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Abstract 

A theory is developed to describe the effect of small·scale inhomogeneities or 'ripples' in an 
unmagnetised plasma on the properties of transverse waves with wavelength long compared 
with the scale length of the ripples. The procedure used is based on a covariant version 
of nonlinear plasma kinetic theory. A simpler theory, which is more physically transparent, 
is explored in an appendix, and is found to reproduce the results of the more rigorous 
theory only in the simplest limiting cases. It is found (a) that an anisotropic distribution of 
density fluctuations causes an otherwise isotropic plasma to become birefringent, (b) that 
one of the two modes has two resonances associated with the frequencies where three-wave 
matching conditions are satisfied, together with stopbands and cutoff frequencies, and (cl 
that there is a crossover frequency. The smearing out of these resonances due to various 
effects is discussed, and it is concluded that effects of the resonances may be observable 
under idealised conditions. 

1. Introduction 

Small-scale inhomogeneities in a medium affect the propagation of waves 
in the medium. It is convenient to identify three limiting cases. (j) One limit 
is that where high frequency waves are scattered by inhomogeneities with 
scale size much larger than the wavelength of the wave. SpeCifically, the scale 
length of the inhomogeneity, L say, is much larger than the inverse of the 
wavenumber I kl of the scattered wave: I klL »1. Such scattering is attributed 
to local variations in the refractive index associated with the inhomogeneities, 
and is often described in terms of the propagation of waves in random 
media (Chandrasekhar 1943; Tatarski 1961; Chernov 1960). The important 
simplifying approximation in this case is that the propagation of the waves 
may be described using geometric optics, with small local deviations in the ray 
path. (ij) A second limit corresponds to the inhomogeneities being associated 
with a spectrum of low frequency waves, so that one has L"" 1/1 kL I. where I kL I 
is a characteristic wave number of the low frequency waves. Then three-wave 
interactions between one of these low frequency waves and a test wave with 
wave vector k can produce a scattered or 'daughter' wave with wave vector 
I kD I = I k ± kL I. This three-wave matching condition (Manley-Rowe condition) 
requires that at least one of the high frequency waves has a wave number 
comparable with that of the low frequency wave. Scattering of waves due to 
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three-wave interactions is particularly important in plasmas (e.g., Tsytovich 
1970; Davidson 1972). (iii) The third limit corresponds to inhomogeneities 
with scale lengths shorter than the wavelengths of waves, that is to I klL ~ 1. 
Specific examples include rippled media and composite media in which local 
variations in density and composition are present with scale lengths shorter 
than the wavelength of waves of interest in the medium. There is an extensive 
literature on the transport properties of composite media, e.g., McPhedran 
et al. (1983). 

The discussion in the present paper is concerned with plasmas with local 
inhomogeneities in the density or other plasma parameters. We are concerned 
with the case where the local inhomogeneities have a spatially periodic structure, 
which corresponds to a 'rippled' plasma. Our purposes are threefold: (i) to 
develop a systematic procedure for treating this case based on weak-turbulence 
theory; (ii) to explore the validity of a simpler and more intuitive theory, 
based loosely on a standard method for treating Rayleigh scattering; and (iii) 
to discuss some simple examples of the effects of ripples. 

The motivation for our investigation of the limit I klL ~ 1 is connected with 
two possible effects of small-scale inhomogeneities on the dispersion of waves 
in plasmas. One effect is relevant to an otherwise isotropic medium with 
an anistropic distribution of inhomogeneities. On a scale long compared 
with the scale length of the ripples, the medium has an anisotropy due 
to the distribution of ripples. The medium is then birefringent, and this 
implies a breaking of the degeneracy between the two states of transverse 
polarisation. Such birefringency has possibly important physical conseqences 
on the polarisation of radiation passing through a rippled medium. The second 
effect of small-scale inhomogeneities on the dispersion of waves concerns the 
cutoff frequencies for high frequency waves in plasmas. In the absence of 
a magneto static field transverse waves have two states of polarisation; the 
(doubly degenerate) transverse mode has a cutoff at the plasma frequency 
wp. At a cutoff the wavelength of the waves becomes infinite, and hence 
for frequencies just above any cutoff the wavelength is necessarily greater 
than the scale length of any inhomogeneities. This leads one to expect the 
presence of ripples to modify the cutoff frequency. Even a small change in a 
cutoff frequency may affect the coupling of waves across the stopband below 
the cutoff, with possibly important consequences in allowing waves below the 
cutoff (which could not otherwise escape) to escape by tunnelling across the 
stopband. 

The type of inhomogeneity that we have in mind involves an idealised 
spectrum of 'ripples', which are purely spatial, undamped, periodic variations, 
as in a grating. Such ripples may be described in terms of standing waves. One 
example is standing lower hybrid waves, corresponding to ripples perpendicular 
to the ambient magnetic field in a thermal plasma. Another example is the 
standing wave pattern in four-wave mixing, in connection with phase-conjugate 
reflection in a nonlinear medium. 

The method used here to treat the effects of the small-scale inhomogeneities 
or ripples is based on nonlinear plasma theory. The inhomogeneities are 
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described by their electromagnetic field, and this field is included in the 
appropriate nonlinear response of the medium. One then takes an average over 
the inhomogeneities to derive a nonlinear correction to the linear response 
tensor, e.g., to the dielectric tensor. Thus the inhomogeneities or ripples are 
described in terms of the correlation function for the electromagnetic field 
associated with them. This procedure is rigorous in the sense that it is 
founded on a systematic method, namely weak-turbulence theory. 

An alternative method, that is often simpler but is less rigorous, is essentially 
that used in a standard treatment of Rayleigh scattering, e.g., Landau and 
Lifshitz (1960, p. 387). This procedure involves assuming that the linear 
response tensor is proportional to the density of scatterers, and including 
the inhomogeneities as a perturbation in the linear response tensor, through 
this functional dependence. This method is outlined in the Appendix, where 
it is shown that it reproduces the results of the more rigorous theory in the 
simplest case, but seemingly only in the simplest case. 

The formal procedure based on the weak-turbulence expansion is developed 
in Section 2. The particular forms for the nonlinear responses used is the 
covariant form developed in earlier papers (Melrose 1981, 1982, 1983, 1986a). 
The method leads to a cumbersome formula that is impracticable to apply. 
Appropriate approximations are developed in Section 2. The autocorrelation 
function for the inhomogeneities or ripples is discussed in Section 3. Possible 
applications are outlined in Section 4. The procedure adopted and the results 
obtained are discussed in Section 5, and the conclusions are summarised in 
Section 6. 

2. Nonlinear Correction to the Linear Response Tensor 

The effect of inhomogeneities in a medium on the linear response tensor 
is included here as follows. The linear response is described in terms of the 
induced current; the relevant current is that which is linear in a test field. 
The inhomogeneities are assumed to be described by the electromagnetic field 
associated with them; this field is called the fluctuating field. Nonlinear plasma 
theory is used to find the nonlinear correction to the linear response tensor 
by expanding in the total (test plus fluctuating) field. Consider the nonlinear 
current that is cubic in the total field. It contains a term that is quadratic 
in the fluctuating field and linear in the test field, and this is the nonlinear 
current of relevance here. One finds the nonlinear correction to the linear 
response function by performing an ensemble average over the product of the 
fluctuating fields in this term in the nonlinear current. 

Weak Turbulence Expansion and the Wave Equation 

The basic equations used here are those of weak-turbulence theory in 
4-tensor notation. These equations have been written down and discussed 
previously (e.g., Melrose 1982, 1983; Melrose and Kuijpers 1984). They are 
as follows. The weak-turbulence expansion of the Fourier transform of the 
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induced 4-current Jfnd(k) in powers of the 4-potential AP(k) is 

ifnd(k) ;: ocPV(k) + f dA(2)oc(2)pVP(k, k l , k2)Av(kr)Ap(k2) 

+ f dA (3) OC(3)PVTTU(k, k l , k2, k3)Av(kl )Ap (k2)Au (k3) + ... , (1) 

where the nth order convolution integral is defined by 

di\(n) = d4 kI d 4k2 .•. d 4kn (2rr}484(k-kl-k2-'" -kn ) (2) 
(2rr)4 (2rr)4 (2rr)4 • 

The expansion (1) defines the linear response tensor ocPV(k) and a hierarchy 
of nonlinear response tensors, including the quadratic response tensor 
oc(2)pVP(k,kl,k2} and the cubic response tensor oc(3)PVPU(k,k l ,k2,k3). The 
nonresonant parts of the nonlinear response tensors are the only parts 
of relevance here, and these satisfy the symmetry properties (Melrose and 
Kuijpers 1984) 

oc(2)pVP(k, kl , k2) = oc(2)pPV(k, k2, kd = oc(2)vPP(-kl, -k, k2), 

oc(3)PVPU(k,kl,k2,k3) = oc(3)pvUP(k,kl,k3,k2} = oc(3)PPVU(k,k2,kl,k3) 

= oc(3)VPW(-k l ,-k,k2,k3). (3) 

In the following the formal solution of the wave equation is required. The 
Fourier transformed form of Maxwell's equations may be reduced to the wave 
equation 

(4) 

with 

(5) 

The current is separated into the linear response, which is included on the 
left hand side, and all remaining terms are included in J~xt(k), which is 
regarded as an arbitrary extraneous current which acts as a source term. The 
inhomogeneous wave equation (4) may be solved by introducing the Green's 
function or photon propagator DPV(k) (Melrose 1983). The solution is then 

(6) 

Nonlinear Correction to the Linear Response Tensor 

The relevant source term for a four-wave interaction involving the coalescence 
of waves in three modes labelled MI, M2, M3, into one wave is given by 
the cubic term in the weak turbulence expansion (1), in which one writes 
A -+ AMI +AM2 +AM3 and keeps only the cross terms that are proportional to 
AMIAM2AM3' There are six such terms which contribute equally in view of 
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the symmetry property (3)_ Additional source terms arise from the quadratic 
response operating twice_ For example; the quadratic response due to AMI 

and AM2 gives a beat field that can combine with AM3' again due to the 
quadratic response, to give an additional cubic response term. There are three 
such combinations, and the sum of all three and the cubic response itself 
defines an effective cubic response tensor, denoted by iX(3)jlVpO"Ck,k 1,k2,k3). The 
effective cubic response tensor was written down by Melrose (1986a) using the 
symmetrised forms of the nonlinear response tensors. The relevant symmetry, 
which is included in the properties (3), follows from the cubic term in (1) by 
permu ting the arguments kl' k2, k3. 

In the present context, in which different wave vectors correspond to 
distinguishable fields, it is convenient to use unsymmetrised forms. The 
relation written down by Melrose (1986a) is then replaced by 

6iX(3)jlvpO"(k, k1, k2, k3) = ocl1J~~&tO" (k, kl, k2, k3) 

(Z)jlO"O k k k k k (Z)I1VP k k k k) + OCunsym(k, 3, 1 + z)Dol1 ( 1 + z)OCunsym( 1 + 2, 1, 2 , (7) 

where 'unsym' refers to unsymmetrised forms. The factor 6 on the left hand 
side of (7) is included for notational consistency; this factor was not included 
in the corresponding definition in Melrose (1986a), where the appropriate 
factor was included elsewhere in the analysis. 

The total field AIl(k) is the sum of the test field and the fluctuating field, 
denoted by A~(k). On making the replacement A -> A +AF in the effective 
cubic response term in (1), only the terms quadratic in AF are retained. 
There are three such terms and they contribute equally (e.g., Melrose 1986a). 
An ensemble average over the fluctuations is performed, assuming that the 
fluctuations are statistically stationary and uniform. The ensemble average, 
which is denoted by angle brackets, reduces to 

(8) 

where (AFAF}IlV(k) denotes the Fourier transform of the autocorrelation function 
of the fluctuations. This gives 

jlv(k) - 3 f d4 k' - (3)jlVPO"(k k k' k') (A A) (k') OCNL - (2rr)4 oc , ,,- F FpO" , (9) 

where the factor 3 arises from the three equal terms. 

Approximations for the Effective Cubic Response Tensor 

The general form of the effective cubic response tensor (7) is too cumbersome 
to be of direct use in most applications. Appropriate approximations are 
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required. An important distinction that may be made is between 'fast' and 
'slow' disturbances, which are defined depending on whether the phase speed 
is, respectively, much greater than or much less than the thermal speed 
of electrons Ve. Melrose (I986a) derived approximations for the nonlinear 
response tensors for several cases involving fast and slow disturbances. 

In the present context, the fluctuations or ripples are assumed to be 
slow (w' II Ie' I « Ve ), with low frequencies (w'« w) and large wavenumbers 
(I Ie 'I ~ llel). The waves, described by the test field, are fast (w/llel » Ve), 

and the beats at w±w',Ie±Ie' are also assumed to be fast. On setting k=kI 
and k2 = -k3 = k' in (7), it follows that approximations are required for the 
quadratic response tensor with two fast (k, k l ) and one slow (k2) disturbance, 
and for the cubic response tensor with two fast (k, kI ) and two slow (k2, k3) 
disturbances and where the beats between kl' k2, k3 are fast. In the rest 
frame of a nonrelativistic, thermal, unmagnetised plasma with u/J = [1,0], these 
approximations are, respectively, 

(2)/JVP(kk k) e3ne /JV(kk _)k2Uk2CXC()(P(k2,u) (10) 
DCunsym • I. 2 s::;, 21/2 a • I,U k2 (k -)2 • 

meve 2- 2U 

x k2U ~2()(C()(P(k2. U) k3U ~3tlCtlU(k3. U) • (II) 

k2 - (k2U)2 k3 - (k3U)2 

where we use the notation 

k /J -v 
C/JV(k -) _ /Jv _ _ U_ 

,U -g ku' (12) 

k/J- V kV-/J kk -/J-V 
/JV(k k - ) /Jv 1 U U 1 U U a • loU =g --k - --k- + k-k - • 

IU U U IU 
(13) 

and retain only contributions from electrons with charge -e mass me. 
Substituting (l0) and (II) into (7), and using the symmetry properties (3), one 
obtains 

6 - (3)/JvPU(k k k k) s::;, _ e4 ne k2U k21X CIXP(k2, u) k3 U k3tlCtlU(k3. u) [a/JV(k k u) 
DC • I. 2. 3 3,,4 k2 (k -)2 k2 (k -)2 • I, me Vi 2 - 2U 3 - 3U 

The contribution to the effective cubic response of the term involving the 
beat at k2+k3 in (7) is omitted because it is purely static when we set k2 =k', 
k3 = -k' below; such a static term is inconsistent with the approximation that 
the beats are fast. 
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The nonlinear correction to the linear response tensor is obtained by setting 
kl = k, k2 = k', k3 = -k! in (14) and inserting the result into (9). This gives 

(X~r(k) "" - 2~;0e f (~~~ (~~) 2 
[k,2 - (k'U)2{ a~V(k, k, u) 

-e::e [k,2 _~:'U)2]2 ~ a~e(k'k±k!'U)D6Ij(k±k!)aIjV(k±k"k'U)] 
(15) 

with 

(16) 

In applications one of the beats at k ± k' is often relatively close to a pole in 
the propagator D61/(k±k'). For example, suppose that k±k' is close to the pole 
at k ± k' = kM, which corresponds to waves in the mode M; then the dominant 
term in (11) is that involving the appropriate propagator D61/(k ± k'). 

Longitudinal Approximation for the Propagator 

One further simplifying assumption is that the propagator in (15) may be 
approximated by its longitudinal part. In an isotropic plasma one may separate 
the propagator into a longitudinal JJL(k) part and a transverse part DT(k) by 
writing (Melrose 1982) 

(17) 

with L~V(k.u) given by (16) and with 

T~v (k, U) =: a~v (k, k, u) - L~v (k, u) , (18) 

with a~V(k, k, u) implied by (13). On inserting (17) into (15), a lengthy calculation 
gives 

4 d4k' (k,·)2 {X~V (k) "" -~ f -- ~ [k,2 - (k'u)2] 
NL 2mh1 (2rr)4 k,2 

x{a~V(k'k'U>[ 1- e~e ~ DT(k±k') [k,2 _~;'U)2]2] 
e2 ne k,4 (k ± k')(XG(X~(k, u) (k ± k')pGPV(k, ii) 

- me [k,2 -(k'ii)2]2 ~ (k±k')2 - [(k±k')iiJ2 

X [[(kk:k~;~]4 VL(k ± k') -VT(k ± k')] }LPU(k'.U){AFAF}PU(k'). (19) 

On making the longitudinal approximation to the propagator, only the term 
involving JJL(k ± k') is retained in the curly brackets in (19). Our justification 
for this assumption is that the effect of interest is strongest when k ± k' is 
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close to a pole of DL(k ± k'), when only the term involving DL(k ± k') in (19) is 
important. With this assumption we have 

L (ku)4 J.lo 
D (k) = -1(4 N(k) , (20) 

with J\L(k) = (kU)2 + f./oocL(k), where J\L(k) and ocL(k) are the longitudinal parts of 
the tensors J\/lV(k) and oc/lV(k), respectively, cf. (5). On making the longitudinal 
approximation, (19) reduces to 

/IV J.loe6n~ f d4k' (k'U)2 
OCNL(k) '" - 2m~Vt (2rr)4 k,2 - (kIu)2 

'" (k ± k')OIGOI/I(k, u)(k ± k')pGPV(k, u) [PU(k', u)(AFAF}pu(k') (21) 
x 'T (k ± k,)2 - [(k ± k')u]2 [(k ± k')uJ2 + J.loocL(k ± k') • 

Further simplification is made in Section 4 after choosing the rest frame of 
the plasma. 

3. Correlation Function for Density Fluctuations 

The correlation function for the fluctuations or ripples appears in the 
expression (8) for the nonlinear correction to the linear response tensor. This 
correlation function is evaluated here for density fluctuations. 

Density Fluctuations 

Fluctuations in the charge density are related to the electric field by Poisson's 
equation. We assume that the charge density is due entirely to fluctuations one 
in the electron number density. The Fourier transform of the charge density 
is then identified as p(k) = -eone(k). The charge density is also identified as 
the J.l = 0 component of the induced current Jind(k) in 0), and is related to the 
the electrostatic potential cJ>(k) =Ao(k) in the Coulomb gauge (when the other 
components of AV(k) for a longitudinal field are zero) by Jind(k) = oc/lV(k)Av(k). 
Thus we have 

(22) 

Furthermore, the J.l = 0, v = 0 component of oc/lV(k) is related to the longitudinal 
part of the tensor oc/lV(k) by (Williams and Melrose 1989) 

ocoo(k) = _lk~2 ocL(k). 
w 

(23) 

In (22) and (23) k refers to a slow (wllkl «Ve) longitudinal field, and then 
the relevant approximation to ocL(k) in a thermal plasma is '" -Eow2/IkI 2Ab. 
This implies 

(24) 
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On taking the correlation function of (22) with itself, dividing by n~, and 
using (24), one obtains 

«one)22)(k) = (+)2 «cJ»2}(k) = (~)2 (AFAF)oo(k). (25) 
ne eADne me Ve 

Gaussian Model for Density Fluctuations 

One specific model for the density fluctuations is for the case where their 
spectrum is gaussian. A general form is 

(26) 

The parameters wo, leo and ilk are interpreted as the frequency, wave vector 
and spread in wave number of the density fluctuations, respectively. The 
parameter 

2 = «0 )2)/. 2 = J d 4 1c «one)2}(k) 
11 ne ne (2rr)4 n~ (27) 

is interpreted as the relative level of the density fluctuations. 

4. Applications 

In applying the results derived in Section 2 to specific situations, we first 
write the correction to the linear response tensor in terms of 3-tensor notation 
as a correction to the dielectric tensor. The applications discussed here are 
restricted to cases that may be described in terms of the gaussian spectrum 
(26) of density fluctuations. 

Nonlinear Correction to the Dielectric Tensor 

The translation of (21) into 3-tensor notation involves the following steps. 
First, space components Jl = i, v = j of ocJ.iV(k) are rewritten as minus the 
corresponding components of the 3-tensor ocij(k). (The minus sign arises because 
of the equality between the mixed tensor components Jl = i, v = j of ocJ.iv(k) 

and the components of ocij(k).) Then one uses the relation ocij = EOW2(Kij - oij) 

to introduce the equivalent dielectric tensor. Thus writing (21) in terms of a 
correction oKij(k) to the dielectric tensor Kij(k) gives 

(28) 

where KL(k) is the longitudinal part of the dielectric tensor of the background 
system. The background system is assumed to be an isotropic, unmagnetised, 
thermal electron gas at a temperature Te = me vi (in units with Boltzmann's 
constant equal to unity). The appropriate approximate form for the real part 
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of KL(k) for a fast disturbance is 

ReKL(k) ~ 1 _ w[(k) 
w2 ' 

(29) 

where wL(k) = [w~ + 31 kI2V;]l/2 is the frequency of Langmuir waves. The 
thermal corrections are unimportant when treating transverse waves, and 
then the dielectric tensor for the background system may be taken to be 
Kij(w) = (1 - w~/(2)8ij. 

1.09 1.11 

-1 

Fig. 1. Plot of the square of the refractive index for the two 
transverse wave modes in a rippled medium (with collimated 
low frequency density fluctuations). The 'extraordinary' mode has 
polarisation orthogonal to the direction of propagation of the ripples, 
and it has two resonances and associated cutoffs and stop bands. 
The 'ordinary' mode, described by the nearly horizontal curve, is 
unaffected by the ripples. The parameters chosen in the correction 
(31) to the dielectric tensor are wL(ko)/wp = 1 ·1, wo/Wp = 0·005, 
(one!ne)2sin2e=0·00I, where e is the angle between the direction 
k of wave propagation and the direction leo of the ripples. 

We make the further simplifying approximation that the wavelength of the 
waves of interest is long compared with the characteristic wavelength associated 
with the density fluctuations. This corresponds to assuming I kl «I k'i in (28). 
When the gaussian spectrum (26) is inserted into (28), and the long-wavelength 
approximation and the approximation (29) are made, the integrals in (28) may 
be performed explicitly in terms of the plasma dispersion function cp(z): 

f oo d _t2 fZ Z t e _Z2 t2 • _Z2 
cp(z) = --.J ('0) = 2ze dt e - l.Jrrze . rr -00 t- Z+1 0 

(30) 

The resulting general expression is not written down here; some of its properties 
are used in the following discussion. 
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Anisotropic Density Fluctuations I "0 I »tlk 

The most interesting case is when the spread in wavenumbers is small and 
the mean wavenumber of the fluctuations is small compared with the Debye 
wavenumber, that is, for tlk « I "01 «Ai}. In this case, the general result (28) 
simplifies to 

(31) 

On adding (31) to the dielectric tensor Kij(oo) = (1-oo~/oo2)8ij for the background 
plasma, the additional term causes the plasma to become birefringent. There 
is an ordinary mode which is unaffected by the fluctuations and has refractive 
index squared N2 = (1- oo~/oo2). The extraordinary mode has resonances at 
00 = ood"o) ± 000 with associated cutoffs and stopbands. The form of the 
dispersion relations in the frequency range near 00 = ood"o) is illustrated in 
Fig. 1. 

There are several interesting features of the dispersion relations plotted in 
Fig. 1. One is the appearance of two resonances, which occur at 00 "" ooL ± 000. 

The frequencies of these resonance correspond to the conditions for the 
three-wave matching conditions to be satisfied. That is, if one regards the 
ripples as a distribution of waves with frequency 000 and wave vector ko, then 
the resonances occur where one or other of the conditions 00 ± 000 = ood"± '(0) 

is satsified, so that the beat is on the dispersion curve for Langmuir waves. 
Another interesting feature in Fig. 1 is that there is a crossover between 
the two modes, that is, a point at which the refractive indices are equal. 
Strong coupling between the modes is expected to occur in the vicinity of the 
crossover. 

Smearing out of Resonances 

A resonance corresponds to '''' -+ 00, and this violates the assumption 
I "I «I ko I made in deriving (31). The resonance and associated cutoffs can 
be smeared out by at least three effects: 

(i) the spread tlk in wave numbers for the density fluctuations, 
(ii) damping of the virtual Langmuir waves at w = ood" ± '(0), and 

(iii) damping of the density fluctuations. 

The first of these effects is included by evaluating the integral in (28) with (26) 
in terms of the plasma dispersion function and then expanding for small tlk. 
The second of the effects is included by retaining the imaginary part of KL(k) 
on the left hand side of (29); this corresponds to retaining th,e damping of 
the (virtual) Langmuir waves on the right hand side. Damping of the density 
fluctuations may be included by regarding 000 as the frequency of ion sound 
waves and including the appropriate damping as the imaginary part of this 
frequency. Landau damping of the density fluctuations is a relatively strong 
effect in a thermal plasma, and this damping can place severe constraints on 
the conditions under which the resonances and cutoffs illustrated in Fig. 1 
might be observable. 
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On including any of the effects listed above, provided they are small, the 
resonance is replaced by a maximum in the dispersion curve, followed by 
a region of inverse dispersion leading to a minimum, as is familiar for the 
response of any damped oscillator. The smeared-out resonance is important 
only if the peak value of N2 is greater than the unperturbed value in the 
absence of the fluctuations. It then follows from (i), (ii) and (iii) that for the 
resonance to be important one requires 

(32) 

where ydko) and Y5(ko) are the absorption coefficients for the virtual Langmuir 
waves and the density fluctuations, respectively, assuming that the density 
fluctuations are associated with ion sound waves. 

5. Discussion 

We discuss two aspects of the foregoing results in further detail: the formal 
derivation of the correction to the response tensor, and the significance of the 
possible appearance of additional resonances and cutoffs in a rippled plasma. 

The procedure adopted here for including the effect of local spatial variations 
in the plasma parameters has the advantage of being of wide validity. However, 
it has the disadvantage of being relatively cumbersome and difficult to interpret 
intuitively. A much simpler and more intuitive method is developed in the 
Appendix. This method involves including the fluctuations through local 
variations in the plasma parameters on which the linear response tensor is 
functionally dependent. In the case of a cold, unmagnetised, electronic plasma, 
the only such parameter is the electron number density. It is of interest 
to compare the results obtained using these two methods. Specifically, we 
compare (28) and (AS). In making the comparison the static limit (wo = 0) is 
made in (28), and in (A8) the function «one)2}(k)/n~ is related to the function 
«one)2}(k)/n~ in (28) by integrating the latter over dw/2rr. In this limit the 
two results agree. We have attempted to generalise the procedure developed 
in the Appendix in various ways. It is not difficult to include the frequency 
of the fluctuations, corresponding to Wo in (28). Otherwise however, when 
one attempts to include fluctuations with arbitrary k', as in (9), the method 
developed in the Appendix becomes ill-defined and ambiguous. Except in 
the simplest case just discussed, this alternative method does not appear to 
reproduce the results of the more general theory developed in Section 2. 

We have shown that for density fluctuations with a well-defined ko the 
plasma becomes birefringent, and the 'extraordinary' mode has two resonances 
and two cutoffs, which are separated by two stopbands, near the frequency 
wdko) of virtual Langmuir waves with this wave vector. The appearance of 
these resonance may be interpreted in terms of three-wave interactions. In 
(28) the resonances occur at KL(k ± k') = 0: these conditions correspond to the 
Manley-Rowe matching conditions being satisfied for the three-wave interaction 
between a low frequency wave (ion sound wave) with wave 4-vector kill to beat 
with a Langmuir wave with wave 4-vector kll ± kill to produce a test wave with 
wave 4-vector kll. These three-wave interactions and the associated resonances 
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in the refractive index may be attributed to the resistive and reactive parts 
of the same current. Put another way, a three-wave interaction corresponds 
to a resonance (expressing the Manley-Rowe matching condition), and any 
resonance contributes both a real and an imaginary part to the dispersion 
curve. 

If present these resonances and cutoffs would have a major effect on the 
escape of radiation generated near the plasma frequency. Specifically, radiation 
generated below the resonance due to fundamental plasma emission (e.g., 
Melrose 1980, 1985, 1986b, 1987) in solar radio bursts encounters a resonance 
if it is in the 'extraordinary mode'. Although it would require a detailed 
calculation (including the effect of an ambient magnetic field) to study the 
propagation in detail, one prediction can be made from qualitative arguments: 
one would expect any escaping radiation to be predominantly in the 'ordinary' 
mode, which is linearly polarised in the approximations made here. This 
would lead to a reduction in the degree of circular polarisation, leading to a 
possible resolution of a long-standing difficulty in the interpretation of the 
polarisation of fundamental plasma emission, e.g., Melrose (1987, 1989). 

However, these resonances are well defined only under quite restrictive 
conditions: (i) the damping of the density fluctuations and of the virtual 
Langmuir waves must be sufficiently weak, and (ii) the spread flk in the wave 
vector of the density fluctuations must be sufficiently small. The actual limits 
imposed by these requirements are summarised by condition (32). The most 
restrictive of these requirements is that the damping of the density fluctuations 
be suffiCiently small. The density fluctuations are subject to Landau damping, 
which cannot be avoided in an unmagnetised plasma. Two cases where 
this effect is weak might be mentioned. One favourable case is for density 
fluctuations associated with lower bybrid waves in a magnetised plasma. Lower 
hybrid waves propagate nearly perpendicular to the magnetic field, where 
Landau damping is relatively weak. Another case where the damping of the 
density fluctuations may be unimportant is when they are driven, e.g., in 
a four-wave mixing, or in any other driven wave-wave interactions. In a 
steady state, Landau damping of the density fluctuations associated with low 
frequency waves is balanced by their growth due to the wave-wave interaction. 
Even if the damping of the density fluctuations is unimportant, the other 
conditions for the resonances to be observable remain severe: relatively large 
amplitude, highly structured (well-defined ko) ripples are required. 

6. Conclusions 

The effect of density fluctuations on the scattering of high frequency waves 
and in causing wave-wave interactions in plasmas is well known, but the 
associated effect on the dispersive properties of waves has been ignored in the 
past. Here we have developed a systematic theory for treating the effects of 
any fluctuations in the background plasma of the properties of high frequency 
waves. The procedure adopted is based on nonlinear plasma theory, and 
although there is an alternative simpler procedure, discussed in the Appendix, 
it appears to be of very restricted validity. 

The most notable feature of the applications discussed here is that ripples 
in the form of anisotropic density fluctuations cause an otherwise isotropic 
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plasma to become birefringent, and can lead to the appearance of resonances, 
cutoffs and stopbands near the frequency of a virtual Langmuir wave with 
wave vector equal to that of the ripples. These effects may have profound 
consequences on the propagation of radiation near the plasma frequency. 

'However, the conditions under which the resonances and cutoffs are observable 
are quite restrictive. Two favourable cases for observing these effects is for 
density fluctuations (associated with lower hybrid waves) aligned perpendicular 
to an ambient magnetic field, and for ripples driven by wave-wave interactions 
as in degenerate four-wave mixing. 

The investigation reported here is part of an ongoing study of nonlinear 
effects in plasmas which is currently directed towards including magnetic 
effects in the Zakharov equations and in the theory of phase conjugation by 
four-wave mixing in collisionless plasmas. 
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Appendix: Ensemble Average of the Wave Equation 

In an alternative method for including the effect of the fluctuations 
one assumes that there are fluctuations in the linear response tensor due to 
fluctuations in those plasma parameters on which it has a functional dependence. 
This is a standard method for treating classical versions of Rayleigh and 
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Raman scattering, e_g_, Landau and Lifshitz (1960, p.387), Herzberg (1945, 
p.239). The method is well defined only if the Fourier components of the 
test field and of the fluctuations are well separated in both wand k; to a 
first approximation, the frequency of the fluctuations needs to be negligible 
in comparison with that of the test field, and the wave number of the test 
field needs to be negligible in comparison with that of the fluctuations. In 
view of these different approximations to wand k, a 3-tensor description is 
more convenient than the 4-tensor description used in the rest of this paper. 
The treatment outlined here is a minor extension of a method due originally 
to Rax (1986, personal communication). 

In the absence of fluctuations, the medium is assumed not to be spatially 
dispersive so that its response 3-tensor ocij(w) does not depend on k. The 
wave equation, after Fourier transforming in time but not in space, is 

(AI) 

Fluctuations 6QA(x), 6Qa(x) , ... in plasma parameters QA, Qa, ... on which 
ocij(w) has a functional dependence are introduced by making the replacement 

[ 0 1 0 2 ] OCIj(W) --+ 1 + ~ 6QA(x) oQA +"2 ~ 6QA(x)6Qa(x) oQAoQa + . .. OCIj(w). (A2) 

The test field A(w, x) is replaced according to 

A(w, x) --+ A(O)(w) + A(l)(w, x) + A(2)(W, x) + .. " (A3) 

where the superscript denotes the order in a perturbation expansion in the 
fluctuations. The spatial dependence of A(O)(w) in (A3) is ignored; this 
corresponds to making the dipole approximation in the classical treatments 
cited above for Rayleigh and Raman scatterings. After making the replacements 
(A2) and (A3) in (AI), an ensemble average (denoted by angle brackets) in 
performed. The ensemble average of the first order quantities is assumed to 
be zero, and the difference between a second order term and its ensemble 
average is assumed to be of higher order. On subtracting the ensemble average 
from the unaveraged equation, to first order one obtains 

After Fourier transforming, (A4) may be solved for 

(AS) 

where the K is a unit vector along k. The averaged equation includes a term 
that involves the product of the first order terms from (A2) and (A3), and (AS) 
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is used to evaluate this product in terms of the correlation function for the 
fluctuations: 

(A6) 

As a result of these calculations, the correction to the response tensor is 
found to be 

f d3k [1 o2ocdoo) 
ooc/j(oo) = (2rr)3 ~ WAB(k) "2 00.~Qa 

1l0C2 OOCir(W) [ KrKs Ors - KrKs ] OOCSj(w) 
- 002 00. KL(w,lkl} + KT(W,lkl}-lkI2C2/W2 oQa' (A7) 

The simplest case is where (i) only density fluctuations are considered, (ii) 
the cold plasma approximation is made in the form oc/j(w) = (e2ne/me)o/j, and 
(iii) the term involving KT in (A7) is neglected. Then (A7) reduces to 

.. _ _ lloc2e4n~ f d 3k «one)2)(k) K;Kj 
ooclj(oo) - m~oo2 (2rr)3 n~ KL(W,I kl) . (A8) 

The correction to the dielectric tensor is given by oK/j(k) = (llo/oo2)ooc/j(oo). 
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