1 p) radial 
integrals were renormalised. From the arguments of Kurath, large enhancements 
would occur only for cases where the ground and first excited states belong 
to the same rotational band, and therefore not for lOB or II B among the 
cases we consider. It may be noted that the concept of a state-independent 
effective charge does not apply very well for these two cases (for Woods-Saxon 
wavefunctions), as is seen from the values of Q and B(E2) in Table 2. 

6. Discussion 

The values of k calculated with Woods-Saxon wavefunctions, as given in Table 
2, show considerable variation from nucleus to nucleus. These values should 
still be corrected for the effect of configuration mixing, the importance of 
which is indicated by the size of L\e/e. For 170, we estimate that configuration 
mixing increases k from 3.9 to 5.3, bringing it into good agreement with the 
experimental value of 5.7±0.4 (Table 1). Increases of k might also be expected 
in other cases, except perhaps for lOB and II B where the ground and first 
excited states do not belong to the same rotational band. Thus k values for 
6U and 7U of the order of 3, as suggested by experiment, do not seem to 
be unreasonable. For lOB, our calculated value of k exceeds the experimental 
value. Fewell et al. (1980,1984) assumed k = 1 for II B in deriving their 
experimental value of B(E2; i--+ i-), and Vermeer et al. (1983a) assumed k 
= 1 for 12C in their measurement of Q(2+). 

The calculations also indicate the regions of excitation energy that provide the 
main El contributions to Coulomb excitation in these nuclei. For Woods-Saxon 
wavefunctions, the harmonic oscillator distributions shown in Figs 1-4 should 
be modified by enhancement of the contributions from low-lying states. These 
distributions explain why the enhancements are larger for the nuclei with 
low-lying dipole states (6U, 7U, lOB and 170) than for those where the main 
dipole states are at higher energies (ll Band 12C). These calculations do not 
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support the use of the closure approximation with all the El strength taken 
at the GDR energy (Barker 1982a, b), except perhaps for II Band 12c. 

Almost all other calculations are for 7U (see Table 1). The main contributions 
to Tn and T12 for 7U, as shown in Fig. 1, come from ~ + intermediate states 
at excitation energies of about 8, 13 and 15 MeV (these states are expected to 
be very broad, so that their contributions to cross sections of photonuclear 
or other reactions would not be as distinctive as Fig. 1 might suggest). 
Nonnegligible contributions to Tll and T12 come from as high as 30-40 MeV, 
and these high-energy contributions tend to cancel those from low energy. 
Qualitatively similar results were obtained by Gomez-Comacho and Nagarajan 
(1985) in their shell model calculation for 7U (and similar remarks apply 
to their calculation for 6U). The ()( + t cluster calculations of Smilansky et 
al. (1972) and Mertelmeier and Hofman (1986) also found that the main 
contribution comes from ~ + intermediate states, with the peak contribution 
located about 1 MeV above the ()(+t threshold, i.e. at an excitation energy of 
about 3.5 MeV. Even with the inclusion of 6U+n channels in the scattering 
functions, Mertelmeier and Hofman found the peak at about the same energy, 
although the magnitude was increased by about 50% and the high-energy tail 
was appreciably larger. In our calculation, the individual contributions to Tif 
are not attributed to the different breakup channels of 7U, although it is 
reasonable that the lowest-energy contributions should be associated with the 
()( + t channel, which has the lowest threshold. Kajino et al. (1988) estimated 
that the ()( + t channel should contribute only about one third of the total value 
of Tn, by using a relation (their equation 15) based on the assumption of 
the pure LS-coupling limit (for both the 7U ground state and the intermediate 
dipole states). In this limit, Kajino et al. gave 

(~-II M(El) II ~ +) = 3(~ -II M(El) II ~ +); 

however, this equation cannot be valid for all intermediate states because of 
the sum rule (10), and so equation (15) of Kajino et al. is open to question. 

Although the present shell model calculation for 7U needs to be modified 
for the effect of configuration mixing, it does indicate that previous cluster 
calculations have not included all important clusters. 

7. Summary 

In the present shell model calculations of the strength k of the El contribution 
to Coulomb excitation for a selection of Ip-shell nuclei, we have restricted the 
wavefunctions of the ground and first excited states to the lowest configuration, 
and used harmonic oscillator or Woods-Saxon single-particle wavefunctions. 
The calculated k values show some correlation with experimental values, the 
variation from nucleus to nucleus being determined to a large extent by 
the energy region of the dipole states that give the main contributions to 
k. Accurate values of k cannot be expected, however, without the use of 
wavefunctions that include configuration mixing, chosen to fit observed E2 
matrix elements. In the case of 170, the states belonging to the lowest 
configurations are suffiCiently simple that such configuration mixing can be 
included, and good agreement with experiment is found for the resultant k 
value. 
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