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Abstract 

We consider dynamical symmetry breaking through a tumbling mechanism for exotic 
representations of fermions in unified models. Possible ways to introduce U(I) gauge 
symmetry are also discussed. It is shown that the most attractive channel (MAC) hypothesis 
does not predict physically interesting results unless the peculiar assumption of the maximal 
preservation of the global SU(3)xU(l) symmetry is made. In such a case the model with two 
fermionic generations is obtained. 

1. Introduction 

Dynamical symmetry breaking (Kaptanoglu and Pak 1982) has been proposed in 
the framework of grand unified theories (Georgi and Glashow 1974; Nanopoulous 
1980; Ellis 1980; Langacker 1981) in order to explain the appearance of the 
Higgs sector. The first attempts to apply dynamical symmetry breaking to 
physical models of interactions were undertaken by Cornwell and Norton (1973) 
and then by Weinberg (1976, 1979). That led to the technicolour (TC) and 
extended technicolour (ETC) hypothesis (Dimopoulos and Susskind 1979; Fahri 
and Susskind 1981) and it provided the only description of dynamical breaking 
of the standard electroweak SU(2)L®UO)y group (Glashow 1961; Weinberg 1967; 
Salam 1969). However, technicolour and extended technicolour suggestions 
do not· unify all elementary interactions. 

Tumbling gauge theories based on the Raby-Dimopoulos-Susskind (RDS) 
rules have raised new hopes. These theories were investigated also by Srednicki 
(980), Bais and Frere (981) and King 0981 a). In these considerations the 
exotic fermionic representations (King 1981 b) were neglected without providing 
sufficient reasons (King 1981 a). There is only one such representation of the 
SU(S) group which satisfies all the fundamental axioms (King 1981 b; Georgi 
1979) of the grand unified theory: 

(i) anomaly free (King 1981 b; Georgi and Glashow 1972; Banks and Georgi 
1976; Okubo 1977); 

(ii) asymptotically free (King 1981 b; Gross and Wilczek 1973a, 1973b, 
1974; Politzer 1973, 1974); 

(iii) complex with respect to the subgroup SU(3)c®SU(2)L®UO)y (King 1981b; 
Georgi 1979); 
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(iv) real with respect to the strong electromagnetic subgroup SU(3)c®U(l)Q 
(King 1981b; Georgi 1979), namely 

f~J(5) = 5E1115$45$40* . (1) 

[The second and the last representation at SU(5) level that satisfies the 
conditions (i)-(iv) is the conventional one, 

f~8(5) = 5$10* , (2) 

but it is not exotic.] The exotic representations for other groups are excluded 
because they do not satisfy condition (iv) (King 1981 b). 

Raby et al. (1980) considered tumbling for f~8m and have shown that in this 
case the SU(5) group breaks to SU(4) only. Our question is-what will occur if 
we apply the tumbling hypothesis of Raby et al. (1980) to the representation 
f~D(5)? 

2. Tumbling Mechanism in Exotic Case 

According to RDS rules a condensate will form in a channel for which the 
potential defined as 

V(RI ®R2 -+ R) = ~ocz(C - Cl - Cz) (3) 

has a minimum and is negative, where C, Cl, Cz denote the quadratic Casimir 
operators for the composite (C) and constituent systems (Cl, Cz), Rl,Rz are 
irreducible representations for constituent fermions and R is an irreducible 
representation of the composite state. In the case of f~J(5) this occurs in the 
cross product: 

45®40* -+ 5, 

where quadratic Casimir values for these representations are 

Z4 C(5) = TO' 0 *) 66 C(4 = TO' 

with the normalisation convention 

Tr{ta, tb} = 8ab 

64 C(45) = TO' 

(4) 

(5) 

(6) 

for generators ta in the fundamental representation. It gives us the binding 
potential 

v - -M oc z . (7) 

The condensate (4) could break 

SU(5) -+ SU(4)®U(I) (8) 
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because we have the branching rules 

51 SU(S) = 1(4n)E94(-n)1 SU(4)®U(l)' 

451 SU(S) = 6(6n)E915(-4n)E94*(n)E920(n)1 SU(4)®U(l), 

40*1 SU(S) = 4*(-7n)E96(-2n)E910*(-2n)E920*(3n)1 SU(4)®U(l). (9) 

In the parentheses we have noted the values of the charges of the U(1) gauge 
group; n describes the normalisation of the U(1) generator. 

We see that the singlet 1(4n) in 5U(4)®U(1) is formed from 20(n) and 
20*(3n). They should then acquire a mass of order Mo, where Mo is defined 
from equation (7) as 

2 10 oc (Mo) = 53" • (10) 

However, 20(n)®20*(3n) is not a real representation with respect to 5U(4)®U(1), 
because the U(1) factor destroys this reality. 50 20(n)®20*(3n) cannot be 
massive. We conclude that breaking (8) is impossible. The tumbling scheme 
only allows the breaking 

5U(5) - 5U(4). 

The following branching rules are valid: 

51 SU(S) = IE941 SU(4), 

451 SU(S) = 6E915E94*E920I SU(4), 

40j SU(S) = 6E94*E910*E920* I SU(4), 

lSI 5U(5) = I 0E94E9 I I 5U(4)· 

(11) 

(12) 

We see that the singlet obtained from 5 is formed from 20 and 20* and 
these states become massive of order Mo, as defined in (10). Also, nine vector 
bosons connected with broken 5U(5) generators get the same mass. 

The next step of breaking is realised through the channel 

10®10* -I, (13) 

as the most attractive channel (MAC), with C values 

C(I)=O, C(IO) = C(IO*) = fg-, (14) 

and the binding potential 

v - -fg-oc2 • (15) 

Because the condensate in (13) is a singlet with respect to 5U(4), it does not 
break it. The only result of this step is to give a mass of order Ml for 10 
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and 10*, where M1 is such that 

2 10 ()( (Md = 45"' (16) 

Now we have an effective theory with massless fermion content 

(I, 2)E9(6r , 2)E9(4, 2)E9(4 *, 2)E9( IS f , 1) , (17) 

with respect to SU(4)]oc®SU(2)g]ob symmetry, where an additional global symmetry 
is obvious. The index r denotes that the representation is a real one. 

The MAC hypothesis says now that the condensate should be formed in 
the channel 

(IS f , 1)E9(IS f , I) -+ (I, I), (18) 

with the binding potential V - -4()(2 [C(IS f ) = 4]. It does not break SU(4)]oc 
symmetry and leads to the mass for ISf of order M2 where 

()(2(M2) = ~. (19) 

After that the effective theory contains the following massless particles in 
obvious notation: 

(I, 2)E9(6r , 2)E9(4, 2)E9(4*, 2). (17') 

The MAC hypothesis predicts 

(6 f , 2)®(6r , 2) -+ (1,3), (20) 

with the binding potential V - _~()(2 because of the Casimir value C(6 f ) = ~, 
and then 

(4,2)®(4*,2) -+ (1,3), (21) 

with V - _¥()(2, because C(4) = ¥. As a result 6 f get a mass of order M3 
defined by 

()(2(M3) = ~, 

and the mass of the quartets is M4 < M3 where 

8 ()(2(M4) = T5" • 

(22) 

(23) 

Finally, we have unbroken SU(4)]oc symmetry with two massless singlets of 
SU(4)loc (see equation 17') and two triplets of pseudo-goldstones connected 
with broken SU(2)glob symmetry of sextets (20) and quartets (21). Such a 
result is not interesting from a physical point of view and it is similar to 
the one obtained for the conventional representation of SU(5) in equation (2) 
by Raby et al. (1980). Nevertheless, if we assume that for some reason the 
global SU(2) symmetry should not be broken (for example because of the 
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hypothesis of maximal preservation of global symmetry in dynamical breaking), 
all condensates must be formed as singlets of 5U(2)glob. For (6f,2)®(6f,2) this 
is 

(6f, 2)®(6f, 2) -+ (Is, Ia)EEl(ISa, Ia)EEl(20s, Ia). (24) 

The first condensate on the right side is excluded now because of Fermi 
statistics [it is symmetric in 5U(4hoc indices, anti symmetric in 5U(2)glob and 
anti symmetric in spin indices]. The third condensate in (24) cannot be formed 
because the binding potential is positive, so the only admissible channel is 

(6f,2)®(6f,2) -+ (ISa, Ia), (25) 

with the binding potential V - -icx2, because C(IS) = 4. 
However, the MAC for fermion content (17') is not (25) but 

(4, 2)®(4*, 2) -+ (1,1), (26) 

with V - -lJ-cx2 • It gives for 4 and 4* a mass of order M4 defined in (23), but 
it does not break 5U(4)loc. 

After that the binding (25) can be realised. It breaks 

5U(4) -+ 5U(3)®U(l) 

because of the branching rules 

IS, SU(4) = I(0)EEl3(-j. )EEl3 * (j.)EEl8(0) , SU(3)®U(l), 

6, SU(4) = 3( t )EEl3*(-t), SU(3)®U(l)· 

(27) 

(28) 

The singlet in ISf is formed from 3(t) and 3*(-t) so these states get a mass 
of order Ms, defined by 

cx 2(Ms) = 2. 

Because of the additional branching rules 

4, SU(4) = I(I)EEl3(-j.), SU(3)®U(l), 

4j SU(4) = I(-I)EEl3*( j.), SU(3)®U(l), 

and remembering that for each representation A, 

A *(-mk = A(m)R, 

(29) 

(30) 

(31) 
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where the number in parentheses denotes the U(1) value, we have the following 
fermion content in the effective low-energy theory: 

2 x 3(~)L,R with mass Ms, 

2 x 3(-~ kR with mass M4 > Ms , 

2 X l(-l)L.R with mass M4. 

3. Conclusions 

The results we found above can describe two families with SU(3)c®U(1)Q 
properties: 

(i) e-family : (ii) Ji-family: 

( 2)MS 3 3" L,R ...... UL,R 2)MS 3( 3" L,R ...... CL,R 

3(-~)eR ...... dL,R 1 )M4 3(-3" L,R ...... SL,R 

M4 -l(-l)L,R ...... eL,R M4 -l(-l)L,R ...... JiL,R 

l(O)~ ...... VeL l(O)~ ...... VJ.lL 

where the electric charge is given in parentheses. All other states including 
the exotic part are very massive and can be neglected in low-energy theory 
described by SU(3)c®U(1)Q. This fact is in agreement with experiment. The 
same mass for the e and Ji family is not very intriguing because the tumbling 
mechanism only gives us information about the order of the mass. It is worth 
remarking that neutrinos are massless and particles d and e or sand Ji are 
of the same order of mass, also a characteristic feature of the SU(5) model 
by Georgi and Glashow (1974). However, there is no place here for the weak 
interactions described by the Salam-Weinberg model. Finally, one can conclude 
that the above toy model is an example of dynamical unification of strong 
and electromagnetic forces with two families by the assumption of maximal 
preservation of a global symmetry. 
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